Symbolic Model Checking Part I

Sanjit A. Seshia EECS, UC Berkeley

Announcement

 Extra lecture on Friday, 11 am – 12:30 pm in 540 Cory

Today's Lecture Symbolic model checking with BDDs Manipulate sets (of states and transitions) rather than individual elements and represent sets as Boolean formulas S.A. Seshia

Today's Lecture

- · Symbolic model checking
 - Basics of symbolic representation
 - Quantified Boolean formulas (QBF)
 - Checking G p
 - Fixpoint theory
 - Checking CTL properties

Sets as Boolean functions

- Every finite set can be represented as a Boolean function
 - Suppose the set has N (> 0) elements
 - Each element is encoded as a string of at least [log N] bits
 - Characteristic Boolean function is the one whose ON-set (satisfying assignments) are those strings
 - Empty set is "False"

S. A. Seshia

5

Set Operations as Boolean Operations

- $A \cup B = ?$
- $A \cap B = ?$
- $A \subset B = ?$
- Is A empty?

S. A. Seshia

Sets of states and transitions

- Set of states → each state s is bit-string comprising values of state variables
- Set of transitions →
 - Transition is a state pair (s, s')
 - View the pair as a combined bit-string
- From now, we will view the set of states S and the transition relation R as Boolean formulas over vector of current state variables v and next state variables v'
 - -S(v), R(v, v')

S. A. Seshia

7

Quantified Boolean Formulas

- Let F denote a Boolean formula, and v denote one or more Boolean variables
- A quantified Boolean formula φ is obtained as:

```
\phi ::= F \mid \exists \lor \phi \mid \forall \lor \phi \mid \phi \land \phi \mid \phi \lor \phi \mid \neg \phi
```

 How do you express ∃ v_i φ and ∀ v_i φ in terms of φ's cofactors and standard Boolean operators?

S. A. Seshia

Symbolic Model Checking G p

- Given: Set of initial states S₀, transition relation R
- Check property G p (or AG p)
- How symbolic model checking will do this:
 - Compute S₀, S₁, S₂, ... where S_i is the set of states reachable from some initial state in at most i steps
 - · What kind of search is this: DFS or BFS?
 - When do we stop?
 - After computing each S_i, check whether any element of S_i satisfies ¬ p [How?]
 - How do we generate a counterexample?

S. A. Seshia

9

Reachability Analysis

- The process of computing the set of states reachable from some initial state in 0 or more steps
 - Often characterized as checking (AG true)
 - The resulting set is called "reachable set" or "set of reachable states"
 - This is the "strongest invariant" of the system → WHY? What is a "system invariant"?

Implementing Reachability Analysis

- How is S_i related to S_{i+1}?
 - In words
 - As a recurrence relation using QBF

S. A. Seshia

11

Implementing Reachability Analysis

- How is S_i related to S_{i+1}?
- $v \in S_{i+1}$ iff $v \in S_i$ or there is a state $x \in S_i$ such that R(x, v)
- $S_{i+1}(v) = S_i(v) \lor \exists x \{ S_i(x) \land R(x,v) \}$

S. A. Seshia

Implementing Reachability Analysis

- How is S_i related to S_{i+1}?
- $v \in S_{i+1}$ iff $v \in S_i$ or there is a state $x \in S_i$ such that R(x, v)
- $S_{i+1}(v) = S_i(v) \lor \exists x \{ S_i(x) \land R(x,v) \}$
- $S_{i+1}(v) = S_i(v) \lor (\exists \ v \ \{ \ S_i(v) \land R(v,v') \ \}) \ [v/v'] F[x/y]$ means that we substitute x for y in F

S. A. Seshia 1

Implementing Reachability Analysis

```
\begin{split} i &:= 0; \\ do \, \{ \\ i++; \\ S_i(v) &= S_{i\text{--}1}(v) \, \lor \, (\exists \, v \, \{ \, S_{i\text{--}1}(v) \, \land \, R(v,v') \, \}) \, [v/v'] \\ \} \, \text{while} \, (S_i(v) \, != S_{i\text{--}1}(v)) \\ S_i(v) \, \text{is the set of reachable states} \end{split}
```

BDD Issues

- Remember that S_i and R are represented as BDDs
- How large they grow determines the space and time usage of the algorithm

S. A. Seshia

15

Backwards Reachability

- Suppose we want to verify G p
- The formula ¬ p characterizes all error states
- We can search backwards for a path to an error state from some initial state
 - Compute E₀, E₁, E₂, ... as states reachable from the error states in at most 0, 1, 2, ... steps
 - $-E_0 = \neg p$
 - How to express E_{i+1} in terms of E_i ?
- Why would we want to do backwards reachability analysis? Is it always better?

S. A. Seshia

Verification of G p

- Corresponding CTL formula is AGp
- with Forward Reachability Analysis:
 - Check if some $S_i \wedge \neg p$ is true
- with Backward Reachability Analysis:
 - Set $E_0 = \neg p$
 - Check if $E_k \wedge S_0$ is true for any k

S. A. Seshia

17

Symbolic Model Checking, General Case

- We will consider properties in CTL
 - As implemented in the original SMV model checker
 - Later we will see how LTL properties can be verified using symbolic techniques

S. A. Seshia

Model Checking Arbitrary CTL

- Need only consider the following types of CTL properties:
 - -EXp
 - -EGp
 - -E(pUq)
- Why? ← all others are expressible using above
 - -AGp=?
 - $-AG(p \rightarrow (AFq)) = ?$

S. A. Seshia

19

Fixpoint (Fixed point)

- Let Σ be a set, and $\Sigma' \subseteq \Sigma$
 - In model checking, Σ = True
- Let $\tau: P(\Sigma) \to P(\Sigma)$
- Definition: Σ' is a fixpoint of τ if $\tau(\Sigma') = \Sigma'$

S. A. Seshia

Example

 What's an example of a fixpoint we've seen already? What was τ?

S. A. Seshia

21

Example

- What's an example of a fixpoint we've seen already? What was τ?
 - A G true can be computed using a fixpoint formulation
 - $-\tau$ computes the "next state"
- What we need: a way to generalize this for arbitrary CTL properties: EX, EG, EU
 - Fixpoint theory helps us do this

S. A. Seshia

More Definitions

- τ is *monotonic* if for $P \subseteq Q$, $\tau(P) \subseteq \tau(Q)$
- τ is \cup -continuous if: $P_1 \subseteq P_2 \subseteq P_3 \dots \rightarrow \tau(\cup_i P_i) = \cup_i \tau(P_i)$
- τ is \cap -continuous if: $P_1 \supseteq P_2 \supseteq P_3 \dots \rightarrow \tau(\cap_i P_i) = \cap_i \tau(P_i)$

S. A. Seshia

23

Main Theorems (Tarski)

- τ is *monotonic* if for $P \subseteq Q$, $\tau(P) \subseteq \tau(Q)$
- τ is \cup -continuous if: $P_1 \subseteq P_2 \subseteq P_3 \dots \rightarrow \tau(\bigcup_i P_i) = \bigcup_i \tau(P_i)$
- τ is \cap -continuous if: $P_1 \supseteq P_2 \supseteq P_3 \dots \Rightarrow \tau(\cap_i P_i) = \cap_i \tau(P_i)$
- A monotonic τ on $P(\Sigma)$ always has
 - a least fixpoint: written μ Z. τ (Z)
 - a greatest fixpoint: written ν Z. τ (Z)

S. A. Seshia

Main Theorems (Tarski)

- τ is *monotonic* if for $P \subseteq Q$, $\tau(P) \subseteq \tau(Q)$
- τ is \cup -continuous if: $P_1 \subseteq P_2 \subseteq P_3 \dots \rightarrow \tau(\bigcup_i P_i) = \bigcup_i \tau(P_i)$
- τ is \cap -continuous if: $P_1 \supseteq P_2 \supseteq P_3 \dots \rightarrow \tau(\cap_i P_i) = \cap_i \tau(P_i)$
- A monotonic τ on $P(\Sigma)$ always has
 - a least fixpoint: written μ Z. τ (Z)
 - a greatest fixpoint: written v Z. $\tau(Z)$
 - $\mu Z. \tau(Z) = \bigcap \{ Z \mid \tau(Z) \subseteq Z \}$
 - $v Z. \tau(Z) = \bigcup \{ Z \mid \tau(Z) \supseteq Z \}$

S. A. Seshia

25

Main Theorems (Tarski)

```
• \tau is monotonic if for P \subseteq Q, \tau(P) \subseteq \tau(Q)
```

- τ is \cup -continuous if: $P_1 \subseteq P_2 \subseteq P_3 \dots \rightarrow \tau(\bigcup_i P_i) = \bigcup_i \tau(P_i)$
- τ is \cap -continuous if: $P_1 \supseteq P_2 \supseteq P_3 \dots \twoheadrightarrow \tau(\cap_i P_i) = \cap_i \tau(P_i)$
- A monotonic τ on $P(\Sigma)$ always has
 - a least fixpoint: written μ Z. τ (Z)
 - a greatest fixpoint: written v Z. $\tau(Z)$
 - $\mu Z. \tau(Z) = \cap \{ Z \mid \tau(Z) \subseteq Z \}$
 - $\nu Z. \tau(Z) = \cup \{ Z \mid \tau(Z) \supseteq Z \}$
 - μ Z. τ (Z) = $\cup_i \tau^i(\phi)$ when τ is \cup -continuous
 - ν Z. τ (Z) = $\cap_i \tau^i(\Sigma)$ when τ is \cap -continuous

S. A. Seshia

Main Lemma for us

- If Σ is finite and τ is monotonic, then τ is also \cup -continuous and \cap -continuous
- Proof? (of ∪-continuous)

```
\tau is \cup-continuous if: P_1 \subseteq P_2 \subseteq P_3 \dots \Rightarrow \tau(\cup_i P_i) = \cup_i \tau(P_i)
```

S. A. Seshia

27

What's Left?

- We have the needed fixpoint theory
- Now all we need to do is formulate the result of CTL operators as fixpoints
 - We will identify a CTL formula with the set of states that satisfy that formula
 - Remember that CTL formulas start with A or E which are interpreted over states, not runs

S. A. Seshia

CTL Results as Fixpoints

- A G p = v Z. p \wedge AX Z
 - $\tau(Z) = p \wedge AX Z$
 - Given a point (state) in Z, τ maps it to another state that
 - Satisfies p
 - Can reach a state in Z along any execution path in one step
 - So what happens when we reach τ 's fixpoint?
 - Remember: v fixpoint computation starts with the universal set Σ and works 'downward'

S. A. Seshia

Other Fixpoint Formulations

- AF $p = \mu Z$. $p \vee AX Z$
- EG p = v Z. $p \land EX Z$
- $E(p U q) = \mu Z. q \lor (p \land EX Z)$
- Intuitively:
 - Eventualities → least fixpoints
 - Always/Forever → greatest fixpoints

Model Checking CTL Properties

- We define a general recursive procedure called "Check" to do the fixpoint computations
- Definition of Check:
 - Input: A CTL property Π (and implicitly, R)
 - Output: A Boolean formula B representing the set of states satisfying Π
- If $S_0(v) \rightarrow B(v)$, then Π is true

S. A. Seshia

3

The "Check" procedure

Cases:

- If Π is a Boolean formula, then $Check(\Pi) = \Pi$
- Else:
 - $-\Pi = EX p$, then $Check(\Pi) = CheckEX(Check(p))$
 - $-\Pi = E(p U q)$, then
 - $Check(\Pi) = CheckEU(Check(p), Check(q))$
 - $-\Pi = EGp$, then $Check(\Pi) = CheckEG(Check(p))$
- Note: What are the arguments to CheckEX, CheckEU, CheckEG? CTL properties or Boolean s.A. Seshia

CheckEX

- CheckEX(p) returns a set of states such that p is true in their next states
- How to write this?

S. A. Seshia

33

CheckEU

- CheckEU(p, q) returns a set of states, each of which is such that
 - Either q is true in that state
 - Or p is true in that state and you can get from it to a state in which p U q is true

CheckEU

- CheckEU(p, q) returns a set of states, each of which is such that
 - Either q is true in that state
 - Or p is true in that state and you can get from it to a state in which p U q is true
- Let Z₀ be our initial approximation to the answer to CheckEU(p, q)
- $Z_k(v) = \{ q(v) + [p(v) . \exists v' \{ R(v, v') . Z_{k-1}(v') \}] \}$
- What's Z₀? Why will this terminate?

S. A. Seshia 3

Summary

- EGp computed similarly
- Definition of Check:
 - Input: A CTL property Π (and implicitly, R)
 - Output: A Boolean formula B representing the set of states satisfying Π
- All Boolean formulas represented "symbolically" as BDDs

S. A. Seshia "Symbolic Model Checking"

Next class

- More on symbolic model checking
- Start topics on "abstraction"