MAPP: A Platform for Prototyping Algorithms and Models Quickly and Easily

Tianshi Wang, Karthik Aadithya, Bichen Wu and Jaijeet Roychowdhury

EECS Department University of California at Berkeley

Motivation for MAPP

Berkeley Model and Algorithm Prototyping Platform

- Developing <u>good</u> compact models: many pitfalls
 - » examples: discontinuities/smoothness, well-posedness
 - problems usually discovered at deployment (ie, during simulation)
 - » problems often hard to debug and resolve

 $-\operatorname{compact}$ model developer and simulator people blame each other

- Anyone working in simulation algorithms today needs
 » device models: BSIM, MOS1, MOS2, MOS3, ...
 - » base algorithms: **robust nonlinear solution**, transient, HB/shooting, ...

» parsing, equation formulation, output, ...

- » huge (waste of) effort of re-development of basic capabilities
- One goal of MAPP: to ease these problems
 - » common, open-source simulation framework
 - » in MATLAB
 - -empowers non-programmers to debug models and algorithms

Why not use SPICE?

SPICE: the original open-source simulator

- » de-facto standard
- » structure: all analyses in all models
- » prototyping models & algorithms: takes months to years
- » pain to write (even for those who can)
 - -e.g., shooting method (S-SPICE)
- To be useful: modular, well-structured, flexible
 - » separated models, algorithms, numerics, I/Os
 - » simple, clean interfaces
 - » short, easy to read, easy to modify

Excerpt from *dioload.c* (SPICE3)

Glimpse: Diode Model in MAPP

MOD.terminals MOD.parms MOD.explicit_outs MOD.f: function handle MOD.q: function handle

- executable (in Matlab)
- takes 10min to write
- works in all analyses

Glimpse: Shooting Method in MAPP

Code Structuring of MAPP

Tianshi Wang, University of California at Berkeley

MAPP: Compact Model Prototyping

MAPP: Multi-Physics Support

Optical System Modelling/Simulation Example

Tianshi Wang, University of California at Berkeley

LTI MOR Example in MAPP

Tianshi Wang, University of California at Berkeley

Phase-based Reduced-order Model in MAPP

Tianshi Wang, University of California at Berkeley

Simulation Algorithms in MAPP: More Examples

Distortion Contribution Analysis on Gilbert cell

details: Wu/Roychowdhury, "Efficient per-element distortion contribution analysis via Harmonic Balance adjoints". Proc. CICC 2014.

3D phase plane plot of RRE for A + B \rightarrow 2B; B + C \rightarrow 2C; C + A \rightarrow 2A

MAPP: First Public Release

- Open Source download: http://mapp.eecs.berkeley.edu
 - » mailing list (MAPP announcements/discussion)
 - » bug reporting and tracking site
 - » git repository access (you can contribute)

License

- » primary: GPL-v3
- » alternative licensing available

-eg, SRC contract terms apply for SRC company use

» contributors can specify their own alternative licensing terms for their contributions

MAPP: Features

- Works entirely in MATLAB
 » C++ version to be released
- Help system (start with help MAPP)
 » quick start walk-through
- Automatic differentiation (vecvalder) » help MAPPautodiff
- Executable device specification (ModSpec)
 » examples, tutorial: part of help
- DC, AC, transient analyses
 - » also noise, homotopy, HB, shooting, PPV, MOR, etc. (not released yet)
- Automated testing system exercising suite of tests

MAPP: Intended Uses

- Developing simulation-ready device models
 - » including multi-physics devices, network connectivity
- Quickly prototyping new simulation algorithms » hours/days to implement a new analysis
 - assess strengths/limitations before investing resources to implement in "real simulators"
- Learning or teaching modelling/simulation
 - » MATLAB \rightarrow broadly accessible
 - » help system, tutorials, supporting resources

Summary

http://MAPP.eecs.berkeley.edu

Tianshi Wang, University of California at Berkeley

Va = 0.6

Vg = 0.7

- Vg = 0.8

- Vg = 0.9

(V)

Vd (V)

1.5

- Vg = 1

 $V\alpha = 0$

- Vg = 0.1

Vg = 0.2

 $V_{0} = 0.3$

Va = 0.5

0.5

default: L=80nm , W=1 μ m

(c) MVS v1.0.1

(mA)

₽_0.5

-0.5

0

Q 0

은 -5

₽_10

-15

-20

-25

-0.2

Va = 0

- Va = 0.1

- Vg = 0.2

 $V_{q} = 0.3$

-Vq = 0.5

0.6 0.8

0.4

default: L=1 μ m, W=1 μ m

0.2

(d) MOS11 v2

Va = 0.6

Vg = 0.7

→ Vg = 0.9

Vg = 1

(V)

Vd (V)

Frequency (Hz)