
1

EECS 219C: Computer-Aided Verification

Symbolic Model Checking

Part I

Sanjit A. Seshia

EECS, UC Berkeley

S. A. Seshia 2

Announcement

• Extra lecture on Friday, 11 am – 12:30 pm

in 540 Cory

2

S. A. Seshia 3

Today’s Lecture

Symbolic model checking with BDDs

Manipulate sets (of states and

transitions) rather than individual
elements and represent sets as

Boolean formulas

Represent Boolean

formulas as BDDs

S. A. Seshia 4

Today’s Lecture

• Symbolic model checking

– Basics of symbolic representation

– Quantified Boolean formulas (QBF)

– Checking G p

– Fixpoint theory

– Checking CTL properties

3

S. A. Seshia 5

Sets as Boolean functions

• Every finite set can be represented as a

Boolean function

– Suppose the set has N (> 0) elements

– Each element is encoded as a string of at
least ⌈ log N ⌉ bits

– Characteristic Boolean function is the one
whose ON-set (satisfying assignments) are
those strings

– Empty set is “False”

S. A. Seshia 6

Set Operations as
Boolean Operations

• A ∪ B = ?

• A ∩ B = ?

• A ⊂ B = ?

• Is A empty?

4

S. A. Seshia 7

Sets of states and transitions

• Set of states � each state s is bit-string
comprising values of state variables

• Set of transitions �

– Transition is a state pair (s, s’)

– View the pair as a combined bit-string

• From now, we will view the set of states S and
the transition relation R as Boolean formulas
over vector of current state variables v and next

state variables v’

– S(v), R(v, v’)

S. A. Seshia 8

Quantified Boolean Formulas

• Let F denote a Boolean formula, and v

denote one or more Boolean variables

• A quantified Boolean formula φ is obtained
as:

φ ::= F | ∃ v φ | ∀ v φ | φ ∧ φ | φ ∨ φ | ¬ φ

• How do you express ∃ vi φ and ∀ vi φ in

terms of φ’s cofactors and standard
Boolean operators?

5

S. A. Seshia 9

Symbolic Model Checking G p

• Given: Set of initial states S0, transition
relation R

• Check property G p (or AG p)

• How symbolic model checking will do this:
– Compute S0, S1, S2, … where Si is the set of

states reachable from some initial state in at
most i steps

• What kind of search is this: DFS or BFS?

• When do we stop?

– After computing each Si, check whether any
element of Si satisfies ¬ p [How?]

• How do we generate a counterexample?

S. A. Seshia 10

Reachability Analysis

• The process of computing the set of states

reachable from some initial state in 0 or

more steps

– Often characterized as checking (AG true)

– The resulting set is called “reachable set” or
“set of reachable states”

• This is the “strongest invariant” of the system �

WHY? What is a “system invariant”?

6

S. A. Seshia 11

Implementing Reachability Analysis

• How is Si related to Si+1?

– In words

– As a recurrence relation using QBF

S. A. Seshia 12

Implementing Reachability Analysis

• How is Si related to Si+1?

• v ∈ Si+1 iff v ∈ Si or there is a state x ∈ Si

such that R(x, v)

• Si+1(v) = Si(v) ∨ ∃ x { Si(x) ∧ R(x,v) }

7

S. A. Seshia 13

Implementing Reachability Analysis

• How is Si related to Si+1?

• v ∈ Si+1 iff v ∈ Si or there is a state x ∈ Si

such that R(x, v)

• Si+1(v) = Si(v) ∨ ∃ x { Si(x) ∧ R(x,v) }

• Si+1(v) = Si(v) ∨ (∃ v { Si(v) ∧ R(v,v’) }) [v/v’]

– F[x/y] means that we substitute x for y in F

S. A. Seshia 14

Implementing Reachability Analysis

i := 0;

do {

i++;

Si(v) = Si-1(v) ∨ (∃ v { Si-1(v) ∧ R(v,v’) }) [v/v’]

} while (Si(v) != Si-1(v))

Si(v) is the set of reachable states

8

S. A. Seshia 15

BDD Issues

• Remember that Si and R are represented

as BDDs

• How large they grow determines the space
and time usage of the algorithm

S. A. Seshia 16

Backwards Reachability

• Suppose we want to verify G p

• The formula ¬ p characterizes all error
states

• We can search backwards for a path to an
error state from some initial state
– Compute E0, E1, E2, … as states reachable

from the error states in at most 0, 1, 2, … steps

– E0 = ¬ p

– How to express Ei+1 in terms of Ei ?

• Why would we want to do backwards
reachability analysis? Is it always better?

9

S. A. Seshia 17

Verification of G p

• Corresponding CTL formula is AGp

• with Forward Reachability Analysis:

– Check if some Si ∧ ¬ p is true

• with Backward Reachability Analysis:

– Set E0 = ¬ p

– Check if Ek ∧ S0 is true for any k

S. A. Seshia 18

Symbolic Model Checking,
General Case

• We will consider properties in CTL

– As implemented in the original SMV model
checker

– Later we will see how LTL properties can be
verified using symbolic techniques

10

S. A. Seshia 19

Model Checking Arbitrary CTL

• Need only consider the following types of

CTL properties:

– E X p

– E G p

– E (p U q)

• Why?  all others are expressible using

above

– A G p = ?

– A G (p � (A F q)) = ?

S. A. Seshia 20

Fixpoint (Fixed point)

• Let Σ be a set, and Σ’ ⊆ Σ

– In model checking, Σ = True

• Let τ : P(Σ) � P(Σ)

• Definition: Σ’ is a fixpoint of τ if τ(Σ’) = Σ’

ΣΣΣΣ’

11

S. A. Seshia 21

Example

• What’s an example of a fixpoint we’ve

seen already? What was τ?

S. A. Seshia 22

Example

• What’s an example of a fixpoint we’ve

seen already? What was τ?

– A G true can be computed using a fixpoint
formulation

– τ computes the “next state”

• What we need: a way to generalize this for

arbitrary CTL properties: EX, EG, EU

– Fixpoint theory helps us do this

12

S. A. Seshia 23

More Definitions

• τ is monotonic if for P ⊆ Q, τ(P) ⊆ τ(Q)

• τ is ∪-continuous if: P1 ⊆ P2 ⊆ P3 … �

τ(∪i Pi) = ∪i τ(Pi)

• τ is ∩-continuous if: P1 ⊇ P2 ⊇ P3 … �

τ(∩i Pi) = ∩i τ(Pi)

S. A. Seshia 24

Main Theorems (Tarski)

• τ is monotonic if for P ⊆ Q, τ(P) ⊆ τ(Q)

• τ is ∪-continuous if: P1 ⊆ P2 ⊆ P3 … � τ(∪i Pi) = ∪i τ(Pi)

• τ is ∩-continuous if: P1 ⊇ P2 ⊇ P3 … � τ(∩i Pi) = ∩i τ(Pi)

• A monotonic τ on P(Σ) always has

– a least fixpoint: written µ Z. τ(Z)

– a greatest fixpoint: written ν Z. τ(Z)

13

S. A. Seshia 25

Main Theorems (Tarski)

• τ is monotonic if for P ⊆ Q, τ(P) ⊆ τ(Q)

• τ is ∪-continuous if: P1 ⊆ P2 ⊆ P3 … � τ(∪i Pi) = ∪i τ(Pi)

• τ is ∩-continuous if: P1 ⊇ P2 ⊇ P3 … � τ(∩i Pi) = ∩i τ(Pi)

• A monotonic τ on P(Σ) always has

– a least fixpoint: written µ Z. τ(Z)

– a greatest fixpoint: written ν Z. τ(Z)

– µ Z. τ(Z) = ∩ { Z | τ(Z) ⊆ Z }

– ν Z. τ(Z) = ∪ { Z | τ(Z) ⊇ Z }

S. A. Seshia 26

Main Theorems (Tarski)

• τ is monotonic if for P ⊆ Q, τ(P) ⊆ τ(Q)

• τ is ∪-continuous if: P1 ⊆ P2 ⊆ P3 … � τ(∪i Pi) = ∪i τ(Pi)

• τ is ∩-continuous if: P1 ⊇ P2 ⊇ P3 … � τ(∩i Pi) = ∩i τ(Pi)

• A monotonic τ on P(Σ) always has
– a least fixpoint: written µ Z. τ(Z)

– a greatest fixpoint: written ν Z. τ(Z)

– µ Z. τ(Z) = ∩ { Z | τ(Z) ⊆ Z }

– ν Z. τ(Z) = ∪ { Z | τ(Z) ⊇ Z }

– µ Z. τ(Z) = ∪i τi(φ) when τ is ∪-continuous

– ν Z. τ(Z) = ∩i τi(Σ) when τ is ∩-continuous

14

S. A. Seshia 27

Main Lemma for us

• If Σ is finite and τ is monotonic, then τ is
also ∪-continuous and ∩-continuous

• Proof? (of ∪-continuous)
τ is ∪-continuous if: P1 ⊆ P2 ⊆ P3 … � τ(∪i Pi) = ∪i τ(Pi)

S. A. Seshia 28

What’s Left?

• We have the needed fixpoint theory

• Now all we need to do is formulate the

result of CTL operators as fixpoints

– We will identify a CTL formula with the set of
states that satisfy that formula

• Remember that CTL formulas start with A or E
which are interpreted over states, not runs

15

S. A. Seshia 29

CTL Results as Fixpoints

• A G p = ν Z. p ∧ AX Z

– τ(Z) = p ∧ AX Z

– Given a point (state) in Z, τ maps it to another
state that

• Satisfies p

• Can reach a state in Z along any execution path in

one step

• So what happens when we reach τ’s fixpoint?

– Remember: ν fixpoint computation starts with
the universal set Σ and works ‘downward’

S. A. Seshia 30

Other Fixpoint Formulations

• AF p = µ Z. p ∨ AX Z

• EG p = ν Z. p ∧ EX Z

• E(p U q) = µ Z. q ∨ (p ∧ EX Z)

• Intuitively:

– Eventualities � least fixpoints

– Always/Forever � greatest fixpoints

16

S. A. Seshia 31

Model Checking CTL Properties
• We define a general recursive procedure

called “Check” to do the fixpoint

computations

• Definition of Check:

– Input: A CTL property Π (and implicitly, R)

– Output: A Boolean formula B representing the

set of states satisfying Π

• If S0(v) � B(v), then Π is true

S. A. Seshia 32

The “Check” procedure
Cases:

• If Π is a Boolean formula, then Check(Π) = Π

• Else:

– ΠΠΠΠ = EX p, then Check(Π) = CheckEX(Check(p))

– ΠΠΠΠ = E(p U q), then

Check(Π) = CheckEU(Check(p), Check(q))

– ΠΠΠΠ = E G p, then Check(Π) = CheckEG(Check(p))

• Note: What are the arguments to CheckEX,
CheckEU, CheckEG? CTL properties or Boolean
formulas?

17

S. A. Seshia 33

CheckEX

• CheckEX(p) returns a set of states such

that p is true in their next states

• How to write this?

S. A. Seshia 34

CheckEU
• CheckEU(p, q) returns a set of states, each of

which is such that
– Either q is true in that state

– Or p is true in that state and you can get from it to a
state in which p U q is true

18

S. A. Seshia 35

CheckEU
• CheckEU(p, q) returns a set of states, each of

which is such that
– Either q is true in that state

– Or p is true in that state and you can get from it to a state
in which p U q is true

• Let Z0 be our initial approximation to the answer to
CheckEU(p, q)

• Zk(v) = { q(v) + [p(v) . ∃ v’ { R(v, v’) . Zk-1(v
’) }] }

• What’s Z0? Why will this terminate?

S. A. Seshia 36

Summary
• EGp computed similarly

• Definition of Check:

– Input: A CTL property Π (and implicitly, R)

– Output: A Boolean formula B representing the

set of states satisfying Π

• All Boolean formulas represented

“symbolically” as BDDs

– “Symbolic Model Checking”

19

S. A. Seshia 37

Next class

• More on symbolic model checking

• Start topics on “abstraction”

