
Choice of Temporal Logic
Specifications

Narayanan Sundaram
EE219C Lecture

1

CTL Vs LTL

The Final Showdown

2

Why should we choose
one over the other?

• Expressiveness

• Clarity/Intuitiveness

• Algorithmic Complexity for Verification

• Ease of analyzing error reports

• Compositionality

3

Expressiveness - CTL

• CTL can express formulae that LTL cannot

• Try expressing AG(p→((AX q)∨(AX ¬q))

in LTL (This formula is used in the
context of database transactions)

• How about AF AX p or AF AG p ?

4

Expressiveness - LTL

• LTL can express temporal formulae that
CTL cannot !

• Try expressing F G p in CTL (AF AG p is
stronger and AF EG p is weaker)

5

LTL CTL

All
temporal
formulae

Expressiveness

• CTL characterizes bisimulation i.e. two
states in a transition system are bisimilar iff
they satisfy the same CTL properties

• Bisimulation is a structural relation

• We need a way to specify behavioural
properties

6

Verdict

Property CTL LTL
Tie/No
Answer

Expressiveness √
Clarity/

Intuitiveness

Complexity

Debugging

Composinality

7

Clarity/Intuitiveness

• Which is more intuitive - CTL or LTL ?

• Claims made for clarity on both sides

• Tightly linked with expressiveness

• Does more expressive mean more or less
clear/intuitive?

8

Clarity/Intuitiveness

• Most properties are very simple like AG p

• Linear time is more intuitive than branching
time for most people

• F X p and X F p mean the same thing

• AF AX p and AX AF p do not

• Do we need expressiveness or clarity ?

9

Clarity/Intuitiveness

• LTL uses language containment (Buchi
automaton approach)

• CTL uses reachability analysis

• With LTL, both system and properties are
FSMs

• Does this mean that LTL is more
intuitive ?

10

Verdict

Property CTL LTL
Tie/No
Answer

Expressiveness √
Clarity/

Intuitiveness √
Complexity

Debugging

Composinality

11

Complexity Classes

12

P

NP COMPLETE

PSPACE COMPLETE

EXPTIME COMPLETE

EXPSPACE COMPLETE

Increasing
Complexity

Complexity

• For CTL, model checking algorithms run in
O(nm) time (n is the size of transition
system and m is the size of temporal formula)

• For LTL, model checking algorithms run in
n.2O(m) time

• Is CTL better?

• Remember : m << n

13

Complexity
Closed/Open systems
• CTL complexity bound is better than LTL

only in closed systems

• For open systems, we get totally different
results

• For LTL, it is PSPACE Complete

• For CTL, it is EXPTIME Complete

• For CTL*, it is 2EXPTIME Complete

14

Complexity

• Are these comparisons valid?

• Should we only compare properties that are
expressible in both CTL and LTL?

• The 2O(m) in the LTL complexity comes from creating
the Buchi automaton

• For LTL formulae that are expressible as ∀CTL, there

is a Buchi automaton whose size is linear in the size
of the LTL formula

15

Complexity

• Hierarchical systems

• Both LTL and CTL model checking are
PSPACE Complete

• LTL : Polynomial in the size of the system

• CTL : Exponential in the size of the system

• Size of system >> Size of formula

• Similar results for pushdown systems

16

Verdict

Property CTL LTL
Tie/No
Answer

Expressiveness √
Clarity/

Intuitiveness √
Complexity √
Debugging

Composinality

17

Debugging from error
traces

• Error trace analysis is needed for

• Debugging the design

• Semi-formal verification

• Don’t CTL and LTL give similar error
traces?

18

Error traces

• CTL is inherently branching time based

• Consider AF AX p is not satisfied - There is
no linear trace that can disprove the
property

• In contrast, all LTL property failures can
produce a single linear trace

19

Error traces

• Closely related to intuitiveness of the
specification

• Semiformal verification involves combining formal
verification and simulation

• Harder to do this with CTL than LTL

• Current approaches to semiformal verification
limit themselves to invariants to get around the
problem - Too restrictive for wide usage

20

Verdict

Property CTL LTL
Tie/No
Answer

Expressivenss √
Clarity/

Intuitiveness √
Complexity √
Debugging √

Compositionality

21

Compositionality

• Compositional or modular verification used
to tackle the space-explosion problem
inherent in any formal verification method

• Use Assume-Guarantee paradigm

this automaton has a special structure (it is “weak”), which enables the model checker to

apply improved algorithms for checking the emptiness of the intersection ofM with A ¬ϕ

[12]. (See also [66, 67] for a through analysis of the relationship between LTL and CTL

model checkers.)

Another context in which the alleged superiority of CTL from the complexity perspec-

tive disappears is that of hierarchical systems. In that setting, both LTLmodel checking and

CTL model checking are PSPACE-complete, but while LTL model checking is polynomial

in the size of the system, CTL model checking is exponential in the size of the system

[3]. Similarly, in the context of pushdown systems, for both LTL and CTL model checking

is EXPTIME-complete, but it is polynomial in the size of the system for LTL [13] and

exponential in the size of the system for CTL [120].

2.3 Compositionality

Model checking is known to suffer from the so-called state-explosion problem. In a concur-

rent setting, the system under consideration is typically the parallel composition of many

modules. As a result, the size of the state space of the system is the product of the sizes of

the state spaces of the participating modules. This gives rise to state spaces of exceedingly

large sizes, which makes model-checking algorithms impractical. This issue is one of the

most important ones in the area of computer-aided verification and is the subject of active

research (cf. [18]).

Compositional, ormodular, verification is one possible way to address the state-explosion

problem, cf. [29]. In modular verification, one uses proof rules of the following form:

M1 |= ψ1

M2 |= ψ2

C(ψ1, ψ2, ψ)

 M1‖M2 |= ψ

Here M |= θ means that the module M satisfies the formula θ, the symbol “‖” denotes
parallel composition, and C(ψ1, ψ2, ψ) is some logical condition relating ψ1, ψ2, and ψ.
The advantage of using modular proof rules is that it enables one to apply model checking

only to the underlying modules, which have much smaller state spaces.

A key observation, see [88, 77, 58, 106, 93], is that in modular verification the speci-

fication should include two parts. One part describes the desired behavior of the module.

The other part describes the assumed behavior of the system within which the module is

interacting. This is called the assume-guarantee paradigm, as the specification describes

what behavior the module is guaranteed to exhibit, assuming that the system behaves in

the promised way.

For the linear temporal paradigm, an assume-guarantee specification is a pair 〈ϕ, ψ〉,
where both ϕ and ψ are linear temporal logic formulas. The meaning of such a pair is that
all the computations of the module are guaranteed to satisfyψ, assuming that all the compu-
tations of the environment satisfy ϕ. As observed in [93], in this case the assume-guarantee
pair 〈ϕ, ψ〉 can be combined to a single linear temporal logic formula ϕ → ψ. Thus, model
checking a module with respect to assume-guarantee specifications in which both the as-

sumed and the guaranteed behaviors are linear temporal logic formulas is essentially the

same as model checking the module with respect to linear temporal logic formulas.

The situation is different for the branching temporal paradigm, where assumptions are

taken to apply to the computation tree of the system within which the module is interacting

[50]. In this framework, a module M satisfies an assume-guarantee pair 〈ϕ, ψ〉 iff when-
ever M is part of a system satisfying ϕ, the system also satisfies ψ. (As is shown in [50],
this is not equivalent to M satisfying ϕ → ψ.) We call this branching modular model
checking. Furthermore, it is argued in [50], as well as in [31, 59, 50, 32], that in the context

of modular verification it is advantageous to use only universal branching temporal logic,

i.e., branching temporal logic without existential path quantifiers. In a universal branching

22

Compositionality

temporal logic one can state properties of all computations of a program, but one cannot

state that certain computations exist. Consequently, universal branching temporal logic for-

mulas have the helpful property that once they are satisfied in a module, they are satisfied

also in every system that contains this module. The focus in [50] is on using ∀CTL, the
universal fragment of CTL, for both the assumption and the guarantee. We now focus on

the branching modular model-checking problem, where assumptions and guarantees are in

both ∀CTL and in the more expressive ∀CTL!, the universal fragment of CTL!.

Let M = (W, W0, R, V) and M ′ = (W ′, W ′
0, R

′, V ′) be two modules with sets AP
and AP ′ of atomic propositions. The composition of M and M ′, denoted M‖M ′, is a
module that has exactly these behaviors which are joint toM andM ′. We defineM‖M ′ to
be the module 〈W ′′, W0′′ , R, V ′′〉 over the set AP ′′ = AP ∪ AP ′ of atomic propositions,
where W ′′ = (W × W ′) ∩ {〈w, w′〉 : V (w) ∩ AP ′ = V ′(w′) ∩ AP}, W0′′ = (W0 ×
W0′)∩W ′′, R′′ = {〈〈w, w′〉, 〈s, s′〉〉 : 〈w, s〉 ∈ R and 〈w′, s′〉 ∈ R′}, and V ′′(〈w, w′〉) =
V (w) ∪ V ′(w′) for 〈w, w′〉 ∈ W ′′.

In modular verification, one uses assertions of the form 〈ϕ〉M〈ψ〉 to specify that when-
everM is part of a system satisfying the universal branching temporal logic formula ϕ, the
system satisfies the universal branching temporal logic formula ψ too. Formally, 〈ϕ〉M〈ψ〉
holds if M‖M ′ |= ψ for all M ′ such that M‖M ′ |= ϕ. Here ϕ is an assumption on the
behavior of the system and ψ is the guarantee on the behavior of the module. Assume-

guarantee assertions are used in modular proof rules of the following form:

〈ϕ1〉M1〈ψ1〉
〈true〉M1〈ϕ1〉
〈ϕ2〉M2〈ψ2〉
〈true〉M2〈ϕ2〉

〈true〉M1‖M2〈ψ1 ∧ ψ2〉

Thus, a key step in modular verification is checking that assume-guarantee assertions of

the form 〈ϕ〉M〈ψ〉 hold, which we called the branching modular model-checking problem.

Theorem 2. [71]

(1) The branching modular model-checking problem for ∀CTL is PSPACE-complete.
(2) The branching modular model-checking problem for ∀CTL! is EXPSPACE-complete.

Thus, in the context of modular model checking, ∀CTL has the same computational com-
plexity as LTL, while ∀CTL! is exponentially harder. The fact that the complexity for

∀CTL is the same as the complexity for LTL is, however, somewhat misleading. ∀CTL is
simply not expressive enough to express assumptions that are strong enough to prove the

desired guarantee. This motivated Josko to consider modular verification with guarantees

in CTL and assumptions in LTL. Unfortunately, it is shown in [71] that the EXPSPACE

lower bound above applies even for that setting.

Another approach to modular verification for ∀CTL is proposed in [50], where the
following inference rule is proposed:

M1 * A1

A1||M2 * A2

M1||A2 |= ϕ

M1||M2 |= ϕ

Here A1 andA2 are modules that serve as assumptions, and* is the simulation refinement
relation [86]. In other words, if M1 guarantees the assumption A1, M2 under the assump-

tion A1 guarantees the assumption A2, and M1 under the assumption A2 guarantees ϕ,
then we know thatM1||M2, under no assumption, guarantees ϕ. The advantage of this rule
is that both the * and |= relation can be evaluated in polynomial time. Unfortunately, the

simulation relation is much finer than the trace-containment relation (which is the refine-

ment relation in the linear-time framework). This makes it exceedingly difficult to come up

with the assumptions A1 and A2 above.

• <φ>M<ψ> specifies that whenever M is a
part of a system satisfying the formula φ, the
system satisfies the formula ψ too.

• This branching modular model-checking
problem for ∀CTL is PSPACE complete

23

Compositionality

• What is generally done in CTL model checking?

• People generally use (1) instead of (2)

• M2 ≼ A2 is based on “intuition”, which may be
wrong

• ≼ is the simulation refinement relation
What do CTL users do in practice? In practice, they use the following rule:

M2 ! A2

M1||A2 |= ϕ

}
M1||M2 |= ϕ

That is, instead of checking that M1||M2 |= ϕ, one checks that M1||A2 |= ϕ, where A2

is an abstraction of M2. As CTL model checkers usually do not support the test M2 !
A2, users often rely on their “intuition”, which is typically a “linear intuition” rather than

“branching intuition”.4 In other words, a typical way users overcome the limited expressive

power of CTL is by “escaping” outside the tool; they build the “stub” A 2 in a hardware

description language.Unfortunately, since stubs themselves could be incorrect, this practice

is unsafe. (Users often check that the abstractionA2 satisfies some CTL properties, such as

AGEFp, but this is not sufficient to establish thatM2 ! A2.)

In summary, CTL is not adequate for modular verification, which explains why recent

attempts to augment SMV with assume-guarantee reasoning are based on linear time rea-

soning [84].

2.4 Semi-Formal Verification

Because of the state-explosion problem, it is unrealistic to expect formal-verification tools

to handle full systems or even large components. At the same time, simulation-based dy-

namic validation, while being able to handle large designs, covers only a small fraction of

the design space, due to resource constraints. Thus, it has become clear that future verifica-

tion tools need to combine formal and informal verification [122]. The combined approach

is called semi-formal verification (cf. [45]). Such a combination, however, is rather prob-

lematic for CTL-based tools. CTL specifications and model-checking algorithms are in

terms of computation trees; in fact, it is known that there are CTL formulas, e.g.,AFAXp,
whose failure cannot be witnessed by a linear counterexample [23]. 5 In contrast, dynamic

validation is fundamentally linear, as simulation generates individual computations. Thus,

there is an inherent “impedance mismatch” between the two approaches. This explains

why current approaches to semi-formal verification are limited to invariances, i.e., prop-

erties of the form AGp. While many design errors can be discovered by model checking
invariances, modular verification of even simple invariances often requires rather compli-

cated assumptions on the environment in which the component under verification operates.

Current semi-formal approaches, however, cannot handle general assumptions. Thus, the

restriction of semi-formal verification to invariances is quite severe, limiting the possibility

of integrating CTL-based model checking in traditional validation environments.

3 Linear Time

Our conclusion from the previous section is that CTL-based model checking, while phe-

nomenally successful over the last 20 years, suffers from some inherent limitations that

severely impede its functionality. As we show now, the linear-time approach does not suf-

fer from these limitations.

4 Note that linear-time refinement is defined in terms of trace containment, which is a behavioral

relation, while branching-time refinement is defined in terms of simulation, which is a state-based

relation. Thus, constructing an abstraction A2 such that M2 ! A2 requires a very deep under-

standing of the environment M2.
5 One of the advertised advantages of model checking is that when the model checker returns a neg-

ative answer, that answer is accompanied by a counterexample [26]. Note, however, that validation

engineers are usually interested in linear counterexamples, but there are CTL formulas whose fail-

ure cannot be witnessed by a linear counterexample. In general, CTL-based model checkers do

always accompany a negative answer by a counterexample. A similar comment applies to positive

witnesses [70].

temporal logic one can state properties of all computations of a program, but one cannot

state that certain computations exist. Consequently, universal branching temporal logic for-

mulas have the helpful property that once they are satisfied in a module, they are satisfied

also in every system that contains this module. The focus in [50] is on using ∀CTL, the
universal fragment of CTL, for both the assumption and the guarantee. We now focus on

the branching modular model-checking problem, where assumptions and guarantees are in

both ∀CTL and in the more expressive ∀CTL!, the universal fragment of CTL!.

Let M = (W, W0, R, V) and M ′ = (W ′, W ′
0, R

′, V ′) be two modules with sets AP
and AP ′ of atomic propositions. The composition of M and M ′, denoted M‖M ′, is a
module that has exactly these behaviors which are joint toM andM ′. We defineM‖M ′ to
be the module 〈W ′′, W0′′ , R, V ′′〉 over the set AP ′′ = AP ∪ AP ′ of atomic propositions,
where W ′′ = (W × W ′) ∩ {〈w, w′〉 : V (w) ∩ AP ′ = V ′(w′) ∩ AP}, W0′′ = (W0 ×
W0′)∩W ′′, R′′ = {〈〈w, w′〉, 〈s, s′〉〉 : 〈w, s〉 ∈ R and 〈w′, s′〉 ∈ R′}, and V ′′(〈w, w′〉) =
V (w) ∪ V ′(w′) for 〈w, w′〉 ∈ W ′′.

In modular verification, one uses assertions of the form 〈ϕ〉M〈ψ〉 to specify that when-
everM is part of a system satisfying the universal branching temporal logic formula ϕ, the
system satisfies the universal branching temporal logic formula ψ too. Formally, 〈ϕ〉M〈ψ〉
holds if M‖M ′ |= ψ for all M ′ such that M‖M ′ |= ϕ. Here ϕ is an assumption on the
behavior of the system and ψ is the guarantee on the behavior of the module. Assume-

guarantee assertions are used in modular proof rules of the following form:

〈ϕ1〉M1〈ψ1〉
〈true〉M1〈ϕ1〉
〈ϕ2〉M2〈ψ2〉
〈true〉M2〈ϕ2〉

〈true〉M1‖M2〈ψ1 ∧ ψ2〉

Thus, a key step in modular verification is checking that assume-guarantee assertions of

the form 〈ϕ〉M〈ψ〉 hold, which we called the branching modular model-checking problem.

Theorem 2. [71]

(1) The branching modular model-checking problem for ∀CTL is PSPACE-complete.
(2) The branching modular model-checking problem for ∀CTL! is EXPSPACE-complete.

Thus, in the context of modular model checking, ∀CTL has the same computational com-
plexity as LTL, while ∀CTL! is exponentially harder. The fact that the complexity for

∀CTL is the same as the complexity for LTL is, however, somewhat misleading. ∀CTL is
simply not expressive enough to express assumptions that are strong enough to prove the

desired guarantee. This motivated Josko to consider modular verification with guarantees

in CTL and assumptions in LTL. Unfortunately, it is shown in [71] that the EXPSPACE

lower bound above applies even for that setting.

Another approach to modular verification for ∀CTL is proposed in [50], where the
following inference rule is proposed:

M1 * A1

A1||M2 * A2

M1||A2 |= ϕ

M1||M2 |= ϕ

Here A1 andA2 are modules that serve as assumptions, and* is the simulation refinement
relation [86]. In other words, if M1 guarantees the assumption A1, M2 under the assump-

tion A1 guarantees the assumption A2, and M1 under the assumption A2 guarantees ϕ,
then we know thatM1||M2, under no assumption, guarantees ϕ. The advantage of this rule
is that both the * and |= relation can be evaluated in polynomial time. Unfortunately, the

simulation relation is much finer than the trace-containment relation (which is the refine-

ment relation in the linear-time framework). This makes it exceedingly difficult to come up

with the assumptions A1 and A2 above.

(1) (2)

24

Compositionality - LTL
• Compositionality works easily with LTL!

• To prove <φ>M<ψ> with LTL, we only need to prove
M ⊨ φ→ψ

• To prove the linear-time properties of the parallel
composition M||E1||E2||... ||Ek , it suffices to consider
the linear-time properties of components M, E1,E2, ...
Ek

• Possible because if L(M)⊆L(P) and L(Ei)⊆L(P), then

L(M)∩L(Ei) ⊆ L(P)

25

Verdict

Property CTL LTL
Tie/No
Answer

Expressiveness √
Clarity/

Intuitiveness √
Complexity √
Debugging √

Compositionality √
26

Final Verdict

Property CTL LTL
Tie/No
Answer

Expressiveness √
Clarity/

Intuitiveness √
Complexity √
Debugging √

Compositionality √
LTL d

ecl
are

d as
 winner

27

LTL - Other advantages

• Abstraction can be mapped to language
containment which LTL can handle

• To verify if design P1 is a refinement of P2,
we have to just check L(P1)⊆L(P2)

• BMC fits naturally within a linear time
framework as we only search for a counter-
example trace of bounded length

28

Is LTL sufficient ?

• It is proven that LTL cannot express certain ω-
regular expressions

• LTL is inadequate to express all assumptions about
the environment in modular verification

• What is the “ultimate” temporal property
specification language?

• ETL is an extension of LTL with temporal
connectives that correspond to ω-automata

29

More Proposals

• Use past connectives - not necessary but can
be convenient when referring to program
locations where some modifications were
made rather than just the external behaviour

• “In order to perform compositional
specification and verification, it is convenient to
use the past operators but necessary to have
the full power of ETL” - Pnueli

30

Some Libraries & Tools
in use

• Cadence SMV is CTL based (It has a linear
time model checker built on top of a CTL
model checker)

• FTL is a linear temporal logic with limited
form of past connectives and with the full
expressive power of ω-regular expressions

• Used in ForSpec, Intel’s formal
verification language

31

Some more Libraries &
Tools in use

• Open Verification Library (OVL)

• Process Specification Language (PSL)

• System Verilog Assertions (SVA)

32

Integrating Verification

• Designers use VHDL/Verilog for hardware
designs

• Programmers use C/C++/Java etc

• Verification engines use FSMs with
temporal property specifications

• How to make them talk to each other?

33

OVL

• The OVL library of assertion checkers is intended
to be used by design, integration, and verification
engineers to check for good/bad behavior in
simulation, emulation and formal verification

• OVL is a Verification methodology, which can find
bugs (even in mature designs)

• OVL is a Library of predefined assertions,
currently available in Verilog, SVA and PSL

34

Types of OVL
Assertions
!"#$%&'(&)*+&,%%$-./'0

1'23/04.'-/45&,%%$-./'0%&
§ assert_proposition, assert_never_unknown_async

6/075$89"95$&,%%$-./'0%
§ assert_always, assert_implication, assert_range, …

6$:;$0./45&'<$-&=&9"95$%
§ assert_always_on_edge, assert_decrement, …

6$:;$0./45&'<$-&0;2>9?% 9"95$%
§ assert_change, assert_cycle_sequence, assert_next, …

6$:;$0./45&3$.@$$0&.@'&$<$0.%

§ assert_win_change, assert_win_unchange, assert_window

Single-Cycle

Combinatorial

2-Cycles

n-Cycles

Event-bound

35

OVL Assertions-
Examples

TYPE NAME PORTS DESCRIPTION

single cycle assert_always (clk, reset_n, test_expr) test_expr must always
hold

2 cycles assert_always_on_edge
(clk, reset_n,
sampling_event,
test_expr)

test_expr is true
immediately
following the specified
edge (edge_type: 0=no-
edge, 1=pos, 2=neg,
3=any)

n cycles assert_change
(clk, reset_n,
start_event, test_expr)

test_expr must change
within num_cks of
start_event
(action_on_new_start:
0=ignore, 1=restart,
2=error)

36

OVL

• OVL Assertions are used for property
verification as well as constraint
specification(environment modeling)

• OVL is just a layer for specifying properties

• The verification tool has to understand
these assertions and then translate them
into temporal formula of choice

37

OVL Timing Diagram -
Example

t

assert_always
_on_edge

ASSERT

forall t.
conditions imply
requirements

test_expr is true immediately following the edge specified by the edge_type parameter

assert_always_on_edge
#(severity_level, edge_type, property_type, msg, coverage_level)

u1 (clk, reset_n, sampling_event, test_expr)

test_expr

sampling_event

test_expr

t t + 1

assert_always_on_edge #(0,1)

edge_type=0

(default is

no edge)

Identical to

assert_always

Rising

edge

sampling_event

test_expr

t t + 1

ASSERT

forall t.
conditions imply
requirements

Falling

edge

sampling_event

test_expr

t t + 1

ASSERT

forall t.
conditions imply
requirements

Any

edge

!= SE@t*SE

assert_always_on_edge #(0,2)

assert_always_on_edge #(0,3)

clkclk

ASSERT

forall t.
conditions imply
requirements

2-Cycles

38

Using CTL/LTL based
verification

• There are a number of issues to be solved
before we can directly translate OVL to CTL/
LTL

• Presence of multiple clocks

• Presence of positive and negative edge
triggered logic

• Support for BMC (for assertions like
assert_change specifying num_cks)

39

A simple case study

• Methodology to use NuSMV with VHDL/
Verilog designs

• Restricted to designs with one global clock
(logic uses only one edge of the clock)

• Uses synthesis tools along with verification
engines

• Properties specified in OVL

40

Tool flow

VHDL/Verilog design

Synthesis

Flat netlist

Convert to SMV
OVL to CTL/

LTL

Extract
properties

NuSMV

Gates to SMV
modules -

Mapping table

41

Conclusion

• LTL is better than CTL for specifying
temporal properties of FSMs

• Many different libraries in use for specifying
properties and constraints

• Designers can use these with minimal effort

42

References

• Moshe Y. Vardi, Branching vs Linear time : Final
Showdown, Proceedings of the 7th International
Conference on Tools and Algorithms for the
Construction and Analysis of Systems, 2001, pp. 1 -
22

• http://www.accellera.org/activities/ovl/

