
Low-Level Verification of
Embedded Software:

Addressing the Challenge

Low-Level Verification of
Embedded Software:

Addressing the Challenge

Sanjit A. SeshiaSanjit A. Seshia

Assistant ProfessorAssistant Professor
EECS, UC BerkeleyEECS, UC Berkeley

FMCAD 2010 Panel

October 2010

– 2 –

Abstraction Layers in ComputingAbstraction Layers in Computing

Algorithms, Protocols, Models

Application Software

Systems Software / Firmware

Architecture

Circuits

Devices

HW

SW

– 3 –

What makes Software “Low-Level”?
(from Verification perspective)
What makes Software “Low-Level”?
(from Verification perspective)

 PropertiesProperties

 Software is lowSoftware is low--level level if the behavior if the behavior
of the software system is defined of the software system is defined
significantly by lower levelssignificantly by lower levels of of
abstraction (hardware platform)abstraction (hardware platform)

 ““HardwareHardware--Software VerificationSoftware Verification””??

– 4 –

Quantitative Analysis / VerificationQuantitative Analysis / Verification

Does the brake-by-wire software
always actuate the brakes within
1 ms?
Safety-critical embedded systems

Can this new app drain my
iPhone battery in an hour?
Consumer devices

How much energy must the sensor
node harvest for RSA encryption?
Energy-limited sensor nets,
bio-medical apps, etc.

– 5 –

Cyber-Physical Systems (CPS):
Orchestrating networked computation
with physical systems

Cyber-Physical Systems (CPS):
Orchestrating networked computation
with physical systems

Courtesy of Kuka Robotics Corp.Courtesy of Doug SchmidtCourtesy of Doug Schmidt

Power
generation and
distribution

Courtesy of
General Electric

Military systems:

E-Corner, Siemens

Transportation
(Air traffic
control at
SFO)Avionics

Telecommunications

Factory automation

Instrumentation
(Soleil Synchrotron)

Daimler-Chrysler

Automotive

Building Systems

– 6 –

Cyber-Physical Systems (CPS):
Orchestrating networked computation
with physical systems

Cyber-Physical Systems (CPS):
Orchestrating networked computation
with physical systems

Courtesy of Kuka Robotics Corp.Courtesy of Doug SchmidtCourtesy of Doug Schmidt

Power
generation and
distribution

Courtesy of
General Electric

Military systems:

E-Corner, Siemens

Transportation
(Air traffic
control at
SFO)Avionics

Telecommunications

Instrumentation
(Soleil Synchrotron)

Daimler-Chrysler

Automotive

Building Systems

Factory automation

– 8 –

Time is Central to Cyber-Physical SystemsTime is Central to Cyber-Physical Systems

Several timing analysis problems:Several timing analysis problems:
 WorstWorst--case execution time (case execution time (WCETWCET) estimation) estimation
 Estimating Estimating distributiondistribution of execution timesof execution times
 ThresholdThreshold property: can you produce a test case property: can you produce a test case

that causes a program to violate its deadline?that causes a program to violate its deadline?
 SoftwareSoftware--inin--thethe--loop simulationloop simulation: predict : predict

execution time of particular program pathexecution time of particular program path

– 9 –

Challenge: Environment Modeling
(Timing Analysis)
Challenge: Environment Modeling
(Timing Analysis)
 Timing properties of the Program depend heavily Timing properties of the Program depend heavily

on its environmenton its environment
 Environment =Environment =

Processor & Memory HierarchyProcessor & Memory Hierarchy
++ Operating System, other processes/threads, Operating System, other processes/threads, ……
++ NetworkNetwork
++ I/O DevicesI/O Devices
++ ……

 Modeling the full environment is hard!Modeling the full environment is hard!
 However, we need a However, we need a ‘‘reasonablyreasonably’’ precise precise

environment modelenvironment model
–– Unlike traditional software verificationUnlike traditional software verification

– 10 –

Success of “High-Level” Software
Verification
Success of “High-Level” Software
Verification
 From theoretical ideas to industrial practice in From theoretical ideas to industrial practice in

~ 15 yrs~ 15 yrs

Some Reasons:Some Reasons:
 Availability of open source softwareAvailability of open source software
 WellWell--defined target problems: Device drivers, defined target problems: Device drivers,

memory safety, security vulnerabilities, memory safety, security vulnerabilities,
concurrency, concurrency, ……

 Value of bug findingValue of bug finding
 Coarse abstraction of environment OK Coarse abstraction of environment OK

– 11 –

Challenge of Timing Analysis: ExampleChallenge of Timing Analysis: Example

flag==1

flag==1

flag=1;
(*x)++;

CFG unrolled
to a DAG

*x += 2;

On a single-
core processor
with a data
cache

x

Timing of an edge (basic
block) depends on:
• Program path it lies on
• Initial platform state

Challenges:
• Exponential number of
paths and platform states!
• Lack of visibility into
platform state

– 12 –

Current State-of-the-art for
Timing Analysis
Current State-of-the-art for
Timing Analysis

 Program = Sequential, Program = Sequential,
terminating programterminating program

 Runs uninterruptedRuns uninterrupted

 Environment = Environment =
SingleSingle--core Processor + core Processor +
Memory HierarchyMemory Hierarchy

Timing Model

PROBLEM:
Can take several man-
months to construct!

Also: limited to
extreme-case analysis

– 13 –

Existing Approaches: One-size-fits-all? Existing Approaches: One-size-fits-all?

 Why construct a Why construct a
SINGLE timing model SINGLE timing model
for ALL programs?for ALL programs?

 Only interested in Only interested in
analyzing a specific analyzing a specific
program.program.

 Why not Why not automatically automatically
synthesizesynthesize a a programprogram--
specificspecific timing model?timing model?

– 14 –

Promising Direction
(for timing analysis and low-level verification in general)
Promising Direction
(for timing analysis and low-level verification in general)

 Inductive SynthesisInductive Synthesis
–– Automatically generate environment model Automatically generate environment model

through through active learning active learning
 Active = Select behaviors from which to learnActive = Select behaviors from which to learn
 Use core verification techniques (SAT, SMT, Use core verification techniques (SAT, SMT,

model checking, model checking, ……) to generate selected) to generate selected
behaviorsbehaviors

Example: Example: GameTimeGameTime for timing analysis of for timing analysis of
softwaresoftware

S. A. Seshia and A. Rakhlin, “Quantitative Analysis of Embedded Systems
Using Game-Theoretic Learning”, ACM Trans. Embedded Systems.

– 18 –

Estimating the Distribution of Times for Modular
Exponentiation: predictions from 9 measurements in
blue, actual 256 measurements in red

Estimating the Distribution of Times for Modular
Exponentiation: predictions from 9 measurements in
blue, actual 256 measurements in red

For StrongARM
processor

– 19 –

Potential Barriers
(from Academic Perspective)
Potential Barriers
(from Academic Perspective)

 Lack of OpenLack of Open--Source BenchmarksSource Benchmarks
–– Recent progress in software verification was Recent progress in software verification was

driven by wide availability of opendriven by wide availability of open--source source
softwaresoftware

–– More challenging for More challenging for ““low levellow level”” software software
verification!verification!

–– Heavy dependence on platform makes it more Heavy dependence on platform makes it more
challengingchallenging

 Hardware + Software SkillsHardware + Software Skills
–– Students need crossStudents need cross--cutting skills (or willingness cutting skills (or willingness

to learn) to work in this area to learn) to work in this area

– 20 –

SummarySummary

 ““Low levelLow level”” software = software = SoftwareSoftware whose whose
behavior is significantly defined by hardwarebehavior is significantly defined by hardware
–– HardwareHardware--Software Verification?Software Verification?

 Challenge: Challenge: Environment modelingEnvironment modeling
–– Current manual methods too tedious and errorCurrent manual methods too tedious and error--

proneprone
 Proposed Approach: Proposed Approach: Automatic model Automatic model

generation by Inductive Synthesisgeneration by Inductive Synthesis
–– Active Learning + Traditional verification Active Learning + Traditional verification

techniquestechniques (e.g., SAT/SMT)(e.g., SAT/SMT)
–– One instance: One instance: GameTimeGameTime for timing analysis for timing analysis

of softwareof software
–– Perhaps a killer app for synthesis methods?Perhaps a killer app for synthesis methods?

