
Polynomial-Time Verification of PCTL Properties
of MDPs with Convex Uncertainties

Alberto Puggelli, Wenchao Li, Alberto L. Sangiovanni-Vincentelli, Sanjit A. Seshia

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

{puggelli, wenchaol, alberto, sseshia}@eecs.berkeley.edu

Abstract. We address the problem of verifying Probabilistic Computation Tree
Logic (PCTL) properties of Markov Decision Processes (MDPs) whose state
transition probabilities are only known to lie within uncertainty sets. We first
introduce the model of Convex-MDPs (CMDPs), i.e., MDPs with convex uncer-
tainty sets. CMDPs generalize Interval-MDPs (IMDPs) by allowing also more
expressive (convex) descriptions of uncertainty. Using results on strong duality
for convex programs, we then present a PCTL verification algorithm for CMDPs,
and prove that it runs in time polynomial in the size of a CMDP for a rich sub-
class of convex uncertainty models. This result allows us to lower the previously
known algorithmic complexity upper bound for IMDPs from co-NP to PTIME.
We demonstrate the practical effectiveness of the proposed approach by verifying
a consensus protocol and a dynamic configuration protocol for IPv4 addresses.

1 Introduction

Stochastic models such as Discrete-Time Markov Chains (DTMCs) [1] and Markov De-
cision Processes (MDPs) [2] are used to formally represent systems that exhibit prob-
abilistic behaviors. These systems need quantitative analysis [3] to answer questions
such as “what is the probability that a request will be eventually served?”. Properties of
these systems can be expressed and analyzed using logics such as Probabilistic Com-
putation Tree Logic (PCTL) [4] — a probabilistic logic derived from CTL — as well as
techniques for probabilistic model checking [5]. These methods often rely on deriving a
probabilistic model of the underlying process, hence the formal guarantees they provide
are only as good as the estimated model. In a real setting, these estimations are affected
by uncertainties due, for example, to measurement errors or approximation of the real
system by mathematical models.

Interval-valued Discrete-Time Markov Chains (IDTMCs) have been introduced to
capture modeling uncertainties [6]. IDTMCs are DTMC models where each transition
probability lies within a close interval. Two semantic interpretations have been proposed
for IDTMCs [7]: Uncertain Markov Chains (UMCs) and Interval Markov Decision Pro-
cesses (IMDPs). An UMC is interpreted as a family of DTMCs, where each member is
a DTMC whose transition probabilities lie within the interval range given in the UMC.
In IMDPs, the uncertainty is resolved through non-determinism. Each time a state is
visited, a transition distribution within the interval is adversarially picked, and a proba-
bilistic step is taken accordingly. Thus, IMDPs model a non-deterministic choice made

from a set of (possibly uncountably many) choices. In this paper we do not consider
UMCs and focus on IMDPs.

An upper-bound on the complexity of model checking PCTL properties on IMDPs
was previously shown to be co-NP [8]. This result relies on the construction of an
equivalent MDP that encodes all behaviors of the IMDP. For each state in the new MDP,
the set of transition probabilities is equal to the Basic Feasible Solutions (BFS) of the
set of inequalities specifying the transition probabilities of the IMDP. Since the number
of BFS is exponential in the number of states in the IMDP, the equivalent MDP can
have size exponential in the size of the IMDP. In this paper, we describe a polynomial-
time algorithm (in both size of the model and size of the formula) based on Convex
Programming (CP) for the same fragment of PCTL considered in [7, 8] (the Bounded
Until operator is disallowed). This shows that the problem is in the complexity class
PTIME. With Bounded Until, the time complexity of our algorithm only increases to
pseudo-polynomial in the maximum integer time bound.

An interval model of uncertainty may appear to be the most intuitive. However,
there are significant advantages in accommodating also more expressive (and less pes-
simistic) uncertainty models. In [9], a financial portfolio optimization case-study is an-
alyzed in which uncertainty arises from estimating the asset return rates. The authors
claim that the interval model is too conservative in this scenario, because it would sug-
gest to invest the whole capital into the asset with the smallest worst-case return. The
ellipsoidal model proposed in that paper returns instead the more profitable strategy of
spreading the capital across multiple assets. Further, depending on the field, researchers
use different models to represent uncertainty. Maximum likelihood models are often
used, for example, to estimate chemical reaction parameters [10]. To increase modeling
expressiveness, we introduce the model of Convex-MDP (CMDP), i.e., an MDP whose
state transition probabilities are only known to lie within convex uncertainty sets. The
proposed algorithms can be extended to verify CMDPs for all the models of uncer-
tainty that satisfy a technical condition introduced later in the paper, while maintaining
the same complexity results proven for IMDPs. This condition is not a limitation in
practical scenarios, and we show that all the models in the wide and relevant class of
convex uncertainty sets introduced in [11] (e.g. interval, ellipsoidal and likelihood mod-
els) satisfy it. Heterogeneous models of uncertainty can then be used within the same
CMDP to represent different sources of uncertainty. We also note that the complexity
results presented in [7] and [8] cannot be trivially extended to verifying CMDPs. This
is because BFS are not defined for generic convex inequalities, so the construction of an
equivalent MDP would not be possible. The complexity results are compared in Table 1.

To summarize, the contributions of this paper are as follows.

1. We give a polynomial-time algorithm for model checking PCTL properties (without
Bounded Until) on IMDPs. This improves the co-NP result in [8] to PTIME.

2. We extend the algorithm to full PCTL and show that its time complexity becomes
pseudo-polynomial in the maximum integer bound in Bounded Until.

3. We show that our complexity results extend to Convex-MDPs (CMDPs) for a wide
and expressive subclass of the convex models of uncertainty.

Table 1: Known Upper-Bound on the Complexity of PCTL Model Checking.
Model DTMC [4] IMDP [8] IMDP/CMDP [ours]

Complexity PTIME co-NP PTIME

4. We demonstrate the relevance of our approach with case studies, where a small un-
certainty in the probability transitions indeed yields a significant change in the veri-
fication results.
An extended version of the paper with details of all verification algorithms and

proofs of correctness is available [12].
The paper is organized as follows. Section 2 gives background on MDPs, PCTL,

and the analyzed uncertainty models. Section 3 presents related work. Section 4 gives
an overview of the proposed approach. In Section 5, we describe the proposed algorithm
in detail and prove the PTIME complexity result. Section 6 describes two case studies,
and we conclude and discuss future directions in Section 7.

2 Preliminaries

Definition 2.1. A Probability Distribution (PD) over a finite set Z of cardinality n is
a vector µ ∈ Rn satisfying 0 ≤ µ ≤ 1 and 1Tµ = 1. The element µ[i] represents the
probability of realization of event zi. We call Dist(Z) the set of distributions over Z.

2.1 Convex Markov Decision Process (CMDP)

Definition 2.2. A CMDP is a tuple MC = (S, S0, A,Ω,F ,A,X , L), where S is a
finite set of states of cardinality N = |S|, S0 is the set of initial states, A is a finite set
of actions (M = |A|), Ω is a finite set of atomic propositions, F is a finite set of convex
sets of transition PDs, A : S → 2A is a function that maps each state to the set of
actions available at that state, X = S ×A→ F is a function that associates to state s
and action a the corresponding convex set Fas ∈ F of transition PDs, and L : S → 2Ω

is a labeling function.

The set Fas = Distas(S) represents the uncertainty in defining a transition distribution
forMC given state s and action a. We call fas ∈ Fas an observation of this uncertainty.
Also, fas ∈ RN and we can collect the vectors fas ,∀s ∈ S into an observed transition
matrix F a ∈ RN×N . Abusing terminology, we call Fa the uncertainty set of the transi-
tion matrices, and F a ∈ Fa. Fas is interpreted as the row of Fa corresponding to state
s. Finally, fasisj = fasi [j] is the observed probability of transitioning from si to sj when
action a is selected.

A transition between state s to state s′ in a CMDP occurs in three steps. First, an ac-
tion a ∈ A(s) is chosen. The selection of a is nondeterministic. Secondly, an observed
PD fas ∈ Fas is chosen. The selection of fas models uncertainty in the transition. Lastly,
a successor state s′ is chosen randomly, according to the transition PD fas .

A path π inMC is a finite or infinite sequence of the form s0
fa0s0s1−−−→ s1

fa1s1s2−−−→, · · · ,
where si ∈ S, ai ∈ A(si) and faisi,si+1

> 0 ∀i ≥ 0. We indicate with Πfin (Πinf) the

set of all finite (infinite) paths ofMC . π[i] is the ith state along the path and, for finite
paths, last(π) is the last state visited in π ∈ Πfin. Πs = {π | π[0] = s} is the set of
paths starting in state s.

To model uncertainty in state transitions, we make the following assumptions:

Assumption 2.1. Fa can be factored as the Cartesian product of its rows, i.e., its rows
are uncorrelated. Formally, for every a ∈ A, Fa = Fas0 × · · · × F

a
sN−1

. In [11] this
assumption is referred to as rectangular uncertainty.

Assumption 2.2. If the probability of a transition is zero (non-zero) for at least one
PD in the uncertainty set, then it is zero (non-zero) for all PDs.
Formally, ∃fas ∈ Fas : fass′ = (6=)0 =⇒ ∀fas ∈ Fas : fass′ = (6=)0.
The assumption guarantees the correctness of the preprocessing verification routines
used later in the paper, which rely on state reachability of the MDP underlying graph.

We determine the size R of the CMDPMC as follows.MC has N states, O(M)
actions per state and O(N2) transitions for each action. Let Da

s denote the number of
constraints required to express the rectangular uncertainty set Fas (e.g. Da

s = O(2N)
for the interval model, to express the upper and lower bounds of the transition probabil-
ities from state s to all states s′ ∈ S), and D = max

s∈S,a∈A
Da
s . The overall size ofMC is

thusR = O(N2M +NMD).
In order to analyze quantitative properties of CMDPs, we need a probability space

over infinite paths [13]. However, a probability space can only be constructed once
nondeterminism and uncertainty have been resolved. We call each possible resolution
of nondeterminism an adversary, which chooses an action in each state ofMC .

Definition 2.3. Adversary. A randomized adversary forMC is a function α = Πfin×
A→ [0, 1], with

∑
A(last(π)) α(π, a) = 1, and a ∈ A(last(π)) if α(π, a) > 0. We call

Adv the set of all adversaries α ofMC .

Conversely, we call a nature each possible resolution of uncertainty, i.e., a nature chooses
a transition PD for each state and action ofMC .

Definition 2.4. Nature. Given action a ∈ A, a randomized nature is the function ηa :
Πfin×Dist(S)→ [0, 1] with

∫
Fa
last(π)

ηa(π, fas) = 1, and fas ∈ Falast(π) if ηa(π, fas) >

0. We call Nat the set of all natures ηa ofMC .

An adversary α (nature ηa) is memoryless if it depends only on last(π). Also, α (ηa)
is deterministic if α(π, a) = 1 for some a ∈ A(last(π)) (ηa(π, fas) = 1 for some
fas ∈ Falast(π)).

2.2 Models of Uncertainty

We only consider CMDPs whose transition PDs lie in uncertainty sets that satisfy As-
sumption 5.1 (introduced later for ease of presentation). This assumption holds for all
the uncertainty models analyzed in [11]. We report results for the interval, likelihood
and ellipsoidal models. Results for the entropy model are available in [12].

Interval Model. Intervals commonly describe uncertainty in transition matrices:

Fas = {fas ∈ RN | 0 ≤ fas ≤ fas ≤ f
a

s ≤ 1,1T fas = 1} (1)

where fas , f
a

s ∈ RN are the element-wise lower and upper bounds of f . This model is
suitable when the matrix components are individually estimated by statistical data.

Likelihood Model. This model is appropriate when the transition probabilities are de-
termined experimentally. The transition frequencies associated to action a ∈ A are col-
lected in matrix Ha. Uncertainty in each row of Ha can be described by the likelihood
region [14]:

Fas = {fas ∈ RN | fas ≥ 0,1T fas = 1,
∑
s′ h

a
ss′ log(f

a
ss′) ≥ βas } (2)

where βas < βas,max =
∑
s′ h

a
ss′ log(h

a
ss′) represents the uncertainty level. Likelihood

regions are less conservative uncertainty representations than intervals, which arise
from projections of the uncertainty region onto each row component.

Ellipsoidal Model. Ellipsoidal models can be seen as a second-order approximation of
the likelihood model [11]. Formally:

Fas = {fas ∈ RN | fas ≥ 0,1T fas = 1, ‖Ras (fas − has) ‖2 ≤ 1, Ras � 0} (3)

where matrix Ras represents an ellipsoidal approximation of the likelihood Region (2).

Remark 2.1. Each set Fas within the same CMDP can be expressed with a different
uncertainty model to represent different sources of uncertainty.

2.3 Probabilistic Computation Tree Logic (PCTL)

We use PCTL, a probabilistic logic derived from CTL which includes a probabilistic
operator P [4], to express properties of CMDPs. The syntax of this logic is:

φ ::= True | ω | ¬φ | φ1 ∧ φ2 | Ponp [ψ] state formulas

ψ ::= Xφ | φ1 U≤kφ2 | φ1 Uφ2 path formulas

where ω ∈ Ω is an atomic proposition, on∈ {≤, <,≥, >}, p ∈ [0, 1] and k ∈ N.

Table 2: PCTL semantics for CMDP
s |= True s |= ω iff ω ∈ L(s)
s |= ¬φ iff s 6|= φ s |= φ1 ∧ φ2 iff s |= φ1 ∧ s |= φ2
s |= Ponp [ψ] iff Prob ({π ∈ Πs(α, η

a) | π |= ψ}) on p ∀α ∈ Adv and ηa ∈ Nat
π |= Xφ iff π[1] |= φ
π |= φ1 U≤kφ2 iff ∃i ≤ k | π[i] |= φ2 ∧ ∀j < i π[j] |= φ1
π |= φ1 Uφ2 iff ∃k ≥ 0 | π |= φ1 U≤kφ2

Path formulas ψ use the Next (X), Bounded Until
(
U≤k

)
and Unbounded Until

(U) operators. These formulas are evaluated over paths and only allowed as parame-
ters to the Ponp [ψ] operator. The size Q of a PCTL formula is defined as the number
of Boolean connectives plus the number of temporal operators in the formula. For the
Bounded Until operator, we denote separately the maximum time bound that appears
in the formula as kmax. Probabilistic statements about MDPs typically involve uni-
versal quantification over adversaries α ∈ Adv. With uncertainties, for each action a
selected by adversary α, we will further quantify across nature ηa ∈ Nat to com-
pute the worst case condition within the action range of ηa, i.e., the uncertainty set
Fas . We define Ps(α, ηa)[ψ]

4
= Prob ({π ∈ Πs(α, η

a) | π |= ψ}) the probability of
taking a path π ∈ Πs that satisfies ψ under adversary α and nature ηa. If α and ηa

are Markov deterministic in state s, we write Ps(a, fas), where a and fas are the ac-
tion and resolution of uncertainty that are deterministically chosen at each execution
step by α and ηa. Pmaxs [ψ] (Pmins [ψ]) denote the maximum (minimum) probability
Ps(α, η

a)[ψ] across all adversaries α ∈ Adv and natures ηa ∈ Nat, and the vectors
Pmax[ψ],Pmin[ψ] ∈ RN collect these probabilities ∀s ∈ S. The semantics of the logic
is reported in Table 2, where we write |= instead of |=Adv,Nat for simplicity.

For ease of computation, we would like to consider only memoryless and determin-
istic adversaries and natures to compute quantitative probabilities, i.e., solve:

Pmaxs [ψ] = max
a∈A(s)

max
fas ∈Fas

Ps(a, f
a
s)[ψ] Pmins [ψ] = min

a∈A(s)
min

fas ∈Fas
Ps(a, f

a
s)[ψ] (4)

We extend a result from [15] to prove that this is possible (see [12] for the proof).

Proposition 2.1. Given a CMDP MC and a target state st ∈ S, there always exist
deterministic and memoryless adversaries and natures for MC that achieve the max-
imum (minimum) probabilities of reaching st, if A is finite and the inner optimization
in Problem (4) always attains its optimum σ∗s (a) over the sets Fas ,∀s ∈ S, ∀a ∈ A(s),
i.e., there exists a finite feasible fas ∈ Fas such that Ps(a, fas)[ψ] = σ∗s (a).

The verification algorithm V determines whether a state s ∈ S0 is (is not) contained
in the set Sat(φ) = {s ∈ S | s |= φ}. We define the following properties for V:

Definition 2.5. Soundness (Completeness). Algorithm V is sound (complete) if:

s ∈ SatV (φ)⇒ s ∈ Sat(φ) (s 6∈ SatV (φ)⇒ s 6∈ Sat(φ))

where SatV (φ) (Sat(φ)) is the computed (actual) satisfaction set.

Algorithms to verify non-probabilistic formulas are sound and complete, because they
are based on reachability analysis over the finite number of states of MC [16]. Con-
versely, we will show in Section 5 that algorithms to verify probabilistic formulas
φ = Ponp [ψ] in the presence of uncertainties require to solve convex optimization prob-
lems over the set R of the real numbers. Optima of these problems can be arbitrary real
numbers, so, in general, they can be computed only to within a desired accuracy εd. We
consider an algorithm to be sound and complete if the error in determining the satisfac-
tion probabilities of φ is bounded by such a parameter εd, since the returned result will
still be accurate enough in most settings.

3 Related Work

Probabilistic model checking tools such as PRISM [5] have been used to analyze a
multitude of applications, from communication protocols and biological pathways to
security problems. In this paper, we further consider uncertainties in the probabilistic
transitions of the MDP for model checking PCTL specifications. Prior work [6–8, 17]
in similar verification problems also dealt with uncertainties in the probabilistic tran-
sitions. However, they considered only interval models of uncertainty, while we incor-
porate more expressive models such as ellipsoidal and likelihood. Further, we consider
nature as adversarial and study how it affects the MDP execution in the worst case. The
developers of PARAM [18] consider instead uncertainties as possible values that param-
eters in the model can take, and synthesize the optimal parameter values to maximize
the satisfaction probability of a given PCTL specification.

We improve the previously best-known complexity result of co-NP in [8] to PTIME,
for the fragment of PCTL without U≤k. For the full PCTL syntax, our algorithm runs
in O(poly(R) × Q × kmax) time, where kmax is the maximum bound in U≤k. This
result is pseudo-polynomial in kmax, i.e., polynomial (exponential) if kmax is counted
in its unary (binary) representation. Conversely, classical PCTL model checking for
DTMCs [4] runs in time polynomial in kmax counted in its binary representation. The
difference stems from the computation of the set Sat

(
Ponp

[
φ1 U≤kφ2

])
. For (certain)

MDPs, this computation involves raising the transition matrices F a,∀a ∈ A to the kth

power, to model the evolution of the system in k steps. With uncertainties, we cannot
do matrix exponentiation, because F a ∈ Fa might change at each step. However, both
Q and kmax are typically small in practical applications [19], so the dominant factor for
runtime is the size of the model R. We note that the complexity results of [7] and [8]
can be extended to the PCTL with U≤k.

The convex uncertainty models [11] analyzed in this paper have been considered
recently in the robust control literature. In [20], an algorithm is given to synthesize a
robust optimal controller for an MDP to satisfy a Linear Temporal Logic (LTL) speci-
fication where only one probabilistic operator is allowed. Their technique first converts
the LTL specification to a Rabin automaton (which is worst-case doubly exponential
in the size of the LTL formula), and composes it with the MDP. Robust dynamic pro-
gramming is then used to solve for the optimal control policy. We consider PCTL, which
allows nested probability operators, and propose an algorithm which is polynomial both
in the size of the model and of the formula.

The robustness of PCTL model checking has been analyzed [21] based on the no-
tion of an Approximate Probabilistic Bisimulation (APB) tailored to the finite-precision
approximation of a numerical model. We instead verify MDPs whose transition prob-
abilities are affected by uncertainties due to estimation errors or imperfect information
about the environment.

4 Probabilistic Model Checking with Uncertainties

We define the problem under analysis, and overview the proposed approach to solve it.

PCTL model checking with uncertainties. Given a Markov Decision Process model
with convex uncertaintiesMC of size R and a PCTL formula φ of size Q over a set of
atomic propositions Ω, verify φ over the uncertainty sets Fas ∈ F ofMC .

As in verification of CTL [22], the algorithm traverses bottom-up the parse tree for
φ, recursively computing the set Sat(φ′) of states satisfying each sub-formula φ′. At the
end of the traversal, the algorithm computes the set of states satisfying φ and it deter-
mines if s |= φ by checking if s ∈ Sat (φ). For the non-probabilistic PCTL operators,
the satisfying states are computed as: Sat (True) = S, Sat(ω) = {s ∈ S | ω ∈ L(s)},
Sat(¬φ) = S \ Sat(φ) and Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2). For the probabilistic
operator P on [ψ], we compute:

Sat (P/p [ψ])={s ∈ S | Pmaxs (ψ) / p} , Sat (P.p [ψ])=
{
s ∈ S | Pmins (ψ) . p

}
(5)

We propose polynomial-time routines to compute Sets 5 for MDPs whose transition
matrices F a are only known to lie within convex uncertainty sets Fa, ∀a ∈ A.

Using Proposition 2.1, the proposed routines encode the transitions ofMC under the
sets of deterministic and memoryless adversaries and natures into convex programs and
solve them. From the returned solution, it is then possible to determine the quantitative
satisfaction probabilities Pmaxs [ψ] (or Pmins [ψ]) ∀s ∈ S, which get compared in linear
time to the threshold p to compute the set Sat (Ponp [ψ]). To prove the polynomial-
time complexity of the model-checking algorithm, we use the following key result from
convex theory [23].

Proposition 4.1. Given the convex program:

min
x
f0(x)

s.t. fi(x) ≤ 0 i = 1, · · · ,m

with x ∈ Rn and fi, i = 0, · · · ,m convex functions, the optimum σ∗ can be found to
within ±εd in time complexity polynomial in the problem size (n,m) and log(1/εd).

We are now ready to state the main contribution of this paper:

Theorem 4.1. Complexity of PCTL model-checking for CMDPs.

1. The problem of verifying if a CMDP MC of size R satisfies a PCTL formula φ
without U≤k is in PTIME.

2. A formula φ′ with U≤k can be verified with time complexityO (poly(R)×Q′ × kmax),
i.e., pseudo-polynomial in the maximum time bound kmax of U≤k.

Sketch of proof. The proof is constructive. Our verification algorithm parses φ in time
linear in the size Q of φ [22], computing the satisfiability set of each operator in φ. For
the non-probabilistic operators, satisfiability sets can be computed in time polynomial
inR using set operations, i.e., set inclusion, complementation and intersection. For the
probabilistic operator, we leverage Proposition 4.1 and prove that the proposed verifica-
tion routines: 1) solve a number of convex problems polynomial inR; 2) generate these
convex programs in time polynomial in R. It thus follows that the overall algorithm
runs in time polynomial inR and in the size of φ. The correctness and time-complexity
for formulas involving the Unbounded Until operator are formalized in Lemma 5.1. Re-
sults regarding the Next and Bounded Until operator can be found in [12]. ut

5 Verification Routines

We detail the routine to verify the Unbounded Until operator. Routines to verify the
Next and Bounded Until operators can be found in the extended version [12].

5.1 Unbounded Until Operator

We verify φ = P/p[φ1Uφ2] on a CMDP of sizeR. First, the sets Syes 4= Sat (P≥1[φ1Uφ2]),
Sno

4
= Sat (P≤0[φ1Uφ2]) and S? = S \ (Sno ∪ Syes) are precomputed in time poly-

nomial inR using reachability routines over the CMDP underlying graph [16]. Second,
Equation (4) is evaluated for all s ∈ S using the Convex Programming procedure de-
scribed next. Finally, the computed probabilities are compared to p.

Convex Programming Procedure (CP). We start from the classical LP formulation
to solve the problem without the presence of uncertainty [16]:

min
x

xT1

s.t. xs = 0; xs = 1; ∀s ∈ Sno; s ∈ Syes; (6)

xs ≥ xTfas ∀s ∈ S?, ∀a ∈ A(s)

where Pmax[φ1Uφ2] = x∗ is computed solving only one LP. Problem (6) has N un-
knowns and N −Q+MQ constraints, where Q = |S?| = O(N), so its size is polyno-
mial inR.

Proposition 2.1 allows us to rewrite Problem (6) in the uncertain scenario as:

min
x

xT1

s.t. xs = 0; xs = 1; ∀s ∈ Sno; ∀s ∈ Syes; (7)

xs ≥ max
fas ∈Fas

(
xTfas

)
∀s ∈ S?,∀a ∈ A(s)

i.e., we maximize the lower bound on xs across the nature action range. The decision
variable of the inner problem is fas and its optimal value σ∗(x) is parameterized in the
outer problem decision variable x. Problem (7) can be written in convex form for an
arbitrary uncertainty model by replacing the last constraint with one constraint for each
point in Fas . However, this approach results in infinite constraints if the set Fas contains
infinitely many points, as in the cases considered in the paper. We solve this difficulty
using duality, which allows to rewrite Problem (7) with a number of constraints poly-
nomial in R. We start by replacing the primal inner problem in the outer Problem (7)
with its dual ∀s ∈ S? and ∀a ∈ A(s):

σas (x) = max
fas ∈Fas

xT fas ⇒ das(x) = min
λa
s∈Das

g(λa
s ,x) (8)

where λas is the (vector) Lagrange multiplier and Das is the feasibility set of the dual. In
the dual, the decision variable is λas and its optimal value das(x) is parameterized in x.
The dual function g(λas ,x) and the setDas are convex by construction in λas for arbitrary
uncertainty models, so the dual is convex. Further, since also the primal is convex,
strong duality holds, i.e., σas = das , ∀x ∈ RN , because the primal satisfies Slater’s
condition [24] for any non-trivial uncertainty set Fas . Any dual solution overestimates

the primal solution. When substituting the primals with the duals in Problem (7), we
drop the inner optimization operators because the outer optimization operator will find
the least overestimates, i.e., the dual solutions das ,∀s ∈ S, a ∈ A(s), to minimize its
cost function. We get the CP formulation:

min
x

xT1 min
x,λ

xT1

s.t. xs = 0; xs = 1; s.t. xs = 0; xs = 1; ∀s ∈ Sno; ∀s ∈ Syes; (9a)

xs ≥ min
λas∈Das

g (λas ,x) ⇒ xs ≥ g (λas ,x) ; ∀s ∈ S?, ∀a ∈ A(s); (9b)

λas ∈ Das ∀s ∈ S?, ∀a ∈ A(s) (9c)

The decision variables of Problem (9) are both x and λas , so the CP formulation is
convex only if the dual function g(λas ,x) is jointly convex in λas and x. While this con-
dition cannot be guaranteed for arbitrary uncertainty models, we prove constructively
that it holds for the ones considered in the paper. For example, for the interval model,
Problem (9) reads:

min
x,λa

s

xT1

s.t. xs = 0; xs = 1; ∀s ∈ Sno;∀s ∈ Syes;

xs ≥ λa1,s − (fsa)
Tλa

2,s + (f
s
a)
Tλa

3,s; ∀s ∈ S?,∀a ∈ A(s); (10a)

x+ λa
2,s − λa

3,s − λa1,s1 = 0; ∀s ∈ S?,∀a ∈ A(s); (10b)

λa
2,s ≥ 0, λa

3,s ≥ 0 ∀s ∈ S?, ∀a ∈ A(s) (10c)

which is an LP, so trivially jointly convex in x and λas . Analogously, Problem (9) for the
ellipsoidal model is a Second-Order Cone Program (SOCP), so again jointly convex in
x and λas [12]. For the likelihood model, Constraints (10a-10c) become:

xs ≥ λa1,s − (1 + βas)λ
a
2,s+λ

a
2,s

∑
s′ h

a
ss′ log

(
λa2,sh

a
ss′

λa1,s−xs′

)
; ∀s ∈ S?,∀a ∈ A(s); (11a)

λa1,s ≥ max
s′∈S

xs′ ; λ
a
2,s ≥ 0 ∀s ∈ S?, ∀a ∈ A(s) (11b)

We prove its joint convexity in x and λas as follows. Constraint (11a) is generated by
a primal-dual transformation, so, according to convex theory, it is convex in the dual
variables λas by construction. Convex theory also guarantees that the affine subtraction
of x from λa1,s preserves convexity, given λa1,s ≥ max xs′ ,∀s ∈ S in Constraint (11b),
so we conclude that Problem (11) is convex.

For general CMDPs, we will assume:

Assumption 5.1. Given a CMDP MC , for all convex uncertainty sets Fas ∈ F , the
dual function g(λas ,x) in Problem (8) is jointly convex in both λas and x.

According to Proposition 4.1, Problem (9) can thus be solved in polynomial time.
Also, Pmax[φ1Uφ2] = x∗, so all the satisfaction probabilities can be computed by solv-
ing only one convex problem. Finally, we can combine models of uncertainty different
from one another within a single CP formulation, since each dual problem is indepen-
dent from the others according to Assumption 2.1. As an example, if both the interval
and ellipsoidal models are used, the overall CP formulation is an SOCP.

Lemma 5.1. The routine to verify the Unbounded Until operator is sound, complete
and guaranteed to terminate with algorithmic complexity polynomial in the size R of
MC , ifMC satisfies Assumption 5.1.

Proof. The routine solves only one convex program, generated in time polynomial inR
as follows. We formulate Constraints (9b) and (9c) ∀s ∈ S? and a ∈ A(s), i.e.,O(MQ)
constraints, where Q = |S?| = O(N). They are derived from MQ primal-dual trans-
formations as in Equation (8). Each primal problem hasN unknowns,N+1 constraints
to represent the probability simplex and Da

s constraints to represent the uncertainty set
Fas . From duality theory, the corresponding dual inner problem has N + 1 + Da

s un-
knowns and 2N +1+Da

s constraints. Overall, Problem (9) has O ((N + 1 +D)MQ)
more unknowns and O ((2N + 1 +D)MQ) more constraints of Problem (6), so its
size is polynomial inR. IfMC satisfies Assumption 5.1, Problem (9) is convex. Using
Proposition 4.1, we conclude that it can be solved in time polynomial in R. Finally,
when strong duality holds for the transformation in Equation (8), soundness and com-
pleteness of the final solution are preserved because the dual and primal optimal value
of each inner problem are equivalent. ut

6 Case Studies

We implemented the proposed verification algorithm in Python, and interfaced it with
PRISM [5] to extract information about the CMDP model. We used MOSEK [25] to
solve the LPs generated for the interval model and implemented customized numerical
solvers for the other models of uncertainty. The implemented tool is available at [26].
The algorithm was tested on all the case studies collected in the PRISM benchmark
suite [27]. Due to space limits, we report only two of them: the verification of a consen-
sus protocol and of a dynamic configuration protocol for IPv4 addresses. The runtime
data were obtained on a 2.4 GHz Intel Xeon with 32GB of RAM.

6.1 Consensus Protocol

Consensus problems arise in many distributed environments, where a group of dis-
tributed processes attempt to reach an agreement about a decision to take by accessing
some shared entity. A consensus protocol ensures that the processes will eventually
terminate and take the same decision, even if they start with initial guesses that might
differ from one another.

We analyze the randomized consensus protocol presented in [19, 28]. The protocol
guarantees that the processes return a preference value v ∈ {1, 2}, with probability pa-
rameterized by a process independent valueR (R ≥ 2) and the number of processes P .
The processes communicate with one another by accessing a shared counter of value c.
The protocol proceeds in rounds. At each round, a process flips a local coin, increments
or decrements the shared counter depending on the outcome and then reads its value c.
If c ≥ PR (c ≤ −PR), it chooses v = 1 (v = 2). Note that the larger the value of R,
the longer it takes on average for the processes to reach the decision. Nondeterminism
is used to model the asynchronous access of the processes to the shared counter, so the
overall protocol is modeled as an MDP.

We verify the property Agreement: all processes must agree on the same decision,
i.e., choose a value v ∈ {1, 2}. We compute the minimum probability of Agreement
and compare it against the theoretical lower bound (R− 1)/2R [19]. In PCTL syntax:

Pmins0 [ψ] := Pmins0 (F ({finished} ∧ {all coins equal 1})) (12)

We consider the case where one of the processes is unreliable or adversarial, i.e., it
throws a biased coin instead of a fair coin. Specifically, the probability of either outcome
lies in the uncertainty interval [(1− u)p0, (1 + u)p0], where p0 = 0.5 according to the
protocol. This setting is relevant to analyze the protocol robustness when a process acts
erroneously due to a failure or a security breach. In particular, our approach allows to
study attacks that deliberately hide under the noise threshold of the protocol. In such
attacks, the compromised node defers agreement by producing outputs whose statistical
properties are within the noise tolerance of an uncompromised node, so that it is harder
to detect its malicious behavior.

Figure 1 shows the effect of different levels of uncertainty on the computed proba-
bilities for P = 4. With no uncertainty (u = 0), Pmins0 increases asR increases, because
a larger R drives the decision regions further apart, making it more difficult for the pro-
cesses to decide on different values of v. As R goes to infinity, Pmins0 approaches the
theoretical lower bound limR→∞(R − 1)/2R = 0.5. However, even with a small un-
certainty (u = 0.01), Pmins0 soon decreases for increasing R. With a large uncertainty
(u = 0.15), Pmins0 quickly goes to 0. A possible explanation is that the faulty process
has more opportunities to deter agreement for a high R, since R also determines the
expected time to termination. Results thus show that the protocol is vulnerable to uncer-
tainties. This fact may have serious security implication, i.e., a denial-of-service attack
could reduce the availability of the distributed service, since a compromised process
may substantially alter the expected probability of agreement.

Lastly, we study the scalability of the CP procedure, by evaluating Equation (12)
while sweeping R both for P = 2 and P = 4. We use MOSEK [25] to solve Prob-
lem (9) and set the Time Out (TO) to one hour. In Figure 2, we plot the sum (N + T)
of the number of states (N) and transitions (T) of the CMDP, which are independent
of the uncertainty in the transition probabilities, to represent the model size (top), the
sum (V +C) of the number of variables (V) and constraints (C) of the generated LP in-
stances of Problem (9) (center), and the running time tCP (bottom). V +C always scales
linearly with N + T (the lines have the same slope), supporting the polynomial com-
plexity result for our algorithm. Instead, tCP scales linearly only for smaller problems
(P = 2), while it has a higher-order polynomial behavior for larger problems (P = 4)
(the line is still a straight line but with steeper slope, so it is polynomial on logarithmic
axes). This behavior depends on the performance of the chosen numerical solver, and
it can improve benefiting of future advancements in the solver implementation. In Ta-
ble 3, we compare the CP procedure with two tools, PRISM [5] and PARAM [18], in
terms of runtime, for varying values of P and R. Although neither tool solves the same
problem addressed in this paper, the comparison is useful to assess the practicality of
the proposed approach. In particular, PRISM only verifies PCTL properties of MDPs
with no uncertainties. PARAM instead derives a symbolic expression of the satisfaction
probabilities as a function of the model parameters, to then find the parameter

Fig. 1: Value of Eq. 12 in function of R
while varying the uncertainty level u.

Fig. 2: Scalability of the CP procedure.

values that satisfy the property. Hence, PRISM only considers a special case of the mod-
els considered in this paper, while our approach only returns the worst-case scenario
computed by PARAM. Results show that the CP procedure runs faster than PRISM for
some benchmarks, but it is slower for larger models. This is expected since the scala-
bility of our approach depends mainly on the problem size, while the performance of
the iterative engine in PRISM depends on the problem size and on the number of itera-
tions required to achieve convergence, which is dependent on the problem data. Finally,
our approach is orders of magnitude faster than PARAM, so it should be preferred to
perform worst-case analysis of system performances.

6.2 ZeroConf Dynamic Configuration Protocol for IPv4 Link-Local Addresses

The ZeroConf protocol [29,30] is an Internet Protocol (IP)-based configuration protocol
for local (e.g. domestic) networks. In such a local context, each device should configure
its own unique IP address when it gets connected to the network, with no user interven-
tion. The protocol thus offers a distributed ”plug-and-play” solution in which address
configuration is managed by individual devices when they are connected to the net-
work. The network is composed of DVtot devices. After being connected, a new device
chooses randomly an IP address from a pool of IPA = 65024 available ones, as speci-
fied by the standard. The address is non-utilized with probability p0 = 1−DVtot/IPA.
It then sends messages to the other devices in the network, asking whether the chosen IP

Table 3: Runtime Comparison

Tool P = 2, R = 2 R = 7 R = 128 P = 4, R = 2 R = 32 R = 44 P = 6, R = 4
N + T = 764 2, 604 47, 132 97, 888 1, 262, 688 1, 979, 488 14, 211, 904

CP 0.02s 0.1s 2.1s 8.3s 1, 341s 2, 689 TO
PRISM 0.01s 0.09s 196s 1s 2, 047s TO 1860s
PARAM 22.8s 657s TO TO TO TO TO

address is already in use. If no reply is received, the device starts using the IP address,
otherwise the process is repeated.

The protocol is both probabilistic and timed: probability is used in the randomized
selection of an IP address and to model the eventuality of message loss; timing defines
intervals that elapse between message retransmissions. In [30], the protocol has been
modeled as an MDP using the digital clock semantic of time. In this semantic, time is
discretized in a finite set of epochs which are mapped to a finite number of states in an
MDP, indexed by the epoch variable te. To enhance the user experience and, in battery-
powered devices, to save energy, it is important to guarantee that a newly-connected
device manages to select a unique IP address within a given deadline dl. For numerical
reasons, we study the maximum probability of not being able to select a valid address
within dl. In PCTL syntax:

Pmaxs0 [ψ] := Pmaxs0 (¬{unique address} U {te > dl}) (13)

We analyzed how network performances vary when there is uncertainty in estimat-
ing: 1) the probability of selecting an IP address, and; 2) the probability of message
loss during transmission. The former may be biased in a faulty or malicious device.
The latter is estimated from empirical data, so it is approximated. Further, the IMDP
semantic of IDTMCs (Section 1), which allows a nature to select a different transition
distribution at each execution step, properly models the time-varying characteristics of
the transmission channel.

In Figure 3, we added uncertainty only to the probability of message loss using
the likelihood model, which is suitable for empirically-estimated probabilities. Us-
ing classical results from statistics [11], we computed the value of parameter β from
Set (2) corresponding to several confidence levels CL in the measurements. In particu-
lar, 0 ≤ CL ≤ 1 and CL = 1− cdfχ2

d
(2 ∗ (βmax − β)), where cdfχ2

d
is the cumulative

density function of the Chi-squared distribution with d degrees of freedom (d = 2
here because there are two possible outcomes, message lost or received). Results show
that the value of Pmaxs0 increases by up to ∼10× for decreasing CL, while classical
model-checking would only report the value for CL = 1, which roughly over-estimates
network performance. The plot can be used by a designer to choose dl to make the pro-
tocol robust to varying channel conditions, or by a field engineer to assess when the
collected measurements are enough to estimate network performances.

In Figure 4, we compose different models of uncertainty, i.e., we also add uncer-
tainty in the probability of selecting the new IP address using the interval model. This
probability thus lies in the interval [(1−u)p0, (1+u)p0]. We, arbitrarily, fixed dl = 25
and swept DVtot in the range [10 − 100], which covers most domestic applications, to
study how network congestion affects the value of Equation 13. We studied four scenar-
ios: the ideal scenario, returned by classical model-checking techniques; the confident,
normal, conservative scenarios, where we added increasing uncertainty to model dif-
ferent knowledge levels of the network behavior, a situation that often arises during the
different design phases, from conception to deployment. Results show that Pmaxs0 [ψ]
gets up to ∼ 15× higher than the ideal scenario, an information that designers can use
to determine the most sensitive parameters of the system and to assess the impact of
their modeling assumptions on the estimation of network performances.

Fig. 3: Value of Equation 13 (top) and
verification runtime (bottom).

Fig. 4: Value of Eq. 13 for increasing
number of devices in the network.

7 Conclusions and Future Work

We addressed the problem of verifying PCTL properties of Convex-MDPs (CMDPs),
i.e., MDPs whose transition probabilities lie within convex uncertainty sets. Using re-
sults on strong duality for convex programs, we proved that model checking is decidable
in PTIME for the fragment of PCTL without the Bounded Until operator. For the entire
PCTL syntax, the algorithmic complexity is pseudo-polynomial in the size of the prop-
erty. Verification results on two case studies show that uncertainty can greatly alter the
computed probabilities, thus revealing the importance of the proposed analysis.

As future work, we aim to relax the rectangular uncertainty assumption, to obtain
a less conservative analysis. Also, we plan to verify a complex physical system, e.g. an
airplane power system, in which modeling uncertainties are present both in the under-
lying physical process and in the failure probabilities of its components.

8 Acknowledgments

The authors thank John B. Finn for the contribution in the first stages of the project and
the reviewers for their helpful comments. The research was partially funded by DARPA
Award Number HR0011-12-2-0016 and by STARnet, a Semiconductor Research Cor-
poration program sponsored by MARCO and DARPA.

References

1. C. Courcoubetis and M. Yannakakis, “The Complexity of Probabilistic Verification,” Journal
of ACM, vol. 42(4), pp. 857–907, 1995.

2. A. Bianco and L. De Alfaro, “Model Checking of Probabilistic and Nondeterministic Sys-
tems,” in Proc. of FSTTCS, ser. LNCS, vol. 1026, 1995, pp. 499–513.

3. M. Kwiatkowska, “Quantitative Verification: Models, Techniques and Tools,” in Proc. of
SIGSOFT, 2007, pp. 449–458.

4. H. Hansson and B. Jonsson, “A Logic for Reasoning About Time and Reliability,” Formal
Aspects of Computing, vol. 6(5), pp. 512–535, 1994.

5. M. Kwiatkowska et al., “PRISM 4.0: Verification of Probabilistic Real-Time Systems,” Proc.
of CAV, pp. 585–591, 2011.

6. I. Kozine and L. Utkin, “Interval-Valued Finite Markov Chains,” Reliable Computing, vol.
8(2), pp. 97–113, 2002.

7. K. Sen et al., “Model-Checking Markov Chains in the Presence of Uncertainties,” Proc. of
TACAS, vol. 3920, pp. 394–410, 2006.

8. K. Chatterjee, K. Sen, and T. Henzinger, “Model-Checking ω-regular Properties of Interval
Markov Chains,” in Proc. of FOSSACS, 2008, pp. 302–317.

9. A. Ben-Tal and A. Nemirovski, “Robust Solutions of Uncertain Linear Programs,” Oper. Res.
Lett., vol. 25(1), pp. 1–13, 1999.

10. A. Andreychenko et al., “Parameter Identification for Markov Models of Biochemical Reac-
tions,” in Proc. of CAV, 2011, pp. 83–98.

11. A. Nilim and L. El Ghaoui, “Robust Control of Markov Decision Processes with Uncertain
Transition Matrices,” Journal of Operations Research, pp. 780–798, 2005.

12. A. Puggelli et al., “Polynomial-Time Verification of PCTL Properties of MDPs with
Convex Uncertainties,” UC-Berkeley, Tech. Rep. UCB/EECS-2013-24, Apr 2013. [Online].
Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-24.html

13. M. Y. Vardi, “Automatic Verification of Probabilistic Concurrent Finite State Programs,” in
Proc. of SFCS, 1985, pp. 327–338.

14. E. Lehmann and G. Casella, Theory of Point Estimation. Springer-Verlag, New York, 1998.
15. M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming.

John Wiley and Sons, 1994.
16. V. Forejt et al., “Automated Verification Techniques for Probabilistic Systems,” SFM, vol.

6659, pp. 53–113, 2011.
17. R. Barbuti et al., “Probabilistic Model Checking of Biological Systems with Uncertain Ki-

netic Rates,” in Reachability Problems. Springer, 2009, vol. 5797, pp. 64–78.
18. E. M. Hahn et al., “Synthesis for PCTL in Parametric Markov Decision Processes,” 2011.
19. M. Kwiatkowska et al., “Automated Verification of a Randomized Distributed Consensus

Protocol Using Cadence SMV and PRISM,” in Proc. of CAV, 2001, pp. 194–206.
20. E. Wolff et al., “Robust Control of Uncertain Markov Decision Processes with Temporal

Logic Specifications,” CDC, 2012.
21. A. D’Innocenzo et al., “Robust PCTL Model Checking,” in Proc. of HSCC, 2012, pp. 275–

286.
22. E. Clarke and A. Emerson, “Design and Synthesis of Synchronization Skeletons Using

Branching Time Temporal Logic,” Proc. of WLP, vol. 131, 1981.
23. Y. Nesterov and A. Nemirovski, Interior-Point Polynomial Algorithms in Convex Program-

ming, ser. Studies in Applied and Numerical Mathematics, 1994.
24. S. Boyd and L. Vandenberghe, “Convex Optimization,” Cambridge University Press, 2004.
25. “MOSEK,” http://www.mosek.com.
26. Online: http://www.eecs.berkeley.edu/∼puggelli/.
27. Online: http://www.prismmodelchecker.org/benchmarks/.
28. J. Aspnes and M. Herlihy, “Fast Randomized Consensus Using Shared Memory,” Journal of

Algorithms, vol. 11(3), pp. 441–461, 1990.
29. S. Cheshire, B. Adoba, and E. Gutterman, “Dynamic configuration of IPv4 link local ad-

dresses,” available from http://www.ietf.org/rfc/rfc3927.txt.
30. M. Kwiatkowska et al., “Performance Analysis of Probabilistic Timed Automata Using Dig-

ital Clocks,” Formal Methods in System Design, vol. 29, pp. 33–78, 2006.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-24.html
http://www.eecs.berkeley.edu/~puggelli/
http://www.prismmodelchecker.org/benchmarks/
http://www.ietf.org/rfc/rfc3927.txt

	Polynomial-Time Verification of PCTL Propertiesof MDPs with Convex Uncertainties

