
MAPP: The Berkeley Model and Algorithm Prototyping Platform

Tianshi Wang, Aadithya V. Karthik, Bichen Wu, Jian Yao and Jaijeet Roychowdhury

EECS Department, University of California, Berkeley

Abstract—We present the Berkeley Model and Algorithm
Prototyping Platform (MAPP), a MATLAB R©-based framework
for conveniently and quickly prototyping device compact models
and simulation algorithms. MAPP’s internal code structuring,
which differs markedly from that of Berkeley SPICE and related
simulators, allows users to add new devices with only minimal
knowledge of simulation algorithms, and vice-versa. We describe
MAPP’s structuring and provide an overview of its capabilities.
MAPP is available as open source under the GNU Public License.

I. INTRODUCTION

A long-standing barrier to research in device models and

simulation algorithms has been the lack of a powerful yet easy-

to-use platform for prototyping new ideas. While Berkeley

SPICE [1], [2] and its derivatives, e.g., ngspice [3], have

long been standard platforms for modelling and simulation,

they are not well suited for quick and convenient prototyping,

primarily because of outdated code structuring. In particular,

simulation algorithms in Berkeley SPICE are implemented

in, and specialised for, every device model. Such structuring

makes it difficult to insert new devices or algorithms. While

modern open-source post-SPICE circuit simulators, e.g., Gnu-

cap [4] and Qucs [5], have many advantages over SPICE

and its derivatives, especially in code readability and docu-

mentation, they continue to implement algorithms in devices,

hence adding either remains challenging. Xyce [6], a modern

open source simulator, allows device models to be nearly

independent of analysis types, alleviating the difficulty of

developing models and algorithms to a great extent. However,

code development in Xyce requires considerable facility with

C++ programming.

This situation has long hindered research in modelling and

simulation – the barrier to entry for incorporating new devices

or analyses is so high that few researchers are capable of per-

forming these tasks effectively. New ideas are often dropped

simply because they cannot be prototyped in a reasonable time

using available open source simulators.

To address this issue, we have been developing the Berkeley

Model and Algorithm Prototyping Platform (MAPP). The

primary goal of MAPP is to ease the process of developing

new device models and simulation algorithms, especially for

those who do not have an extensive background in compact

modelling or experience coding algorithms in simulators. To-

wards this end, we have chosen to implement MAPP entirely

in MATLAB R©. MATLAB R© is widely used today in scientific

and engineering communities; its simple, mathematics-based

syntax makes programming accessible to a broad range of

users. In addition, MATLAB R© is interactive, as well as inter-

preted (i.e., there is no need for compilation), which makes it

well suited for quick prototyping and debugging. It has built-

in support for vectors/matrices (including sparse matrices) and

comes with an exceptionally rich set of mathematical objects

and functions in linear algebra, statistics, Fourier analysis,

optimization, bioinformatics, etc., all useful for compact mod-

elling and simulation. MATLAB R© also offers flexible, easy-to-

use graphics/visualization facilities which are valuable when

exploring new devices and analyses.

MAPP’s code structuring, which differs markedly from that

of SPICE, makes prototyping models and algorithms fast and

easy. As shown in Fig. 1, the structure of MAPP centers around

a mathematical abstraction, the Differential Algebraic Equa-

tion (DAE) [7], which is well suited for describing continuous-

time dynamical systems in virtually any physical domain. The

use of DAEs enables MAPP to model and simulate devices

and systems from domains beyond just the electrical in a

natural way. Device equations are specified in a MATLAB R©-

based format (ModSpec [8]). With the DAE concept separating

device equations and analysis algorithms, MAPP’s ModSpec

device models are unaware of what simulation algorithms there

are that may use them. This simplifies and speeds up the task

of device model prototyping in MAPP.

DAEs are set up by MAPP’s Equation Engines, which

combine network connectivity information (e.g., from a circuit

netlist) with device model equations in ModSpec to produce

system-level DAEs. MAPP’s simulation algorithms are aware

only of DAE objects; they work by calling DAE accessor func-

tions (collectively called DAEAPI). This structuring enables

developers to add new algorithms knowing only the generic

format of DAEs, without having to look into the details of

device implementation or equation formulation.

Fig. 1. Components of MAPP.



For several years before its public release, MAPP has been

used internally in our group and has greatly facilitated our

own research. For instance, we developed, implemented and

validated a new algorithm for distortion computation [9] using

MAPP; this was done by a fresh graduate student, new to the

field, in about three weeks. By way of comparison, the much

more limited distortion capability in Berkeley SPICE3 [2] had

taken over a year to implement — by a graduate student

already familiar with coding within SPICE3. Implementing

our new algorithm would have involved making so many

changes to SPICE3, and taken so much time and effort, that

we would not even have tried; the idea would have been lost.

Not only has MAPP been useful for trying new ideas, it has

also served as a key vehicle for meaningful collaboration with

other research groups. Furthermore, it has been helpful for

teaching simulation and modelling concepts, with preliminary

versions used in classes over several years.

MAPP has been released publicly in open source form

[10], primarily under the GNU Public License, with alternative

licensing models also supported. The current release of MAPP

contains common electrical devices and standard simulation

algorithms, including DC, AC and transient analyses. Many

more capabilities, including multi-physics device and system

modelling features, and additional analyses such as shoot-

ing, harmonic balance, homotopy, stationary noise analysis,

parameter sensitivity analysis, per-element distortion analysis,

model order reduction based on moment matching and Krylov

subspace methods, etc. [7], have already been prototyped in

MAPP and will also be made available under MAPP’s open

source license. Users can contribute code to MAPP via a public

git repository. MAPP comes with a suite of examples at the

device, system and analysis levels. It leverages MATLAB R©’s

help system to help new users get started, and to provide

more advanced users information about internal structuring

and available functions. It also includes an automatic testing

system, designed to facilitate development by quickly detect-

ing problems as code is written or changed. All these features

help make MAPP ideal for rapid prototyping of device models

and simulation algorithms.

The rest of the paper is organized as follows. In Sec.

II, we illustrate the flow of device compact modelling in

MAPP. In Sec. III, we discuss features that make algorithm

prototyping quick and convenient in MAPP. We then present

several examples of models/algorithms in MAPP in Sec. IV.

II. DEVICE COMPACT MODELLING IN MAPP

Fig. 2 depicts the device model prototyping flow in MAPP.

We use a tunnel diode example below to explain the steps that

constitute this flow, illustrating its advantages and novelties

along the way.

Step 1.1: Writing the model in ModSpec:

Writing a model will normally start by specifying model

equations in the ModSpec format [8], which we illustrate

using a tunnel diode model. Tunnel diodes [11] are a type of

Fig. 3. Tunnel diode I/V curve.

Fig. 4. Tunnel diode schematic.

two-terminal semiconductor de-

vice with I/V characteristics simi-

lar to the blue curve in Fig. 3. We

name the model’s two terminals p
and n, as shown in Fig. 4. Associ-

ated with these terminals are two

electrical I/O properties: a branch

voltage vpn and a branch current

ipn. In their simplest form, their relationship can be written

as [11]

ipn =
d

dt
(C · vpn) + Idiode + Itunnel + Iexcess, (1)

where C ·vpn models the charge between the terminals. Idiode,

Itunnel and Iexcess are the regular diode current, tunnelling

current and additional parasitic tunnelling current terms, re-

spectively:

Idiode = Is · exp(
vpn
Vt

− 1), (2)

Itunnel =
Ip
Vp

· vpn · exp(−
vpn − Vp

Vp

), (3)

Iexcess =
Iv
Vv

· vpn · exp(vpn − Vv). (4)

The above equations involve the model parameters C,

Is, Vt, Vp, Iv and Vv , which determine the shape of the

tunnel diode’s characteristic curve and its dynamics. (1) is

a nonlinear differential equation, with one of its I/Os, namely

ipn, expressed explicitly – such differential equations are at

the core of all device compact models. ModSpec supports the

following general system of equations for devices [8]:

~z =
d

dt
~qe(~x, ~y) + ~fe(~x, ~y, ~u), (5)

0 =
d

dt
~qi(~x, ~y) + ~fi(~x, ~y, ~u). (6)

The vector quantities ~x and ~z contain the device’s terminal

I/Os: ~z comprises those I/Os that can be expressed explicitly

(ipn for our tunnel diode example), while ~x comprises those

that cannot (vpn for the tunnel diode). ~y contains the model’s

internal unknowns (e.g., internal nodes), while ~u provides

a mechanism for specifying time-varying inputs within the

device (e.g., as in independent voltage or current sources).

(Our tunnel diode example has no entries in ~y and ~u.) The

functions ~qe, ~fe, ~qi and ~fi define the differential and algebraic



Fig. 2. Device model prototyping flow in MAPP.

parts of the model’s explicit and implicit equations. The tunnel

diode (1) can be expressed in ModSpec as

~fe(~x, ~y, ~u) = Idiode(~x) + Itunnel(~x) + Iexcess(~x),

~qe(~x, ~y) = C · ~x,

~fi(~x, ~y, ~u) = [], ~qi(~x, ~y) = [],

(7)

with ~x = [vpn], ~y = [], ~z = [ipn], ~u = []. Issuing

the command “help ModSpec_concepts” within MAPP

provides more detailed explanations of these concepts.

ModSpec objects in MAPP are simply MATLAB R© struc-

tures that contain a number of datum and function-handle

fields. “help ModSpecAPI” in MAPP provides detailed

documentation of these fields. Writing a ModSpec device

model involves providing basic model information (e.g., the

number of terminals, internal nodes, which I/Os are explicitly

available, parameter names/values, etc.) as data fields, and

writing the model functions ~qe, ~fe, ~qi, ~fi using standard

MATLAB R© syntax. For example, the tunnel diode model

above is described with the following ModSpec code:

function MOD = Tunnel_Diode_ModSpec()

MOD = ee_model();

MOD = add_to_ee_model(MOD,’terminals’, {’p’, ’n’});

MOD = add_to_ee_model(MOD,’explicit_outs’, {’ipn’});

MOD = add_to_ee_model(MOD,’parm’,{’Is’,1e-12,’Vt’,0.025});

MOD = add_to_ee_model(MOD,’parm’,{’Ip’,3e-5,’Vp’,0.05});

MOD = add_to_ee_model(MOD,’parm’,{’Iv’,3e-6,’Vv’,0.3});

MOD = add_to_ee_model(MOD,’parm’,{’C’, 1e-15});

MOD = add_to_ee_model(MOD,’fe’, @fe);

MOD = add_to_ee_model(MOD,’qe’, @qe);

MOD = finish_ee_model(MOD);

end

function out = fe(S)

v2struct(S);

I_diode = Is*(exp(vpn/Vt)-1);

I_tunnel = (Ip/Vp) * vpn * exp(-1/Vp * (vpn - Vp));

I_excess = (Iv/Vv) * vpn * exp(vpn - Vv);

out = I_diode + I_tunnel + I_excess;

end

function out = qe(S)

v2struct(S);

out = C*vpn;

end

In Fig. 5, an excerpt from SPICE3’s implementation of

a regular diode model is shown as comparison. The code

shown has almost no direct relation to the diode’s equations; it

relates to the implementations of AC, transient, etc., analyses

in SPICE3 — in which the complete diode implementation

involves 27 different files, with 2704 lines of code in all. In

contrast, the 25 lines of ModSpec code above describe the

entire tunnel diode model; it works in every analysis in MAPP.

Fig. 5. Excerpt from SPICE3’s dioload.c, illustrating how every device
contains code for every analysis.

Although the tunnel diode example here is a simple two-

terminal device, the ModSpec format supports more general

devices, with multiple terminals, internal nodes, etc., through

its vector equations (5) and (6). ModSpec also supports

specifying parameters, noise sources and other features (such

as device-specific limiting and initialization) [8], [7]. Since the

format itself makes modellers explicitly aware of important

mathematical features of the model (such as the numbers of

equations and unknowns involved, which equations are purely

algebraic and which involve differential terms, etc.), many

common modelling errors are eliminated.

Another implication of the differential equation format (5)

and (6) is that ModSpec devices are not limited to any specific

physical domain. Domain-specific attributes (e.g., voltage/cur-

rent concepts for electrical devices, together with related

constraints such as KCL and KVL [7]) are layered on through

a Network Interface Layer (NIL), an add-on structure within

ModSpec. Specifying several NILs for a single ModSpec

device makes it easy to model multi-physics devices, as



illustrated in Fig. 6. Perhaps most importantly, writing a device

model in ModSpec enables immediate, standalone testing and

model debugging in MATLAB R©, without necessarily relying

on any of MAPP’s analyses.

Fig. 6. ModSpec supports multiple physical domains in the same device
through the concept of the Network Interface Layer (NIL).

Step 1.2: Testing the model standalone: The ModSpec format

is a MATLAB R© structure and contains executable function

fields. It allows modellers to evaluate and visualize the model’s

functions right after it is coded in MAPP, without incorpo-

ration within a circuit. This is useful for checking equation

correctness and catching simple bugs at an early stage of the

model development flow. The functions tested at this point are

the same ones called during circuit simulation; since no trans-

lation or interpretation is involved, model development and

deployment more transparent and reliable. Existing Verilog-

A based model development flows and tools do not provide

a standalone check capability, since they necessarily involve

translation/interpretation implemented in each simulator; the

only way such a model can be exercised by the user is by

writing test circuits and running them in the simulator.

Continuing with the tunnel diode example, by evaluating ~fe
with different input voltages ~x = vpn, we can plot the I/V

curve of the tunnel diode (shown in Fig. 7) without putting it

in a circuit. The ModSpec model also contains automatically-

generated functions for the derivatives of ~qe, ~fe, ~qi, ~fi, etc.; the

derivatives are computed by MAPP’s automatic differentiation

package vecvalder [8] (“help MAPPautodiff” in MAPP).

By evaluating ∂ ~fe/∂~x, we can calculate conductances and plot

the G/V curve shown in Fig. 8.

Fig. 7. I/V curve generated from the
tunnel diode ModSpec model.

Fig. 8. G/V curve generated from the
tunnel diode ModSpec model.

Furthermore, MAPP provides a Model Exerciser feature that

allows users to plot curves like the ones in Fig. 7 and Fig. 8

with only a few lines of code. For example, we can initiate the

model exerciser, then plot the I/V and G/V curves conveniently

with the following MAPP code:

MEO = model_exerciser(Tunnel_Diode_ModSpec());

MEO.display(MEO); % displays available function names

% and their usage, including ’ipn’ and ’dipn_dvpn’

MEO.plot(’ipn’, 0:0.01:0.42, MEO);

MEO.plot(’dipn_dvpn’, 0:0.01:0.42, MEO);

Step 1.3: Running the model within small circuits in MAPP:

Once the model has been examined standalone, it can be tested

further in small circuits that are simulated in MAPP.

Frequently, this step reveals many problems (e.g., bad nu-

merics, unphysical results, connectivity issues, etc.) in newly-

written models, especially those with equations that attempt

to capture new physics. MAPP makes it easier to detect and

address these problems than any other modelling/simulation

framework we are aware of. MAPP’s use of MATLAB R©

allows developers to debug their models effectively in an

interactive coding environment. Also, MAPP’s algorithm im-

plementations are available to users as open source. They are

object-oriented, mathematically-based, with functions inside

clearly documented. They are meant to be easily accessible

even by non-programmers. Thus debugging is more transpar-

ent to users. By running a new model within the DC, AC and

transient algorithms within MAPP, most problems caused by

the model for simulation can be detected.

For example, Fig. 9 shows a simple circuit where our

previously introduced tunnel diode model is biassed within

its negative resistance region by a voltage source, and con-

nected with an RLC tank. With proper choice of parame-

ters, the circuit becomes a negative-resistance LC oscillator.

The circuit (“netlist”) can itself be described in MAPP us-

ing MATLAB R© commands (“help MAPPcktnetlists”

for details). Running transient simulation in MAPP (“help

dot_transient”) demonstrates self-sustaining oscillation

in the circuit, as illustrated in Fig. 10. From the standpoint of

a device modeller, this provides important verification that the

model can run in transient simulation. If transient fails, or if its

results seem incorrect, the modeller gets to know immediately;

the compact model’s equations and/or their implementation

can then be re-examined and corrected.

Fig. 9. Circuit schematic of an
oscillator made with a tunnel
diode.

Fig. 10. Transient simulation results from the
tunnel diode oscillator in Fig. 9.

Step 2: Deploying the model: Beyond providing facilities for

testing models standalone and in small circuits, MAPP of-

fers convenient and versatile tools to help prepare them for

deployment. Most often, developers will wish to convert the

ModSpec model into Verilog-A, the current industry standard



for compact modelling [12], for public release. The fact that

the model has already been tested and debugged on small

circuits makes it far more likely that a Verilog-A version, if

written properly, will work well in simulation.

The most likely cause for Verilog-A model problems at

this step are discrepancies between the Verilog-A model and

its ModSpec version, which are not hard to introduce, even

for experienced compact modellers. To aid debugging, MAPP

comes with a translator, CoMeT (Compact Model Translator),

that can translate Verilog-A to ModSpec. Since ModSpec

is an executable format, the translated ModSpec model can

be conveniently compared against the original one, both by

evaluating model functions and by running circuit simulations.

If the two ModSpec models, one original, the other auto-

translated from Verilog-A, are found to be consistent, con-

siderable confidence is generated that the released Verilog-A

model is correctly implemented. If not, debugging the auto-

translated ModSpec model in the interactive environment of

MAPP makes it easy, typically, to locate problems in the

Verilog-A version.

During automatic translation, CoMeT’s Verilog-A parser

extracts a directed acyclic graph (DAG) [13] for the model’s

equations1. For example, Fig. 11 shows the DAG generated

for the tunnel diode. By helping modellers visualize code ex-

ecution and variable/parameter parameter dependencies in the

model, such graphs can be useful not only for understanding

and debugging the model, but also for optimizing the code.

Fig. 11. DAG for the tunnel diode equations, generated by MAPP/CoMeT’s
Verilog-A translator/parser.

Thus, not only does MAPP incorporate Verilog-A within its

compact modelling flow, it also adds convenient visualization,

testing and debugging features that can speed development and

improve the quality of Verilog-A versions of a compact model.

In parallel with Verilog-A release, model developers can

also directly release their ModSpec models in MATLAB R©.

Moreover, a C++ version of ModSpec is also available,

using which models can be compiled standalone to generate

dynamically-loadable libraries that conform to a C++ version

of the ModSpec API.

1MAPP’s Verilog-A parser can also handle if-then-else statements and
simple for loops.

Step 3: Simulating the model: Once the Verilog-A model is

ready, it can be used by any simulator that supports compact

model descriptions in Verilog-A. For example, the circuit in

Fig. 9 was simulated in both Spectre and HSPICE. A snapshot

of Spectre’s results is shown in Fig. 12, while results from the

HSPICE engine are plotted by MATLAB R© in Fig. 13.

Furthermore, the C++ version of the ModSpec model can

be simulated by any simulator that supports the C++ ModSpec

API. We have implemented such support in the simulator Xyce

[6] by writing a ModSpec interface within Xyce. This Xyce-

ModSpec interface consists of less than 1000 lines of C++

code, and can dynamically link any C++ ModSpec model

into Xyce. Fig. 13 overlays a Xyce simulation of the tunnel

diode oscillator; a C++ ModSpec version of the tunnel diode

model was incorporated into Xyce using the Xyce-ModSpec

interface. We stress that results from the model, prototyped

with MAPP, are identical in all simulators we have tried (Fig.

13 and Fig. 12), with Verilog-A and ModSpec deployments

being consistent. The MAPP-based development flow we

have outlined makes it far easier and faster to achieve such

consistency than previous flows.

Fig. 12. Screenshot from
Cadencer Virtuosor, showing
Spectre transient simulation
results of the circuit in Fig. 9.

Fig. 13. Transient results from HSPICE
and Xyce of the circuit in Fig. 9.

The ModSpec model format, being relatively new, is not

widely supported in simulators yet. Nevertheless, its adoption

can confer a number of advantages. Implementing a C++

ModSpec interface in a simulator is typically much easier than

implementing Verilog-A support; once the former is done, any

ModSpec model can be immediately used by the simulator by

linking in its shared library dynamically. Supplying a model

that conforms to the open and full-featured ModSpec API

improves compatibility across different simulators; proprietary

models can be deployed as pre-compiled dynamically-loadable

binary libraries to help protect intellectual property (IP). Since

ModSpec API functions can be called directly, without relying

on any particular simulator or analysis, deployed models can

tested standalone – another important features. These merits

make ModSpec-based model deployment a useful complement

to Verilog-A releases.

III. PROTOTYPING SIMULATION ALGORITHMS IN MAPP

MAPP comes with features that also make prototyping

simulation algorithms quick and convenient:

◦ Simulation algorithms in MAPP rely only on the API of

MAPP’s DAE objects, as noted earlier; this API does not



expose any details of device models or network formula-

tions. This makes it possible, and easy, to write powerful

algorithms that apply immediately to any system or device.

Device models and Equation Engine code do not need to be

modified, or even consulted, when algorithms are written or

updated. Various ad-hoc concepts used in traditional circuit

simulators, such as SPICE’s Norton-Theorem-based RHS

[14], companion equivalent circuits, etc., are eliminated,

making algorithms much more simple and elegant.

◦ All simulation algorithms in MAPP are object-oriented. The

encapsulation induced by such object-oriented implementa-

tions enforces modularity, improves code readability and

simplifies code documentation. It also enables inheritance

between analyses, i.e., developers of higher-level algorithms

can easily leverage more basic ones using only a few lines

of code. Fig. 14 depicts how MAPP’s simulation algorithms

are structured — starting from the basic numerical routines

shown on the top of Fig. 14, many algorithms, from the

standard DC, AC, transient analyses to more advanced

ones, build on others hierarchically. This feature greatly

reduces the time and trouble it takes to develop or prototype

advanced new algorithms, allowing MAPP to easily support

more of them than most other simulators.

Fig. 14. Structuring of MAPP’s simulation algorithms.

In the remainder of this section, we illustrate these features

of MAPP using the shooting algorithm as an example.

A. Simulation Algorithm Example: the Shooting Method

The shooting method (henceforth just “shooting”) [15] is a

numerical algorithm for finding Periodic Steady-State (PSS)

responses of systems. Shooting poses the problem of finding

a periodic response as that of finding an (initially unknown)

initial condition that evolves to itself after one period. In other

words, denoting the initial condition by ~x0, shooting can be

written as

~g(~x0) , ~x(T )− ~x0 = ~0, (8)

where ~x(t) is the solution of the system DAE with initial

condition ~x0, i.e., ~x(t) satisfies

d

dt
~q(~x(t)) + ~f(~x(t), ~u(t)) = ~0, (9)

and ~x(0) = ~x0. (10)

~g(~x0) is an algebraic function of ~x0; as such, it can be

solved using numerical algorithms for nonlinear algebraic

systems, such as the Newton-Raphson (NR) method [7]. Since

evaluating ~g(·) at each NR step involves running a transient

simulation, shooting, in essence, reduces the PSS problem (a

boundary value problem) to a few initial value problems.

Algorithm 1 Shooting Algorithm in MAPP (pseudo-code)

shootObj = shoot(DAE): // constructor

1: shootObj.DAE = DAE;
2: shootObj.tranObj = LMS(DAE); // transient simulation object
3: set up member functions: .solve, .g, and .J
4: return shootObj;

shootObj.solve (initguess, T):

1: x0 ← NR(@g, @J, initguess);
2: shootSols = tranObj.solve(x0, 0, T);
3: return shootSols;

shootObj.g (x0):

1: tranSols = tranObj.solve(x0, 0, T);
2: return gout = tranSols(:, n) - x0;

shootObj.J (x0):

1: tranSols = tranObj.solve(x0, 0, T);
2: Ci pre = DAE.dq dx(x0);
3: M = eye(n);
4: for i = 2:n do
5: x = tranSols(:, i); u = inputs(:, i);
6: Ci = DAE.dq dx(x); Gi = DAE.df dx(x, u);
7: M = (Ci + (tpts(i) - tpts(i-1)) * Gi) \ Ci pre * M;
8: Ci pre = Ci;
9: end for

10: return Jout = M - eye(n);

Algorithm 1, showing pseudo-code for MAPP’s implemen-

tation of shooting, further highlights how algorithm prototyp-

ing is quick and convenient in MAPP:

◦ Shooting in MAPP is formulated using DAEs and is unre-

lated to device models or physical domains.

◦ Shooting requires running transient simulations. But since

algorithm implementations in MAPP are object-oriented,

transient analysis does not need to be re-implemented within

shooting. Instead, a transient analysis object is initiated and

its methods called. Likewise, shooting itself is also written

in an object-oriented manner, with its numerical routines

encapsulated in its member functions. So other analyses, if

needed, can also internally use shooting conveniently.

◦ MAPP’s implementation of shooting leverages MATLAB’s

vector (line 5 in shootObj.J) and sparse matrix (line 7 in

shootObj.J) data types and associated functions. This makes

the actual code almost as simple as the pseudo-code shown

in Algorithm 1.

Shooting was implemented, debugged and tested on a num-

ber of circuits in about a week by one of the authors. By way



of comparison, it had taken a bright, hard-working graduate

student two years to implement shooting in SPICE3 [16]; the

implementation was not widely released because the student

was unable to debug it satisfactorily before he graduated [17].

In fact, more than twenty years later, shooting is still not

widely available in open-source simulators today.

IV. RESULTS

In this section, we provide more examples of device models

and simulation algorithms prototyped in MAPP.

A. Device Example: MOSFET Models in MAPP

Fig. 15 shows the characteristic curves of several MOSFET

models implemented in MAPP: BSIM6.1.0 [18], PSP level

103, version 3.0 [19], [20], the MIT Virtual Source (MVS)

model, version 1.0.1 [21], MOS11 level 1101 version 2 [22].

The MVS model was hand-coded in ModSpec based on equa-

tions published in [21]; the rest were ported into MAPP using

CoMeT, its Verilog-A parser and translator. The characteristic

curves shown were produced by MAPP’s model exerciser,

using the default parameters of each model. All the models

were also confirmed to work in various circuits and analyses.

Fig. 15. Characteristic curves of several MOSFET models in MAPP.

B. Algorithm Example: Homotopy/Continuation Analysis

In this example, we use MAPP to analyze a Goto pair, [23],

i.e., a series connection of two tunnel diodes (Fig. 16). The

negative resistance regions of the diodes make the circuit fea-

ture two stable operating points (along with one unstable one)

— i.e., the voltage at node n2 can settle to one of two possible

values, as illustrated in Fig. 16. While traditional DC operating

point analysis can only find one solution at a time given a

specific initial guess, a class of techniques named homotopy or

continuation, adapted for circuit simulation [24], is capable of

finding multiple DC operating points by “tracking” the curves

formed by solutions in state space.

Fig. 16. A Goto pair circuit features multiple DC solutions.

We have implemented homotopy/continuation analysis in

MAPP. For the case of identical diodes, Fig. 17 shows how

homotopy finds multiple operating points, as Vdd (labelled

Vdd:::E in the figure) is swept from 0 to 1V.

Fig. 17. All solutions of E(n2) (also
denoted v1 in Fig. 16) at different
Vdd values, generated by arclength
continuation algorithm in MAPP. For
Vdd ∈ [0.1, 0.6], there are three
solutions, as predicted by Fig. 16.

Fig. 18. All solutions of E(n2) in the
Goto pair when the two diodes have
slightly different parameter values.

Note that in Fig. 17, starting from the origin, the solution

curve splits into three branches when Vdd is around 0.1V,

and the branches converge when Vdd is around 0.6V. As is

discussed in [24], this trifurcation is a probability-0 event that

disappears if the two diodes are not identical — this situation

is shown in Fig. 18.

C. Multi-physics Example: Optical Ring Resonator

MAPP is not limited to electrical circuits. As an example,

here we consider an optical system — a silicon ring resonator

[25] shown in Fig. 19.

Fig. 19. Silicon micro-ring resonator and its system diagram used in MAPP.
The coupling region is modelled as a photo-coupler.

This optical system is modelled in MAPP as a network

of component devices. However, the connections in the net-

work are not electrical nodes; they are not associated with



voltages or currents. Instead, each optical connection in Fig.

19 represents a set of travelling waves of the light’s electric

field. MAPP models these waves as complex numbers, or

phasors, whose modulus and angle represent the magnitude

and phase shift of light. Each wave can be comprised of several

phasors, at different frequencies, each potentially varying with

time (i.e., representing time-varying envelopes). Each optical

node is associated with one forward2 and one backward wave.

For example, in Fig. 19, E_n2_f1_forward represents the

light component at frequency f1 that is travelling from the

photocoupler to the photodetector.

Rather than voltages and currents, it is such forward and

backward waves that constitute the I/Os of optical ModSpec

devices (i.e., in (5) and (6)). MAPP’s Optical Equation Engine

(which is separate from its Electrical Equation Engines) sets

up system equations in terms of such waves for connected

networks of optical elements. Since these system equations

are simply DAEs, all simulation algorithms in MAPP continue

to work. As an example, Fig. 20 plots the relative magnitude

of E_n2_f1_forward vs the laser source’s frequency f1 as

it is swept over a range. The peaks and nulls result from

constructive and destructive interference between light waves

propagating through the system.

Fig. 20. Frequency sweep on the ring resonator in Fig. 19. The relative
magnitude of the electric field of the light arriving at the photodetector with
respect to that emitted by the source is plotted.

V. SUMMARY

In this paper, we have presented Berkeley MAPP, a

MATLAB R©-based platform for prototyping device models

and simulation algorithms. We have described a MAPP-based

device modelling flow that eases and speeds up the process of

developing high-quality, simulation-ready models. Prototyping

analyses is also far more convenient in MAPP than in Berkeley

SPICE and similar simulators. We have illustrated some of

MAPP’s algorithmic capabilities and usability features. MAPP

is available as open source; it is hoped that it will facilitate

research and teaching in the fields of compact modelling and

simulation.

ACKNOWLEDGMENTS

We thank Colin McAndrew for many useful comments

on an initial draft of the paper. This work was supported

through the NCN-NEEDS program, which is funded by the

NSF (contract 1227020-EEC) and by the SRC.

2Directionality is determined based on system topology by the optical
equation engine.

REFERENCES

[1] L.W. Nagel. SPICE2: a computer program to simulate semiconductor
circuits. PhD thesis, EECS department, University of California,
Berkeley, Electronics Research Laboratory, 1975. Memorandum no.
ERL-M520.

[2] D. O. Pederson and A. Sangiovanni-Vincentelli. SPICE 3 Version 3F5
User’s Manual. Dept. EECS, Univ. California, Berkeley, CA, 1994.

[3] P. Nenzi and H. Vogt. Ngspice Users Manual Version 26 (Describes
ngspice-26 release version). 2014.

[4] A. Davis. The gnu circuit analysis package. 2006.
http://www.gnu.org/software/gnucap.

[5] M. E. Brinson and S. Jahn. Qucs: A GPL software package for circuit
simulation, compact device modelling and circuit macromodelling from
DC to RF and beyond. International Journal of Numerical Modelling:
Electronic Networks, Devices and Fields, 22(4):297–319, 2009.

[6] E. R. Keiter, T. Mei, T. V. Russo, R. L. Schiek, H. K. Thornquist, J. C.
Verley, D. A. Fixel, T. S. Coffey, R. P. Pawlowski, C. E. Warrender,
et al. Xyce parallel electronic simulator users’ guide, Version 6.0.
1. Technical report, Raytheon, Albuquerque, NM; Sandia National
Laboratories (SNL-NM), Albuquerque, NM (United States), 2014.

[7] Jaijeet Roychowdhury. Numerical simulation and modelling of elec-
tronic and biochemical systems. Foundations and Trends in Electronic
Design Automation, 3(2-3):97–303, December 2009.

[8] D. Amsallem and J. Roychowdhury. ModSpec: An open, flexible spec-
ification framework for multi-domain device modelling. In Computer-
Aided Design (ICCAD), 2011 IEEE/ACM International Conference on,
pages 367–374. IEEE, 2011.

[9] Bichen Wu and J. Roychowdhury. Efficient per-element distortion
contribution analysis via harmonic balance adjoints. In Proc. IEEE
CICC, pages 1–4, Sept 2014.

[10] MAPP: The Berkeley Model and Algorithm Prototyping Platform.
http://mapp.eecs.berkeley.edu.

[11] S. M. Sze and K. K. Ng. Physics of semiconductor devices. John Wiley
and Sons, 2006.

[12] L. Lemaitre, G. Coram, C. C. McAndrew, and K. Kundert. Extensions
to Verilog-A to support compact device modeling. In Behavioral
Modeling and Simulation, 2003. BMAS 2003. Proceedings of the 2003
International Workshop on, pages 134–138. IEEE, 2003.

[13] S. Touati and B. de Dinechin. Advanced Backend Optimization. ISTE.
John Wiley and Sons, 2014.

[14] A. Vladimirescu. The SPICE book. John Wiley & Sons, Inc., 1994.
[15] S. Skelboe. Computation of the periodic steady-state response of

nonlinear networks by extrapolation methods. IEEE Trans. Ckts. Syst.,
CAS-27:161–175, 1980.

[16] Pranav N Ashar. Implementation of algorithms for the periodic-steady-
state analysis of nonlinear circuits. Technical report, 1989.

[17] P. Kinget. Private communication, June 1997.
[18] H. Agarwal, S. Khandelwal, J. P. Duarte, Y. S. Chauhan, A. Niknejad,

and C. Hu. BSIM6.1.0 MOSFET Compact Model. 2014. http://www-
device.eecs.berkeley.edu/bsim/?page=BSIM6 LR.

[19] PSP release: Level 103 v3.0, 2014. http://psp.ewi.tudelft.nl.
[20] Gennady Gildenblat, Weimin Wu, Xin Li, Ronald van Langevelde,

Andries J Scholten, Geert DJ Smit, and Dirk BM Klaassen. Surface-
potential-based compact model of bulk mosfet. In Compact Modeling,
pages 3–40. Springer, 2010.

[21] S. Rakheja and D. Antoniadis. MVS Nanotransistor Model (Silicon),
Oct 2014.

[22] G. Coram. MOS Model 11 Level 1101. http://www.designers-
guide.com/VerilogAMS.

[23] Roy Hakim, Elad D. Mentovich, and Shachar Richter. Towards Post-
CMOS Molecular Logic Devices. In Nicolas Lorente and Christian
Joachim, editors, Architecture and Design of Molecule Logic Gates and
Atom Circuits, Advances in Atom and Single Molecule Machines, pages
13–24. Springer Verlag, 2013.

[24] J. Roychowdhury and R. Melville. Delivering Global DC Convergence
for Large Mixed-Signal Circuits via Homotopy/Continuation Methods.
IEEE Trans. on Computer-Aided Design, 25:66–78, Jan 2006.

[25] E. Kononov. Modeling photonic links in Verilog-A. PhD thesis,
Massachusetts Institute of Technology, 2013.


