
Parallel and Distributed Methods in 

VerificationVerification

Rhishikesh Limaye

EE 219C Spring 2007 Class Presentation



Outline

• Model checking

– Eddy

– Grumberg05

• SAT• SAT

– Feldman05

4/16/2007 EE219C Spring 2007 Class Presentation 2



Basic problem / Parallel approach

• State space exploration

• Divide the state space into chunks. Multiple 

processes search them concurrently.

• Issues• Issues

– Load balancing – how to divide the state space 

evenly

• “bounding” prunes search tree at various depths.

– Computation-communication balance

4/16/2007 EE219C Spring 2007 Class Presentation 3



About parallel platforms

• Parallel = shared memory

– E.g. – multicore processor with a memory

– Programmed using Pthreads, OpenMP

• Distributed = message passing• Distributed = message passing

– Multiple nodes connected through network 

(Ethernet or some specialized networks)

– Programmed using MPI – Message Passing 

Interface.

4/16/2007 EE219C Spring 2007 Class Presentation 4



Parallel and Distributed Model Checking

• We will see two implementations – Eddy, 
Grumberg05

• Both do reachability analysis using BFS

– Eddy – explicit state

– Grumberg05 – symbolic (BDDs)– Grumberg05 – symbolic (BDDs)

• Basic algorithm:

– A state is assigned its home node, which owns it.

– Each node iterates as:

1. Perform one step of BFS

2. Exchange newly discovered states according to their 
ownership.

4/16/2007 EE219C Spring 2007 Class Presentation 5



Synchronous implementation

• Synchronous iteration:
1. Perform BFS step

2. Wait for others

3. Exchange states

• Problems:
– Fast processes idle– Fast processes idle

– Communication overhead
• Exchanging small messages is bad.

– Synchronization overhead
• Higher for larger number of processes.

• Thus, an obstacle in spawning as many workers as possible. 

– Thus, less adaptive to problem and underlying parallel platform.

– Problem for large, heterogeneous clusters.

4/16/2007 EE219C Spring 2007 Class Presentation 6



Asynchronous Implementation

• Two levels of concurrency:

– Within each node, computation-communication 

overlap

• BFS continues as the communication happens in background

– No synchronization between nodes at the end of – No synchronization between nodes at the end of 

every iteration.

• Potentially better use of available parallelism

– Have to tune the ratio of computation / 

communication

• Both, Eddy and Grumberg05, are asynchronous.

4/16/2007 EE219C Spring 2007 Class Presentation 7



Eddy

• Eddy_Murphi:
– For Murphi modeling language

– Safety property checker

– Explicit-state breadth-first search

– Parallel and distributed (Pthreads + MPI)

• Unique points:
– Simple design – making it modular across platforms / 

modeling languages

– Efficient – at least the reported results are very good, 
but several potential issues unaddressed.

4/16/2007 8EE219C Spring 2007 Class Presentation



Eddy – Design

• Partition function – each state is mapped to a 
node.
– The paper doesn’t give details of the function, and 

claims that their work is orthogonal to the choice of 
function.

• Each node has two threads:• Each node has two threads:
– Worker

– Communicator

– This design:
• overlaps computation and communication

• makes it easy to adapt to different modeling language (e.g. 
Promela)

4/16/2007 EE219C Spring 2007 Class Presentation 9



Eddy – worker thread

• Much like sequential BFS with
– BFS_Queue for to-be-processed states

– Hash table for visited states

• Differences:
– Hash table only stores states owned by this node. 

Non-owned states are given to the communicator to Non-owned states are given to the communicator to 
send to their owner nodes.

– BFS_Queue is filled in two ways:
1. Owned states discovered during BFS

2. States received by communicator from other nodes.

– Worker sleeps (instead of terminating) when 
BFS_Queue is empty.

4/16/2007 EE219C Spring 2007 Class Presentation 10



Optimizing communication

• Simple model for distributed platforms:
Cost of message = latency + (size of message) * (throughput).

• Desirable to send large messages
– Communicator waits for LineSize states to collect 

before sending them.

– But very large message – takes time to fill up, causing – But very large message – takes time to fill up, causing 
the receiver to idle

• Multiple (NumLines) buffers of size LineSize:
– Communicator and worker can work in parallel

• Have to tune NumLines, LineSize to achieve 
performance.

4/16/2007 EE219C Spring 2007 Class Presentation 11



Termination

• When property fails:
– Node that discovers error state broadcasts 

termination signal

– All nodes listen for termination signal

• When property passes:
– All nodes idle – no BFS, no pending communication.– All nodes idle – no BFS, no pending communication.

– This is detected by attempting to form a token ring:
• Token = {#sends, #receives}

• If a node is idle, it adds it’s send/receive counts to the token 
received, and forwards it.

• If token returns back with #sends = #receives, then all nodes 
are idle and no messages are in flight.

4/16/2007 EE219C Spring 2007 Class Presentation 12



Results

• Linear speed-up for several protocol 

examples:

– Murphi_time / Eddy_Murphi_time = number of 

nodes.

Possible to verify very large protocol (FLASH) • Possible to verify very large protocol (FLASH) 

having 3 X 109 states, which was impossible in 

Murphi

4/16/2007 EE219C Spring 2007 Class Presentation 13



Grumberg05

• Distributed (MPI)

• For hardware verification

– Implemented on top of Forecast by Intel.

• Asynchronous• Asynchronous

• BDD-based

– Partitioning of state space is done using window 

functions:

• w1, w2, … , wk – complete and disjoint partition of the 

Boolean space.

4/16/2007 EE219C Spring 2007 Class Presentation 14



Types of processes

• Workers
– perform BFS

• Coordinators:
– exch_coord:

• stores list of active and free workers

• stores window functions of all workers• stores window functions of all workers

• is notified of every split and merge

• handles distributed termination

– small_coord:
• merges underutilized workers

– pool_mgr:
• maintains the pool of free workers

4/16/2007 EE219C Spring 2007 Class Presentation 15



Communication

• Complicated because of asynchrony + dynamic 
workload management:

– Send some states to their owner, and that owner 
might have split and given that part of state space 
to another worker.to another worker.

• Uses distributed forwarding mechanism:

– A worker forwards the non-owned BDDs in the 
received message to their correct owner.

• Central coordinator keeps track of splits and 
ownership of states.

4/16/2007 EE219C Spring 2007 Class Presentation 16



Communication

• Send operation: from Pi to Pj: 

1. Pi queries exch_coord the window, wj, of Pj

2. BDD message is (T, w): T = BDD for N∩wj, w = wj. 

(where N = newly discovered states) 

• Receive operation: at Pj:

If received message is (T, w), and wj is window 

of Pj,

1. Keep T∩w∩wj

2. For every k, If w∩wk≠Φ, forward (T, w∩wk) to Pk.

4/16/2007 EE219C Spring 2007 Class Presentation 17



Dynamic workload management

• Workload splitting is done when: 
– Memory limit exceeded: this can happen during two 

operations:
• image computation 

• receiving states 

– Adaptive early splitting: occurs based on: 
• Progress of computation of a worker -- split if it hasn’t split for a • Progress of computation of a worker -- split if it hasn’t split for a 

long time. 

• And availability of free workers -- split if too many workers idle 

Good because: 
• Exploits parallelism. 

• BDD sizes remain small. 

• Scalable with respect to number of nodes.

• Also, merging of work of underutilized workers.

4/16/2007 EE219C Spring 2007 Class Presentation 18



Termination detection

• Two-phase algorithm: 
1. Phase 1: 

1. A worker sends want_term signal to the coordinator. 

2. The coordinator waits for want_term from all workers that were ever active. 

2. Phase 2: 
1. The coordinator sends regret query to all the workers that sent want_term. 

2. Workers either reply want_term or regret_term meaning they don't want to 
be terminated. be terminated. 

3. If coordinator receives all want_terms and no regret_terms, then 
terminate.

• Worker sends want_term when:
– No local work pending

• Local fixed point

• No received messages pending. 

– And, all send operations are complete
• This is detected by making the receiver acknowledge every received message.

4/16/2007 EE219C Spring 2007 Class Presentation 19



Results

• Comparison between:

– Forecast – sequential

– Forecast-D – distributed, synchronous

– Forecast-AD – distributed, asynchronous

• Forecast-AD is 1-10X faster• Forecast-AD is 1-10X faster

– But speed-up is not linear with number of workers.

• Forecast-D performs slower than Forecast for a 

few test cases.

• Distributed versions can solve larger test cases.

4/16/2007 EE219C Spring 2007 Class Presentation 20



Parallel SAT – Feldman05

• Complete backtrack-search parallel algorithm

– Has most of the innovations done in sequential 

SAT: watched literals, conflict analysis, non-

chronological backtracking

• Platform: shared memory system • Platform: shared memory system 

(multithreaded multicore CPU).

• Actually degrades performance!

4/16/2007 EE219C Spring 2007 Class Presentation 21



Feldman05 – Algorithm

• Based on DPLL:

– Guiding path – stack of partial assignments to variables

– Open variable: a variable along the guiding path, whose 
alternative value is not yet explored.

– Closed variable: a variable along the guiding path, whose 
both possible values have been explored.both possible values have been explored.

• How threads pick new tasks:

– One thread explores one guiding path

– Another free thread picks up an open variable on first 
thread’s guiding path, copies the part of guiding path 
preceding that variable, and starts exploration along the 
alternate value of the open variable.

4/16/2007 EE219C Spring 2007 Class Presentation 22



Feldman05 – Algorithm

• Which open variable to pick?

– Heuristic of choosing the topmost variable

• Why? – will lead to greater chunk of search space and hence 

size of the new task is not too small.

• Global, shared list of all open variables:• Global, shared list of all open variables:

– Typically, number of open variables is large compared 

to number of available threads. Hence, each thread 

only adds the topmost open variable to the global list.

• This dynamic search space partitioning keeps all 

threads busy.

4/16/2007 EE219C Spring 2007 Class Presentation 23



Feldman05 – Algorithm

• Conflict clauses:

– Global, shared list of conflict clauses.

– When a thread hits a conflict, it adds conflict 

clause to the list.

– Threads keep checking the list for new clauses and 

initialize them in their own context.

• In all, two shared data structures:

– List of open variables

– List of conflict clauses

4/16/2007 EE219C Spring 2007 Class Presentation 24



Performance results

• Platforms:
– 1, 2, 4 CPU systems, two having Hyperthreading.

• Performance varies a lot between different runs 
of the same problem on same system:
– Unpredictability of multithreaded environment + 

imbalance of search spaceimbalance of search space

• Performance is actually worse than sequential 
SAT.
– And goes consistently worse with:

• Increasing number of threads

• Increasing number of CPUs – worse degradation on 2-CPU, 
HT-enabled system.

4/16/2007 EE219C Spring 2007 Class Presentation 25



Performance analysis

• Tracked counts of processor-monitoring events

• Ratios degrade significantly just from single 

thread to 2 threads:

1. L2 M-state lines allocated / DMRs (10X degradation)

2. L2 cache request misses / DMRs (6X degradation)

3. L2 M-state lines evicted / DMRs

4. External bus cycles / clock ticks

5. Instructions decoded / clock ticks

• 3, 4, 5 seem to be consequences of 1, 2.

4/16/2007 EE219C Spring 2007 Class Presentation 26



Reasons for poor cache performance

• Reasons that they conjecture for poor cache 
performance:

– Why more number of cache lines allocated?

• Auxiliary data structures of DPLL are duplicated in 
threads. Hence, greater memory requirement.threads. Hence, greater memory requirement.

– Why more cache misses?

• More cache lines allocated

• No correlation of memory accesses of two different 
threads.

• Sequential SAT implementations are optimized 
for cache performance.

4/16/2007 EE219C Spring 2007 Class Presentation 27


