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CTL Vs LTL

 
The Final Showdown
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Why should we choose 
one over the other?

• Expressiveness

• Clarity/Intuitiveness

• Algorithmic Complexity for Verification

• Ease of analyzing error reports

• Compositionality
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Expressiveness - CTL

• CTL can express formulae that LTL cannot

• Try expressing AG(p→((AX q)∨(AX ¬q)) 

in LTL (This formula is used in the 
context of database transactions)

• How about AF AX p  or AF AG p ? 
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Expressiveness - LTL

• LTL can express temporal formulae that 
CTL cannot !

• Try expressing F G p in CTL (AF AG p is 
stronger and AF EG p is weaker)
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Expressiveness

• CTL characterizes bisimulation i.e. two 
states in a transition system are bisimilar iff 
they satisfy the same CTL properties

• Bisimulation is a structural relation

• We need a way to specify behavioural 
properties
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Verdict

Property CTL LTL
Tie/No 
Answer

Expressiveness √
Clarity/

Intuitiveness

Complexity

Debugging

Composinality
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Clarity/Intuitiveness

• Which is more intuitive - CTL or LTL ?

• Claims made for clarity on both sides

• Tightly linked with expressiveness

• Does more expressive mean more or less 
clear/intuitive?
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Clarity/Intuitiveness

• Most properties are very simple like AG p

• Linear time is more intuitive than branching 
time for most people

• F X p and X F p mean the same thing

• AF AX p and AX AF p do not

• Do we need expressiveness or clarity ?
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Clarity/Intuitiveness

• LTL uses language containment ( Buchi 
automaton approach)

• CTL uses reachability analysis

• With LTL, both system and properties are 
FSMs

• Does this mean that LTL is more 
intuitive ?
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Verdict

Property CTL LTL
Tie/No 
Answer

Expressiveness √
Clarity/

Intuitiveness √
Complexity

Debugging

Composinality
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Complexity Classes
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P

NP COMPLETE

PSPACE COMPLETE

EXPTIME COMPLETE

EXPSPACE COMPLETE

Increasing
Complexity



Complexity

• For CTL, model checking algorithms run in  
O(nm) time ( n is the size of transition 
system and m is the size of temporal formula)

• For LTL, model checking algorithms run in    
n.2O(m) time

• Is CTL better? 

• Remember : m << n
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Complexity
Closed/Open systems
• CTL complexity bound is better than LTL 

only in closed systems

• For open systems, we get totally different 
results

• For LTL, it is PSPACE Complete

• For CTL, it is EXPTIME Complete

• For CTL*, it is 2EXPTIME Complete
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Complexity

• Are these comparisons valid?

• Should we only compare properties that are 
expressible in both CTL and LTL?

• The 2O(m) in the LTL complexity comes from creating 
the Buchi automaton 

• For LTL formulae that are expressible as ∀CTL, there 

is a Buchi automaton whose size is linear in the size 
of the LTL formula
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Complexity

• Hierarchical systems

• Both LTL and CTL model checking are 
PSPACE Complete

• LTL : Polynomial in the size of the system

• CTL : Exponential in the size of the system

• Size of system >> Size of formula

• Similar results for pushdown systems
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Verdict

Property CTL LTL
Tie/No 
Answer

Expressiveness √
Clarity/

Intuitiveness √
Complexity √
Debugging

Composinality
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Debugging from error 
traces

• Error trace analysis is needed for

• Debugging the design

• Semi-formal verification

• Don’t CTL and LTL give similar error 
traces?
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Error traces

• CTL is inherently branching time based

• Consider AF AX p is not satisfied - There is 
no linear trace that can disprove the 
property

• In contrast, all LTL property failures can 
produce a single linear trace
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Error traces

• Closely related to intuitiveness of the 
specification

• Semiformal verification involves combining formal 
verification and simulation

• Harder to do this with CTL than LTL

• Current approaches to semiformal verification 
limit themselves to invariants to get around the 
problem - Too restrictive for wide usage
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Verdict

Property CTL LTL
Tie/No 
Answer

Expressivenss √
Clarity/

Intuitiveness √
Complexity √
Debugging √

Compositionality
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Compositionality

• Compositional or modular verification used 
to tackle the space-explosion problem 
inherent in any formal verification method

• Use Assume-Guarantee paradigm

this automaton has a special structure (it is “weak”), which enables the model checker to

apply improved algorithms for checking the emptiness of the intersection ofM with A ¬ϕ

[12]. (See also [66, 67] for a through analysis of the relationship between LTL and CTL

model checkers.)

Another context in which the alleged superiority of CTL from the complexity perspec-

tive disappears is that of hierarchical systems. In that setting, both LTLmodel checking and

CTL model checking are PSPACE-complete, but while LTL model checking is polynomial

in the size of the system, CTL model checking is exponential in the size of the system

[3]. Similarly, in the context of pushdown systems, for both LTL and CTL model checking

is EXPTIME-complete, but it is polynomial in the size of the system for LTL [13] and

exponential in the size of the system for CTL [120].

2.3 Compositionality

Model checking is known to suffer from the so-called state-explosion problem. In a concur-

rent setting, the system under consideration is typically the parallel composition of many

modules. As a result, the size of the state space of the system is the product of the sizes of

the state spaces of the participating modules. This gives rise to state spaces of exceedingly

large sizes, which makes model-checking algorithms impractical. This issue is one of the

most important ones in the area of computer-aided verification and is the subject of active

research (cf. [18]).

Compositional, ormodular, verification is one possible way to address the state-explosion

problem, cf. [29]. In modular verification, one uses proof rules of the following form:

M1 |= ψ1

M2 |= ψ2

C(ψ1, ψ2, ψ)




 M1‖M2 |= ψ

Here M |= θ means that the module M satisfies the formula θ, the symbol “‖” denotes
parallel composition, and C(ψ1, ψ2, ψ) is some logical condition relating ψ1, ψ2, and ψ.
The advantage of using modular proof rules is that it enables one to apply model checking

only to the underlying modules, which have much smaller state spaces.

A key observation, see [88, 77, 58, 106, 93], is that in modular verification the speci-

fication should include two parts. One part describes the desired behavior of the module.

The other part describes the assumed behavior of the system within which the module is

interacting. This is called the assume-guarantee paradigm, as the specification describes

what behavior the module is guaranteed to exhibit, assuming that the system behaves in

the promised way.

For the linear temporal paradigm, an assume-guarantee specification is a pair 〈ϕ, ψ〉,
where both ϕ and ψ are linear temporal logic formulas. The meaning of such a pair is that
all the computations of the module are guaranteed to satisfyψ, assuming that all the compu-
tations of the environment satisfy ϕ. As observed in [93], in this case the assume-guarantee
pair 〈ϕ, ψ〉 can be combined to a single linear temporal logic formula ϕ → ψ. Thus, model
checking a module with respect to assume-guarantee specifications in which both the as-

sumed and the guaranteed behaviors are linear temporal logic formulas is essentially the

same as model checking the module with respect to linear temporal logic formulas.

The situation is different for the branching temporal paradigm, where assumptions are

taken to apply to the computation tree of the system within which the module is interacting

[50]. In this framework, a module M satisfies an assume-guarantee pair 〈ϕ, ψ〉 iff when-
ever M is part of a system satisfying ϕ, the system also satisfies ψ. (As is shown in [50],
this is not equivalent to M satisfying ϕ → ψ.) We call this branching modular model
checking. Furthermore, it is argued in [50], as well as in [31, 59, 50, 32], that in the context

of modular verification it is advantageous to use only universal branching temporal logic,

i.e., branching temporal logic without existential path quantifiers. In a universal branching
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Compositionality

temporal logic one can state properties of all computations of a program, but one cannot

state that certain computations exist. Consequently, universal branching temporal logic for-

mulas have the helpful property that once they are satisfied in a module, they are satisfied

also in every system that contains this module. The focus in [50] is on using ∀CTL, the
universal fragment of CTL, for both the assumption and the guarantee. We now focus on

the branching modular model-checking problem, where assumptions and guarantees are in

both ∀CTL and in the more expressive ∀CTL!, the universal fragment of CTL!.

Let M = (W, W0, R, V ) and M ′ = (W ′, W ′
0, R

′, V ′) be two modules with sets AP
and AP ′ of atomic propositions. The composition of M and M ′, denoted M‖M ′, is a
module that has exactly these behaviors which are joint toM andM ′. We defineM‖M ′ to
be the module 〈W ′′, W0′′ , R, V ′′〉 over the set AP ′′ = AP ∪ AP ′ of atomic propositions,
where W ′′ = (W × W ′) ∩ {〈w, w′〉 : V (w) ∩ AP ′ = V ′(w′) ∩ AP}, W0′′ = (W0 ×
W0′)∩W ′′, R′′ = {〈〈w, w′〉, 〈s, s′〉〉 : 〈w, s〉 ∈ R and 〈w′, s′〉 ∈ R′}, and V ′′(〈w, w′〉) =
V (w) ∪ V ′(w′) for 〈w, w′〉 ∈ W ′′.

In modular verification, one uses assertions of the form 〈ϕ〉M〈ψ〉 to specify that when-
everM is part of a system satisfying the universal branching temporal logic formula ϕ, the
system satisfies the universal branching temporal logic formula ψ too. Formally, 〈ϕ〉M〈ψ〉
holds if M‖M ′ |= ψ for all M ′ such that M‖M ′ |= ϕ. Here ϕ is an assumption on the
behavior of the system and ψ is the guarantee on the behavior of the module. Assume-

guarantee assertions are used in modular proof rules of the following form:

〈ϕ1〉M1〈ψ1〉
〈true〉M1〈ϕ1〉
〈ϕ2〉M2〈ψ2〉
〈true〉M2〈ϕ2〉





〈true〉M1‖M2〈ψ1 ∧ ψ2〉

Thus, a key step in modular verification is checking that assume-guarantee assertions of

the form 〈ϕ〉M〈ψ〉 hold, which we called the branching modular model-checking problem.

Theorem 2. [71]

(1) The branching modular model-checking problem for ∀CTL is PSPACE-complete.
(2) The branching modular model-checking problem for ∀CTL! is EXPSPACE-complete.

Thus, in the context of modular model checking, ∀CTL has the same computational com-
plexity as LTL, while ∀CTL! is exponentially harder. The fact that the complexity for

∀CTL is the same as the complexity for LTL is, however, somewhat misleading. ∀CTL is
simply not expressive enough to express assumptions that are strong enough to prove the

desired guarantee. This motivated Josko to consider modular verification with guarantees

in CTL and assumptions in LTL. Unfortunately, it is shown in [71] that the EXPSPACE

lower bound above applies even for that setting.

Another approach to modular verification for ∀CTL is proposed in [50], where the
following inference rule is proposed:

M1 * A1

A1||M2 * A2

M1||A2 |= ϕ




M1||M2 |= ϕ

Here A1 andA2 are modules that serve as assumptions, and* is the simulation refinement
relation [86]. In other words, if M1 guarantees the assumption A1, M2 under the assump-

tion A1 guarantees the assumption A2, and M1 under the assumption A2 guarantees ϕ,
then we know thatM1||M2, under no assumption, guarantees ϕ. The advantage of this rule
is that both the * and |= relation can be evaluated in polynomial time. Unfortunately, the

simulation relation is much finer than the trace-containment relation (which is the refine-

ment relation in the linear-time framework). This makes it exceedingly difficult to come up

with the assumptions A1 and A2 above.

• <φ>M<ψ> specifies that whenever M is a 
part of a system satisfying the formula φ, the 
system satisfies the formula ψ too.

• This branching modular model-checking 
problem for ∀CTL is PSPACE complete
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Compositionality

• What is generally done in CTL model checking?

• People generally use (1) instead of (2)

• M2 ≼ A2 is based on “intuition”, which may be 
wrong

• ≼ is the simulation refinement relation
What do CTL users do in practice? In practice, they use the following rule:

M2 ! A2

M1||A2 |= ϕ

}
M1||M2 |= ϕ

That is, instead of checking that M1||M2 |= ϕ, one checks that M1||A2 |= ϕ, where A2

is an abstraction of M2. As CTL model checkers usually do not support the test M2 !
A2, users often rely on their “intuition”, which is typically a “linear intuition” rather than

“branching intuition”.4 In other words, a typical way users overcome the limited expressive

power of CTL is by “escaping” outside the tool; they build the “stub” A 2 in a hardware

description language.Unfortunately, since stubs themselves could be incorrect, this practice

is unsafe. (Users often check that the abstractionA2 satisfies some CTL properties, such as

AGEFp, but this is not sufficient to establish thatM2 ! A2.)

In summary, CTL is not adequate for modular verification, which explains why recent

attempts to augment SMV with assume-guarantee reasoning are based on linear time rea-

soning [84].

2.4 Semi-Formal Verification

Because of the state-explosion problem, it is unrealistic to expect formal-verification tools

to handle full systems or even large components. At the same time, simulation-based dy-

namic validation, while being able to handle large designs, covers only a small fraction of

the design space, due to resource constraints. Thus, it has become clear that future verifica-

tion tools need to combine formal and informal verification [122]. The combined approach

is called semi-formal verification (cf. [45]). Such a combination, however, is rather prob-

lematic for CTL-based tools. CTL specifications and model-checking algorithms are in

terms of computation trees; in fact, it is known that there are CTL formulas, e.g.,AFAXp,
whose failure cannot be witnessed by a linear counterexample [23]. 5 In contrast, dynamic

validation is fundamentally linear, as simulation generates individual computations. Thus,

there is an inherent “impedance mismatch” between the two approaches. This explains

why current approaches to semi-formal verification are limited to invariances, i.e., prop-

erties of the form AGp. While many design errors can be discovered by model checking
invariances, modular verification of even simple invariances often requires rather compli-

cated assumptions on the environment in which the component under verification operates.

Current semi-formal approaches, however, cannot handle general assumptions. Thus, the

restriction of semi-formal verification to invariances is quite severe, limiting the possibility

of integrating CTL-based model checking in traditional validation environments.

3 Linear Time

Our conclusion from the previous section is that CTL-based model checking, while phe-

nomenally successful over the last 20 years, suffers from some inherent limitations that

severely impede its functionality. As we show now, the linear-time approach does not suf-

fer from these limitations.

4 Note that linear-time refinement is defined in terms of trace containment, which is a behavioral

relation, while branching-time refinement is defined in terms of simulation, which is a state-based

relation. Thus, constructing an abstraction A2 such that M2 ! A2 requires a very deep under-

standing of the environment M2.
5 One of the advertised advantages of model checking is that when the model checker returns a neg-

ative answer, that answer is accompanied by a counterexample [26]. Note, however, that validation

engineers are usually interested in linear counterexamples, but there are CTL formulas whose fail-

ure cannot be witnessed by a linear counterexample. In general, CTL-based model checkers do

always accompany a negative answer by a counterexample. A similar comment applies to positive

witnesses [70].

temporal logic one can state properties of all computations of a program, but one cannot

state that certain computations exist. Consequently, universal branching temporal logic for-

mulas have the helpful property that once they are satisfied in a module, they are satisfied

also in every system that contains this module. The focus in [50] is on using ∀CTL, the
universal fragment of CTL, for both the assumption and the guarantee. We now focus on

the branching modular model-checking problem, where assumptions and guarantees are in

both ∀CTL and in the more expressive ∀CTL!, the universal fragment of CTL!.

Let M = (W, W0, R, V ) and M ′ = (W ′, W ′
0, R

′, V ′) be two modules with sets AP
and AP ′ of atomic propositions. The composition of M and M ′, denoted M‖M ′, is a
module that has exactly these behaviors which are joint toM andM ′. We defineM‖M ′ to
be the module 〈W ′′, W0′′ , R, V ′′〉 over the set AP ′′ = AP ∪ AP ′ of atomic propositions,
where W ′′ = (W × W ′) ∩ {〈w, w′〉 : V (w) ∩ AP ′ = V ′(w′) ∩ AP}, W0′′ = (W0 ×
W0′)∩W ′′, R′′ = {〈〈w, w′〉, 〈s, s′〉〉 : 〈w, s〉 ∈ R and 〈w′, s′〉 ∈ R′}, and V ′′(〈w, w′〉) =
V (w) ∪ V ′(w′) for 〈w, w′〉 ∈ W ′′.

In modular verification, one uses assertions of the form 〈ϕ〉M〈ψ〉 to specify that when-
everM is part of a system satisfying the universal branching temporal logic formula ϕ, the
system satisfies the universal branching temporal logic formula ψ too. Formally, 〈ϕ〉M〈ψ〉
holds if M‖M ′ |= ψ for all M ′ such that M‖M ′ |= ϕ. Here ϕ is an assumption on the
behavior of the system and ψ is the guarantee on the behavior of the module. Assume-

guarantee assertions are used in modular proof rules of the following form:

〈ϕ1〉M1〈ψ1〉
〈true〉M1〈ϕ1〉
〈ϕ2〉M2〈ψ2〉
〈true〉M2〈ϕ2〉





〈true〉M1‖M2〈ψ1 ∧ ψ2〉

Thus, a key step in modular verification is checking that assume-guarantee assertions of

the form 〈ϕ〉M〈ψ〉 hold, which we called the branching modular model-checking problem.

Theorem 2. [71]

(1) The branching modular model-checking problem for ∀CTL is PSPACE-complete.
(2) The branching modular model-checking problem for ∀CTL! is EXPSPACE-complete.

Thus, in the context of modular model checking, ∀CTL has the same computational com-
plexity as LTL, while ∀CTL! is exponentially harder. The fact that the complexity for

∀CTL is the same as the complexity for LTL is, however, somewhat misleading. ∀CTL is
simply not expressive enough to express assumptions that are strong enough to prove the

desired guarantee. This motivated Josko to consider modular verification with guarantees

in CTL and assumptions in LTL. Unfortunately, it is shown in [71] that the EXPSPACE

lower bound above applies even for that setting.

Another approach to modular verification for ∀CTL is proposed in [50], where the
following inference rule is proposed:

M1 * A1

A1||M2 * A2

M1||A2 |= ϕ




M1||M2 |= ϕ

Here A1 andA2 are modules that serve as assumptions, and* is the simulation refinement
relation [86]. In other words, if M1 guarantees the assumption A1, M2 under the assump-

tion A1 guarantees the assumption A2, and M1 under the assumption A2 guarantees ϕ,
then we know thatM1||M2, under no assumption, guarantees ϕ. The advantage of this rule
is that both the * and |= relation can be evaluated in polynomial time. Unfortunately, the

simulation relation is much finer than the trace-containment relation (which is the refine-

ment relation in the linear-time framework). This makes it exceedingly difficult to come up

with the assumptions A1 and A2 above.

(1) (2)
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Compositionality - LTL
• Compositionality works easily with LTL!

• To prove <φ>M<ψ> with LTL, we only need to prove   
M ⊨ φ→ψ

• To prove the linear-time properties of the parallel 
composition M||E1||E2||... ||Ek , it suffices to consider 
the linear-time properties of components M, E1,E2, ... 
Ek

• Possible because if L(M)⊆L(P) and L(Ei)⊆L(P), then 

L(M)∩L(Ei) ⊆ L(P)
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Verdict

Property CTL LTL
Tie/No 
Answer

Expressiveness √
Clarity/

Intuitiveness √
Complexity √
Debugging √

Compositionality √
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Final Verdict

Property CTL LTL
Tie/No 
Answer

Expressiveness √
Clarity/

Intuitiveness √
Complexity √
Debugging √

Compositionality √
LTL d

ecl
are

d as
 winner
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LTL - Other advantages

• Abstraction can be mapped to language 
containment which LTL can handle

• To verify if design P1 is a refinement of P2, 
we have to just check L(P1)⊆L(P2)

• BMC fits naturally within a linear time 
framework as we only search for a counter-
example trace of bounded length
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Is LTL sufficient ?

• It is proven that LTL cannot express certain ω-
regular expressions

• LTL is inadequate to express all assumptions about 
the environment in modular verification

• What is the “ultimate” temporal property 
specification language?

• ETL is an extension of LTL with temporal 
connectives that correspond to ω-automata
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More Proposals

• Use past connectives - not necessary but can 
be convenient when referring to program 
locations where some modifications were 
made rather than just the external behaviour

• “In order to perform compositional 
specification and verification, it is convenient to 
use the past operators but necessary to have 
the full power of ETL” - Pnueli
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Some Libraries & Tools 
in use

• Cadence SMV is CTL based (It has a linear 
time model checker built on top of a CTL 
model checker)

• FTL is a linear temporal logic with limited 
form of past connectives and with the full 
expressive power of ω-regular expressions

• Used in ForSpec, Intel’s formal 
verification language
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Some more Libraries & 
Tools in use

• Open Verification Library (OVL)

• Process Specification Language (PSL)

• System Verilog Assertions (SVA)
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Integrating Verification

• Designers use VHDL/Verilog for hardware 
designs

• Programmers use C/C++/Java etc

• Verification engines use FSMs with 
temporal property specifications

• How to make them talk to each other?
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OVL

• The OVL library of assertion checkers is intended 
to be used by design, integration, and verification 
engineers to check for good/bad behavior in 
simulation, emulation and formal verification

• OVL is a Verification methodology, which can find 
bugs (even in mature designs)

• OVL is a Library of predefined assertions, 
currently available in Verilog, SVA and PSL 
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Types of OVL 
Assertions
!"#$%&'(&)*+&,%%$-./'0

1'23/04.'-/45&,%%$-./'0%&
§ assert_proposition, assert_never_unknown_async

6/075$89"95$&,%%$-./'0%
§ assert_always, assert_implication, assert_range, …

6$:;$0./45&'<$-&=&9"95$%
§ assert_always_on_edge, assert_decrement, …

6$:;$0./45&'<$-&0;2>9?% 9"95$%
§ assert_change, assert_cycle_sequence, assert_next, …

6$:;$0./45&3$.@$$0&.@'&$<$0.%

§ assert_win_change, assert_win_unchange, assert_window

Single-Cycle

Combinatorial

2-Cycles

n-Cycles

Event-bound
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OVL Assertions- 
Examples

TYPE NAME PORTS DESCRIPTION

single cycle assert_always (clk, reset_n, test_expr) test_expr must always 
hold

2 cycles assert_always_on_edge
(clk, reset_n, 
sampling_event, 
test_expr)

test_expr is true 
immediately 
following the specified 
edge (edge_type: 0=no-
edge, 1=pos, 2=neg, 
3=any)

n cycles assert_change
(clk, reset_n, 
start_event, test_expr)

test_expr must change 
within num_cks of 
start_event 
(action_on_new_start: 
0=ignore, 1=restart, 
2=error) 
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OVL

• OVL Assertions are used for property 
verification as well as constraint 
specification(environment modeling)

• OVL is just a layer for specifying properties

• The verification tool has to understand 
these assertions and then translate them 
into temporal formula of choice
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OVL Timing Diagram - 
Example

t

assert_always
_on_edge

ASSERT

forall t.
conditions imply
requirements

test_expr is true immediately following the edge specified by the edge_type parameter

assert_always_on_edge
#(severity_level, edge_type, property_type, msg, coverage_level)

u1 (clk, reset_n, sampling_event, test_expr)

test_expr

sampling_event

test_expr

t t + 1

assert_always_on_edge #(0,1)

edge_type=0

(default is

no edge)

Identical to

assert_always

Rising

edge

sampling_event

test_expr

t t + 1

ASSERT

forall t.
conditions imply
requirements

Falling

edge

sampling_event

test_expr

t t + 1

ASSERT

forall t.
conditions imply
requirements

Any

edge

!= SE@t*SE

assert_always_on_edge #(0,2)

assert_always_on_edge #(0,3)

clkclk

ASSERT

forall t.
conditions imply
requirements

2-Cycles
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Using CTL/LTL based 
verification

• There are a number of issues to be solved 
before we can directly translate OVL to CTL/
LTL

• Presence of multiple clocks

• Presence of positive and negative edge 
triggered logic

• Support for BMC (for assertions like 
assert_change specifying num_cks) 
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A simple case study

• Methodology to use NuSMV with VHDL/
Verilog designs

• Restricted to designs with one global clock
(logic uses only one edge of the clock)

• Uses synthesis tools along with verification 
engines

• Properties specified in OVL
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Tool flow

VHDL/Verilog design

Synthesis

Flat netlist

Convert to SMV
OVL to CTL/

LTL

Extract 
properties

NuSMV

Gates to SMV 
modules - 

Mapping table
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Conclusion

• LTL is better than CTL for specifying 
temporal properties of FSMs

• Many different libraries in use for specifying 
properties and constraints

• Designers can use these with minimal effort
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