Choice of Temporal Logic
Specifications

Narayanan Sundaram
EE219C Lecture

CTLVs LTL

The Final Showdown

Why should we choose
onhe over the other?

® Expressiveness

® Clarity/Intuitiveness

® Algorithmic Complexity for Verification
® FEase of analyzing error reports

® Compositionality

Expressiveness - CTL

® CTL can express formulae that LTL cannot
Try expressing AG(p— ((AX q)V(AX q))

in LTL (This formula is used in the
context of database transactions)

How about AFAX p orAFAG p?

Expressiveness - LTL

® | TL can express temporal formulae that
CTL cannot !

Try expressing F G p in CTL (AFAG p is
stronger and AF EG p is weaker)

All

temporal
ﬁ‘» o

Expressiveness

® CTL characterizes bisimulation i.e. two
states in a transition system are bisimilar iff
they satisfy the same CTL properties

® Bisimulation is a structural relation

® Ve need a way to specify behavioural
properties

Verdict

Property

CTL

LTL

Tie/No
Answer

Expressiveness

v

Clarity/
Intuitiveness

Complexity

Debugging

Composinality

Clarity/Intuitiveness

Which is more intuitive - CTL or LTL ?
Claims made for clarity on both sides
Tightly linked with expressiveness

Does more expressive mean more or less
clear/intuitive?

Clarity/Intuitiveness

Most properties are very simple like AG p

Linear time is more intuitive than branching
time for most people

F X p and X F p mean the same thing
AF AX p and AXAF p do not

Do we need expressiveness or clarity ?

Clarity/Intuitiveness

® | TL uses language containment (Buchi
automaton approach)

® CTL uses reachability analysis

® With LTL, both system and properties are
FSMs

Does this mean that LTL is more
intuitive ?

Verdict

Property

CTL

LTL

Tie/No
Answer

Expressiveness

v

Clarity/
Intuitiveness

Complexity

Debugging

Composinality

Complexity Classes

Increasing
Complexity

12

Complexity

For CTL, model checking algorithms run in
O(nm) time (n is the size of transition
system and m is the size of temporal formula)

For LTL, model checking algorithms run in
n.2°(M time

Is CTL better?

Remember : m << n

Complexity
Closed/Open systems

® CTL complexity bound is better than LTL
only in closed systems

For open systems, we get totally different

results
For LTL, it is PSPACE Complete
For CTL, it is EXPTIME Complete
For CTL*, it is 2EXPTIME Complete

Complexity

Are these comparisons valid?

Should we only compare properties that are
expressible in both CTL and LTL?

The 2°M) in the LTL complexity comes from creating
the Buchi automaton

For LTL formulae that are expressible as VY CTL, there

is a Buchi automaton whose size is linear in the size
of the LTL formula

Complexity

® Hierarchical systems

Both LTL and CTL model checking are
PSPACE Complete

LTL : Polynomial in the size of the system
CTL : Exponential in the size of the system
® Size of system >> Size of formula

® Similar results for pushdown systems

Verdict

Property

CTL

LTL

Tie/No
Answer

Expressiveness

v

Clarity/
Intuitiveness

Complexity

v

Debugging

Composinality

Debugging from error
traces

® Error trace analysis is needed for
Debugging the design
Semi-formal verification

® Don’t CTL and LTL give similar error
traces!?

Error traces

® CTL is inherently branching time based

® Consider AF AX p is not satisfied - There is
no linear trace that can disprove the
Droperty

n contrast, all LTL property failures can
broduce a single linear trace

Error traces

Closely related to intuitiveness of the
specification

Semiformal verification involves combining formal
verification and simulation

Harder to do this with CTL than LTL

Current approaches to semiformal verification
limit themselves to invariants to get around the
problem - Too restrictive for wide usage

Verdict

Tie/No

Property CTL Answer

Expressivenss ,\/

Clarity/
Intuitiveness

Complexity ,\/

Debugging

Compositionality

Compositionality

® Compositional or modular verification used
to tackle the space-explosion problem
inherent in any formal verification method

® Use Assume-Guarantee paradigm

My = i
M3 = 1o My ||Ms =
C(¢17¢27¢)

Compositionality

1\¥1
© 12 }(true)]\h]\[Q(wl/\d)g)

® <P>M<YP> specifies that whenever M is a
part of a system satisfying the formula ¢, the
system satisfies the formula Y too.

® This branching modular model-checking
problem for VCTL is PSPACE complete

Compositionality

What is generally done in CTL model checking?
People generally use (1) instead of (2)

M2 < Az is based on “intuition”, which may be
wrong

< is the simulation refinement relation

M, < As M, = A

M| | M. Aq||My = Ay 3 My||Ms = @
M1HA2 IZ(IO} 1|| ’):SD MlHAQ)ZQO }

(1) (2)

Compositionality - LTL

® Compositionality works easily with LTL!

® TJo prove <@>M<yp> with LTL, we only need to prove

M= @-y

To prove the linear-time properties of the parallel
composition M||Ei||E2||... ||Ex , it suffices to consider

the linear-time properties of components M, E|,E;, ...
Ex

Possible because if L(M)SL(P) and L(Ei)SL(P), then
L(M)NL(E) € L(P)

Verdict

Tie/No

Property CTL Answer

Expressiveness ,\/

Clarity/
Intuitiveness

Complexity ,\/

Debugging

Compositionality

Final Verdict

Tie/No

Property

Expressiveness

Clarity/
Intuitiveness

Complexity

Debu%\«

Compositionality

LTL - Other advantages

® Abstraction can be mapped to language
containment which LTL can handle

® To verify if design P, is a refinement of P,
we have to just check L(P)SL(P,)

® BMC fits naturally within a linear time
framework as we only search for a counter-
example trace of bounded length

Is LTL sufficient ?

It is proven that LTL cannot express certain W-
regular expressions

LTL is inadequate to express all assumptions about
the environment in modular verification

What is the “ultimate” temporal property
specification language?

ETL is an extension of LTL with temporal
connectives that correspond to W-automata

More Proposals

® Use past connectives - not necessary but can
be convenient when referring to program
locations where some modifications were
made rather than just the external behaviour

“In order to perform compositional
specification and verification, it is convenient to
use the past operators but necessary to have
the full power of ETL’ - Pnueli

Some Libraries & Tools

INn use

® Cadence SMV is CTL based (It has a linear
time model checker built on top of a CTL
model checker)

® FTL is a linear temporal logic with limited
form of past connectives and with the full
expressive power of W-regular expressions

Used in ForSpec, Intel’s formal
verification language

Some more Libraries &
Tools in use

® Open Verification Library (OVL)

® Process Specification Language (PSL)

® System Verilog Assertions (SVA)

Integrating Verification

Designers use VHDL/Verilog for hardware
designs

Programmers use C/C++/Java etc

Verification engines use FSMs with
temporal property specifications

How to make them talk to each other?

OVL

® The OVL library of assertion checkers is intended
to be used by design, integration, and verification
engineers to check for good/bad behavior in
simulation, emulation and formal verification

OVL is a Verification methodology, which can find
bugs (even in mature designs)

OVL is a Library of predefined assertions,
currently available in Verilog, SVA and PSL

Types of OVL
Assertions

Combinatoriall Combinatorial Assertions
§ assert_proposition, assert_never_unknown_async

Single-Cycle | Single-cycle Assertions
§ assert_always, assert_implication, assert_range, ...

2-Cycles l Sequential over 2 cycles
§ assert_always_on_edge, assert_decrement, ...

n-Cycles | Sequential over num_cks cycles
§ assert_change, assert_cycle_sequence, assert_next, ...

Event-bound | Sequential between two events
§ assert_win_change, assert_win_unchange, assert_window

accellera

OVL Assertions-
Examples

TYPE

NAME

PORTS

DESCRIPTION

single cycle

assert_always

(clk, reset_n, test_expr)

test_expr must always
hold

2 cycles

assert_always_on_edge

(clk, reset_n,
sampling_event,
test_expr)

test_expr is true
immediately

following the specified
edge (edge_type: 0=no-
edge, | =pos, 2=neg,
3=any)

n cycles

assert_change

(clk, reset_n,
start_event, test_expr)

test_expr must change
within num_cks of
start_event
(action_on_new_start:
O=ignore, | =restart,
2=error)

OVL

® OVL Assertions are used for property
verification as well as constraint
specification(environment modeling)

® OVL s just a layer for specifying properties

® The verification tool has to understand
these assertions and then translate them
into temporal formula of choice

OVL Timing Diagram -

assert_always_on_edge
#(severity level, edge_type, property_ type, msg, coverage_level)
ul (clk, reset_n, sampling_event, test_expr)

test expr is true immediately following the edge specified by the edge type parameter

ASSERT
forall t.
conditions imply
requirements

t

assert_always_on_edge #(0,1) }

t+1

sampling_event |

test_expr

ASSERT
forall t.
conditions imply
requirements

on_edge

t

Rising
edge

edge_type=0

}(default is
no edge)

test_expr

Identical to

assert_always

ASSERT
forall t.
conditions imply
requirements

assert_always_on_edge #(0,2)

t

t+1

sampling_event [

test_expr

ASSERT
forall t.
conditions imply
requirements

assert_always_on_edge #(0,3)

t+1

: /
sampling_event

test_expr

}

2-Cycles l

Falling
edge

accellera

Using CTL/LTL based
verification

® There are a number of issues to be solved
before we can directly translate OVL to CTL/

LTL
Presence of multiple clocks

Presence of positive and negative edge
triggered logic

Support for BMC (for assertions like
assert_change specifying num_ cks)

A simple case study

® Methodology to use NuSMV with VHDL/
Verilog designs

® Restricted to designs with one global clock
(logic uses only one edge of the clock)

® Uses synthesis tools along with verification
engines

® Properties specified in OVL

Tool flow

Y-

- =

Conclusion

® | TL is better than CTL for specifying
temporal properties of FSMs

® Many different libraries in use for specifying
properties and constraints

® Designers can use these with minimal effort

References

® MosheY. Vardi, Branching vs Linear time : Final
Showdown, Proceedings of the 7th International
Conference on Tools and Algorithms for the
Construction and Analysis of Systems, 2001, pp. | -
22

® http://www.accellera.org/activities/ovl/

