EECS 219C: Computer-Aided Verification
Symbolic Model Checking
Part |

Sanjit A. Seshia
EECS, UC Berkeley

Announcement

 Extra lecture on Friday, 11 am — 12:30 pm
in 540 Cory

S. A. Seshia

Today’s Lecture

Symbolicimodel checking|with BDDs

Manipulate sets (of states and Represent Boolean
transitions) rather than individual formulas as BDDs
elements and represent sets as

Boolean formulas

S. A. Seshia

Today’s Lecture

« Symbolic model checking
— Basics of symbolic representation
— Quantified Boolean formulas (QBF)
— Checking G p
— Fixpoint theory
— Checking CTL properties

S. A. Seshia

Sets as Boolean functions

» Every finite set can be represented as a
Boolean function
— Suppose the set has N (> 0) elements
— Each element is encoded as a string of at
least [log N | bits
— Characteristic Boolean function is the one

whose ON-set (satisfying assignments) are
those strings

— Empty set is “False”

S. A. Seshia

Set Operations as
Boolean Operations

AuB =7

AnB="7

AcB="

Is A empty?

S. A. Seshia

Sets of states and transitions

» Set of states > each state s is bit-string
comprising values of state variables

» Set of transitions 2>
— Transition is a state pair (s, s)
— View the pair as a combined bit-string

« From now, we will view the set of states S and
the transition relation R as Boolean formulas
over vector of current state variables v and next
state variables Vv’
— S(v), R(v, V')

S. A. Seshia

Quantified Boolean Formulas

* Let F denote a Boolean formula, and v
denote one or more Boolean variables

A quantified Boolean formula ¢ is obtained
as:

o= F|IVO[VVO|OAG|OVE|—0¢

* How do you express 3 v, ¢ and Vv, ¢ in

terms of ¢’s cofactors and standard
Boolean operators?

S. A. Seshia

Symbolic Model Checking G p

+ Given: Set of initial states S, transition
relation R

» Check property G p (or AG p)

» How symbolic model checking will do this:

— Compute Sy, Sy, S,, ... where S; is the set of
states reachable from some initial state in at
most i steps

» What kind of search is this: DFS or BFS?
* When do we stop?

— After computing each S;, check whether any

element of S, satisfies - p [How?]

» How do we generate a counterexample?
S. A. Seshia

Reachability Analysis

» The process of computing the set of states
reachable from some initial state in O or
more steps
— Often characterized as checking (AG true)

— The resulting set is called “reachable set” or
“set of reachable states”

* This is the “strongest invariant” of the system >
WHY? What is a “system invariant”?

S. A. Seshia

Implementing Reachability Analysis
* How is S, relatedto S, ;7

— In words
— As a recurrence relation using QBF

S. A. Seshia

Implementing Reachability Analysis

* How is S, related to S;,;?

s veS,, iffve S orthereis astate x € S
such that R(x, v)

* Sii(v) = Si(v) V. Ix{S(x) A R(x,v) }

S. A. Seshia

Implementing Reachability Analysis

* How is S, relatedto S, ;7

«veS,, iffve S orthereis a state x € S,
such that R(x, v)

* Si(v) =S(v) vV Ix{Si(x) AR(x,v) }
(v) =Si(v) v 3V {S(v) AR(v,v) }) [VV]

. S
— F[x/y] means that we substitute x fory in F

i+1

S. A. Seshia

Implementing Reachability Analysis

I :=0;
do {
I++;
S(v) =S (V) V 3V {S4(v) ARWV.Y) }) [viv]
} while (S,(v) = S,4(v))
Si(v) is the set of reachable states

S. A. Seshia

BDD Issues

« Remember that S; and R are represented
as BDDs

» How large they grow determines the space
and time usage of the algorithm

S. A. Seshia

Backwards Reachability

Suppose we want to verify G p

The formula — p characterizes all error
states

We can search backwards for a path to an
error state from some initial state

— Compute E,, E4, E,, ... as states reachable
from the error states in at most 0, 1, 2, ... steps

— EO = p

— How to express E;,; in terms of E; ?

Why would we want to do backwards
reachability analysis? Is it always better?

S. A. Seshia

Verification of G p

» Corresponding CTL formula is AGp

» with Forward Reachability Analysis:
— Check if some S; A — p is true

» with Backward Reachability Analysis:
— Set EO =P
— Check if E, A S, is true for any k

S. A. Seshia

Symbolic Model Checking,
General Case

» We will consider properties in CTL

— As implemented in the original SMV model
checker

— Later we will see how LTL properties can be
verified using symbolic techniques

S. A. Seshia

Model Checking Arbitrary CTL

» Need only consider the following types of
CTL properties:
—-EXp
—-EGp
—-E(pUq)

 Why? < all others are expressible using
above
-AGp=7?
~-AG(p> (AFq))="?

S. A. Seshia

Fixpoint (Fixed point)

- LetXbeaset,and X’ C X
— In model checking, X = True
e Lett:P(X) 2 P(X)
 Definition: X’ is a fixpoint of Tif t(¥X) = ¥’

S. A. Seshia

20

10

Example

« What’'s an example of a fixpoint we've
seen already? What was t?

S. A. Seshia

21

Example

« What’s an example of a fixpoint we’ve
seen already? What was t7?

— A G true can be computed using a fixpoint
formulation

— 1 computes the “next state”

« What we need: a way to generalize this for
arbitrary CTL properties: EX, EG, EU
— Fixpoint theory helps us do this

S. A. Seshia

22

11

More Definitions

« 1is monotonic if for P C Q, 1(P) C 1(Q)

« 1is U-continuousif: P, C P, CP;... 2>
(U Py) = U U(P))

« tis N-continuousif:P; D P, D P;... >
(N Py) =Ny T(P)

S. A. Seshia

23

Main Theorems (Tarski)

« 1Tis monotonic if for P C Q, t(P) C 1(Q)
* tis U-continuous if: Py C P, CP;... 27U P)=U;t

« tis N-continuousif:Py D2 P, D P;... 2 1(N;P) =Nt

« A monotonic T on P(X) always has
— a least fixpoint: written p Z. 1(2)
— a greatest fixpoint: written v Z. t(2)

S. A. Seshia

P

(P)

P

(Py)

24

12

Main Theorems (Tarski)

tis monotonic if for P C Q, 1(P) C 1(Q)
tis U-continuous if: Py C P, C P, ... =2 (Y, P) = U; ©(P)
tis N-continuous if: Py 2 P, D Py ... = (N, P,) = N; ©(P))

* A monotonic t on P(X) always has
— a least fixpoint: written u Z. 1(2)
— a greatest fixpoint: written v Z. 1(2)
—nZ.) =n{Z|"(Z) cZ}
- vZ1(Z)=u{Z|*(Z)DZ}

S. A. Seshia 25

Main Theorems (Tarski)

tis monotonic if for P C Q, 1(P) C 1(Q)

tis U-continuous if: Py C P, C P, ... =2 (Y, P) = U; ©(P)

tis N-continuous if: Py 2 P, D P ... = (N, P,) = N; ©(P))
* A monotonic t on P(X) always has

— a least fixpoint: written u Z. 1(2)

— a greatest fixpoint: written v Z. 1(2)

- unZ) =n{Z|(Z) cZ}

- vZ1Z)=u{Z|x(2) 272}

— uwZ.1(Z2) = U, 1(d) when t is u-continuous

— v Z. 1(2) = N; ©(X) when T is n-continuous

S. A. Seshia 26

Main Lemma for us

e |f X is finite and T is monotonic, then tis
also U-continuous and N-continuous

* Proof? (of U-continuous)
T is U-continuous if: Py C P, C Py ... 2 t(U; P)) = U; ©(P))

S. A. Seshia

27

What's Left?

» We have the needed fixpoint theory

* Now all we need to do is formulate the
result of CTL operators as fixpoints

— We will identify a CTL formula with the set of
states that satisfy that formula

* Remember that CTL formulas start with A or E
which are interpreted over states, not runs

S. A. Seshia

28

14

CTL Results as Fixpoints

cAGp=vZ.pAAXZ
— 1(Z)=pNAXZ
— Given a point (state) in Z, T maps it to another
state that
 Satisfies p

» Can reach a state in Z along any execution path in
one step

» So what happens when we reach 1’s fixpoint?

— Remember: v fixpoint computation starts with
the universal set X and works ‘downward’

S. A. Seshia

29

Other Fixpoint Formulations

AFp=uZpVvAXZ
EGp=vZ pAEXZ
ElpUg)=uZ.qV(pAEXZ)

Intuitively:
— Eventualities - least fixpoints
— Always/Forever - greatest fixpoints

S. A. Seshia

30

15

Model Checking CTL Properties

« We define a general recursive procedure
called “Check” to do the fixpoint
computations

* Definition of Check:
— Input: A CTL property IT (and implicitly, R)
— Output: A Boolean formula B representing the
set of states satisfying I1

« If Sy(v) & B(v), then ITis true

S. A. Seshia 31

The “Check” procedure
Cases:
» IfITis a Boolean formula, then Check(IT) = IT
* Else:
— IT = EX p, then Check(IT) = CheckEX(Check(p))
— II=E(p UQq), then
Check(IT) = CheckEU(Check(p), Check(q))
— IT = E G p, then Check(IT) = CheckEG(Check(p))

» Note: What are the arguments to CheckEX,
CheckEU, CheckEG? CTL properties or Boolean

rmulas?

S.A. SIS i 32

16

CheckEX

» CheckEX(p) returns a set of states such
that p is true in their next states

 How to write this?

S. A. Seshia

33

CheckEU

« CheckEU(p, q) returns a set of states, each of
which is such that
— Either q is true in that state

— Or pis true in that state and you can get from it to a
state in which p U q is true

S. A. Seshia

34

17

CheckEU

« CheckEU(p, q) returns a set of states, each of
which is such that
— Either q is true in that state

— Or pis true in that state and you can get from it to a state
in which p U g is true

* Let Z, be our |n|t|al approximation to the answer to
Chec&EU (p, Q)

* Z(v)={a(v) +[p(v). IV{R(V,V).Z,(V)}]}

« What's Z,? Why will this terminate?

S. A. Seshia 35

Summary
« EGp computed similarly

« Definition of Check:
— Input: A CTL property IT (and implicitly, R)
— Output: A Boolean formula B representing the
set of states satisfying I1

« All Boolean formulas represented
“symbolically” as BDDs
— “Symbolic Model Checking”

S. A. Seshia 36

18

Next class

* More on symbolic model checking
« Start topics on “abstraction”

S. A. Seshia

37

19

