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EECS 219C:  Computer-Aided Verification

Symbolic Model Checking   

Part I

Sanjit A. Seshia

EECS, UC Berkeley
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Announcement

• Extra lecture on Friday, 11 am – 12:30 pm 

in 540 Cory
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Today’s Lecture

Symbolic model checking with BDDs

Manipulate sets (of states and 

transitions) rather than individual 
elements and represent sets as 

Boolean formulas

Represent Boolean 

formulas as BDDs
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Today’s Lecture

• Symbolic model checking

– Basics of symbolic representation

– Quantified Boolean formulas (QBF)

– Checking G p 

– Fixpoint theory

– Checking CTL properties
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Sets as Boolean functions

• Every finite set can be represented as a 

Boolean function

– Suppose the set has N (> 0) elements

– Each element is encoded as a string of at 
least ⌈ log N ⌉ bits

– Characteristic Boolean function is the one 
whose ON-set (satisfying assignments) are 
those strings

– Empty set is “False”
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Set Operations as                    
Boolean Operations

• A ∪ B  = ?

• A ∩ B = ?

• A ⊂ B = ?

• Is A empty?
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Sets of states and transitions

• Set of states � each state s is bit-string 
comprising values of state variables

• Set of transitions �

– Transition is a state pair (s, s’)

– View the pair as a combined bit-string

• From now, we will view the set of states S and 
the transition relation R as Boolean formulas 
over vector of current state variables v and next 

state variables v’

– S(v), R(v, v’)
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Quantified Boolean Formulas

• Let F denote a Boolean formula, and v 

denote one or more Boolean variables

• A quantified Boolean formula φ is obtained 
as:

φ ::=  F | ∃ v φ | ∀ v φ | φ ∧ φ | φ ∨ φ | ¬ φ

• How do you express ∃ vi φ and ∀ vi φ in 

terms of φ’s cofactors and standard 
Boolean operators?
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Symbolic Model Checking G p

• Given: Set of initial states S0, transition 
relation R

• Check property G p  (or AG p)

• How symbolic model checking will do this:
– Compute S0, S1, S2, … where Si is the set of 

states reachable from some initial state in at 
most i steps

• What kind of search is this: DFS or BFS?

• When do we stop?

– After computing each Si, check whether any 
element of Si satisfies ¬ p [ How? ]

• How do we generate a counterexample?
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Reachability Analysis

• The process of computing the set of states 

reachable from some initial state in 0 or 

more steps

– Often characterized as checking (AG true)

– The resulting set is called “reachable set” or 
“set of reachable states”

• This is the “strongest invariant” of the system �

WHY? What is a “system invariant”?
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Implementing Reachability Analysis

• How is Si related to Si+1?

– In words

– As a recurrence relation using QBF
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Implementing Reachability Analysis

• How is Si related to Si+1?

• v ∈ Si+1 iff v ∈ Si or there is a state x ∈ Si

such that R(x, v) 

• Si+1(v) = Si(v) ∨ ∃ x { Si(x) ∧ R(x,v) } 
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Implementing Reachability Analysis

• How is Si related to Si+1?

• v ∈ Si+1 iff v ∈ Si or there is a state x ∈ Si

such that R(x, v) 

• Si+1(v) = Si(v) ∨ ∃ x { Si(x) ∧ R(x,v) } 

• Si+1(v) = Si(v) ∨ (∃ v { Si(v) ∧ R(v,v’) }) [v/v’] 

– F[x/y] means that we substitute x for y in F
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Implementing Reachability Analysis

i := 0;

do {

i++;

Si(v) = Si-1(v) ∨ (∃ v { Si-1(v) ∧ R(v,v’) }) [v/v’] 

} while (Si(v) != Si-1(v))

Si(v) is the set of reachable states
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BDD Issues

• Remember that Si and R are represented 

as BDDs

• How large they grow determines the space 
and time usage of the algorithm
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Backwards Reachability

• Suppose we want to verify G p 

• The formula ¬ p characterizes all error 
states

• We can search backwards for a path to an 
error state from some initial state
– Compute E0, E1, E2, … as states reachable 

from the error states in at most 0, 1, 2, … steps

– E0 = ¬ p

– How to express Ei+1 in terms of Ei ?

• Why would we want to do backwards 
reachability analysis? Is it always better?
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Verification of G p

• Corresponding CTL formula is AGp

• with Forward Reachability Analysis:

– Check if some Si ∧ ¬ p  is true 

• with Backward Reachability Analysis:

– Set E0 = ¬ p

– Check if Ek ∧ S0 is true for any k 
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Symbolic Model Checking,   
General Case

• We will consider properties in CTL

– As implemented in the original SMV model 
checker

– Later we will see how LTL properties can be 
verified using symbolic techniques
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Model Checking Arbitrary CTL

• Need only consider the following types of 

CTL properties:

– E X p

– E G p

– E ( p U q )

• Why?  all others are expressible using 

above

– A G p = ?

– A G ( p � ( A F q ) ) = ?
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Fixpoint (Fixed point)

• Let Σ be a set, and Σ’ ⊆ Σ

– In model checking, Σ = True 

• Let τ : P(Σ) � P(Σ) 

• Definition: Σ’ is a fixpoint of τ if τ(Σ’) = Σ’

ΣΣΣΣ’
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Example

• What’s an example of a fixpoint we’ve 

seen already? What was τ?
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Example

• What’s an example of a fixpoint we’ve 

seen already? What was τ?

– A G true can be computed using a fixpoint
formulation

– τ computes the “next state”

• What we need: a way to generalize this for 

arbitrary CTL properties: EX, EG, EU

– Fixpoint theory helps us do this
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More Definitions

• τ is monotonic if for P ⊆ Q, τ(P) ⊆ τ(Q)

• τ is ∪-continuous if: P1 ⊆ P2 ⊆ P3 … �

τ(∪i Pi) = ∪i τ(Pi) 

• τ is ∩-continuous if: P1 ⊇ P2 ⊇ P3 … �

τ(∩i Pi) = ∩i τ(Pi) 
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Main Theorems (Tarski)

• τ is monotonic if for P ⊆ Q, τ(P) ⊆ τ(Q)

• τ is ∪-continuous if: P1 ⊆ P2 ⊆ P3 … � τ(∪i Pi) = ∪i τ(Pi) 

• τ is ∩-continuous if: P1 ⊇ P2 ⊇ P3 … � τ(∩i Pi) = ∩i τ(Pi) 

• A monotonic τ on P(Σ) always has 

– a least fixpoint: written µ Z. τ(Z) 

– a greatest fixpoint: written ν Z. τ(Z) 



13

S. A. Seshia 25

Main Theorems (Tarski)

• τ is monotonic if for P ⊆ Q, τ(P) ⊆ τ(Q)

• τ is ∪-continuous if: P1 ⊆ P2 ⊆ P3 … � τ(∪i Pi) = ∪i τ(Pi) 

• τ is ∩-continuous if: P1 ⊇ P2 ⊇ P3 … � τ(∩i Pi) = ∩i τ(Pi) 

• A monotonic τ on P(Σ) always has 

– a least fixpoint: written µ Z. τ(Z) 

– a greatest fixpoint: written ν Z. τ(Z) 

– µ Z. τ(Z) = ∩ { Z | τ(Z) ⊆ Z } 

– ν Z. τ(Z) = ∪ { Z | τ(Z) ⊇ Z }
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Main Theorems (Tarski)

• τ is monotonic if for P ⊆ Q, τ(P) ⊆ τ(Q)

• τ is ∪-continuous if: P1 ⊆ P2 ⊆ P3 … � τ(∪i Pi) = ∪i τ(Pi) 

• τ is ∩-continuous if: P1 ⊇ P2 ⊇ P3 … � τ(∩i Pi) = ∩i τ(Pi) 

• A monotonic τ on P(Σ) always has 
– a least fixpoint: written µ Z. τ(Z) 

– a greatest fixpoint: written ν Z. τ(Z) 

– µ Z. τ(Z) = ∩ { Z | τ(Z) ⊆ Z } 

– ν Z. τ(Z) = ∪ { Z | τ(Z) ⊇ Z }

– µ Z. τ(Z) = ∪i τi(φ) when τ is ∪-continuous

– ν Z. τ(Z) = ∩i τi(Σ) when τ is ∩-continuous
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Main Lemma for us

• If Σ is finite and τ is monotonic, then τ is 
also ∪-continuous and ∩-continuous

• Proof? (of ∪-continuous)
τ is ∪-continuous if: P1 ⊆ P2 ⊆ P3 … � τ(∪i Pi) = ∪i τ(Pi) 
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What’s Left?

• We have the needed fixpoint theory

• Now all we need to do is formulate the 

result of CTL operators as fixpoints

– We will identify a CTL formula with the set of 
states that satisfy that formula

• Remember that CTL formulas start with A or E 
which are interpreted over states, not runs



15

S. A. Seshia 29

CTL Results as Fixpoints

• A G p = ν Z. p ∧ AX Z

– τ(Z) = p ∧ AX Z

– Given a point (state) in Z, τ maps it to another 
state that

• Satisfies p

• Can reach a state in Z along any execution path in 

one step

• So what happens when we reach τ’s fixpoint?

– Remember: ν fixpoint computation starts with 
the universal set Σ and works ‘downward’
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Other Fixpoint Formulations

• AF p = µ Z. p ∨ AX Z

• EG p = ν Z. p ∧ EX Z 

• E(p U q) = µ Z. q ∨ (p ∧ EX Z) 

• Intuitively:

– Eventualities � least fixpoints

– Always/Forever � greatest fixpoints
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Model Checking CTL Properties
• We define a general recursive procedure 

called “Check” to do the fixpoint

computations

• Definition of Check:

– Input: A CTL property Π (and implicitly, R)

– Output: A Boolean formula B representing the 

set of states satisfying Π

• If  S0(v) � B(v), then Π is true
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The “Check” procedure
Cases:

• If Π is a Boolean formula, then Check(Π) = Π

• Else:

– ΠΠΠΠ = EX p, then Check(Π) = CheckEX(Check(p))

– ΠΠΠΠ = E(p U q), then

Check(Π) = CheckEU(Check(p), Check(q))

– ΠΠΠΠ = E G p, then Check(Π) = CheckEG(Check(p))

• Note: What are the arguments to CheckEX, 
CheckEU, CheckEG? CTL properties or Boolean 
formulas?
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CheckEX

• CheckEX(p) returns a set of states such 

that p is true in their next states

• How to write this? 
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CheckEU
• CheckEU(p, q) returns a set of states, each of 

which is such that
– Either q is true in that state

– Or p is true in that state and you can get from it to a 
state in which p U q is true
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CheckEU
• CheckEU(p, q) returns a set of states, each of 

which is such that
– Either q is true in that state

– Or p is true in that state and you can get from it to a state 
in which p U q is true

• Let Z0 be our initial approximation to the answer to 
CheckEU(p, q)

• Zk(v) = { q(v)  + [ p(v) .  ∃ v’ { R(v, v’) . Zk-1(v
’) }  ] }

• What’s Z0? Why will this terminate?
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Summary
• EGp computed similarly

• Definition of Check:

– Input: A CTL property Π (and implicitly, R)

– Output: A Boolean formula B representing the 

set of states satisfying Π

• All Boolean formulas represented 

“symbolically” as BDDs

– “Symbolic Model Checking”
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Next class

• More on symbolic model checking

• Start topics on “abstraction”


