
1

EECS 219C: Computer-Aided Verification

Explicit-State Model Checking:

Liveness and Optimizations

Sanjit A. Seshia

EECS, UC Berkeley

Thanks to G. Holzmann

S. A. Seshia 2

Deadlock

• Any insights on how to specify deadlock?

2

S. A. Seshia 3

Deadlock

• Some observations

– OS textbook: by Silberschatz, Galvin, …
defines deadlock-freedom in a way that be
written as a “G p” property

• But “natural” way of defining it is as a

liveness property

AG EF (“make progress”)

S. A. Seshia 4

Today’s Lecture

• Explicit-state model checking

– Verifying liveness

– Optimizations needed to make it work in

practice

3

S. A. Seshia 5

Focus on Asynchronous Systems

• Today’s lecture will focus on

asynchronous systems

• This is what SPIN is targeted towards

– Key optimizations in SPIN make use of the
asynchronous composition of systems

– However, synchronous composition has one
important use too

S. A. Seshia 6

Recap: Checking G p

• Explore states and check that each one

satisfies p

– Alternatively check that none satisfy ¬ p

• This works for safety properties that are

properties of a single “state”

– Deadlock could be characterized this way if
defined as a safety property

• Need something different for general

properties

4

S. A. Seshia 7

Properties and Automata

• Every LTL property has a corresponding
Buchi automaton

• Given a “good” property φ that you want to
prove, its negation is a “bad” property φ’
that the system should not satisfy
– φ’ has a corresponding Buchi automaton B’

too

– Error conditions indicated by visiting
“accepting states” of B’ infinitely often

• If the system M satisfies φ’, it means that M
has a bug, otherwise, it’s correct

S. A. Seshia 8

Example: Automata for F p & G (¬p)

p

Seen p

Start
¬ ¬ ¬ ¬ p

‘Error’
¬ ¬ ¬ ¬ p

p

5

S. A. Seshia 9

Checking Arbitrary LTL

• Given:

– Kripke structure for system, M

– Buchi automata for negation of LTL property,

B’

• How do we check if M satisfies B’ (and

hence has a bug)?

S. A. Seshia 10

Checking if M satisfies B’: Steps

1. Compute the Buchi automaton A
corresponding to the system M

2. Compute the synchronous product P of A
and B’

• Product computation defines “accepting”
states of P based on those of B’

3. Check if some “accepting” state of P is
visited infinitely often

• If so: we found a bug

• If not, no bug in M

6

S. A. Seshia 11

Example of Step 1

Kripke structure

Corresponding Buchi automaton

What’s different between

the two? What’s same?

S. A. Seshia 12

Step 1: Buchi Automaton from
Kripke Structure

• Given: Kripke structure M = (S, S0, R, L)

– L : S � 2AP, AP – set of atomic propositions

• Construct Buchi automaton
A = (Σ, S ∪ {α0}, ∆, {α0}, S ∪ {α0}) where:

– Alphabet, Σ = 2AP

– Set of states = S ∪ {α0}

• α0 is a special start state

– All states are accepting

– ∆ is transition relation of A such that:

• ∆(s, σ, s’) iff R(s, s’) and σ = L(s’)

• ∆(α0, σ, s) iff s ∈ S0 and σ = L(s)

7

S. A. Seshia 13

Step 2: Compute synchronous
product of A with B’

• A and B’ are both Buchi automata with the

same alphabet

• Synchronous product:

– A = (Σ, S1, ∆1, {s0}, S1)

– B’ = (Σ, S2, ∆2, {s0’}, F’)

– Product P = (Σ, S1 x S2, ∆, {s0, s0’}, F)

• ∆((s1, s2), σ, (s1’, s2’))
= ∆1 (s1, σ, s1’) ∧ ∆2 (s2, σ, s2’)

• (s1, s2) ∈ F iff s2 ∈ F’ (i.e., an accepting state is

defined by an accepting state of B’)

S. A. Seshia 14

Example of Step 2

• Compute product of this example
automaton A with that for G ¬ p

(all states are accepting)

Note that the labels in the

property automaton are to

be interpreted differently

from those in A

8

S. A. Seshia 15

Step 3: Checking if some state is
visited infinitely often

• Suppose I show you the graph

corresponding to the product automaton

• What graph property corresponds to
“visited infinitely often”?

S. A. Seshia 16

Step 3: Checking if some state is
visited infinitely often

• Suppose I show you the graph

corresponding to the product automaton

• What graph property corresponds to
“visited infinitely often”?

– Checking for a cycle with an accepting state

– We also need to check that the accepting
state is reachable from the initial state

9

S. A. Seshia 17

DFS + cycle detection

• How can we modify DFS to do cycle

detection?

S. A. Seshia 18

DFS + cycle detection
• How can we modify DFS to do cycle

detection?
– Find strongly connected components, and then

check if there’s one with an accepting state
[But: we don’t have the graph with us to start with]

– Use DFS to find an accepting state s
• On finding one, explore its child nodes.

• If a child node is on the stack, or if s has a self loop,
we’re done

• Else, do a new DFS starting from s to see if you can
reach it again

• SPIN’s “nested DFS” algorithm

[Why will this work? Any modifications to
the basic DFS needed?]

[Why?]

10

S. A. Seshia 19

Checking if M satisfies B’: Steps

1. Compute the Buchi automaton A
corresponding to the system M

2. Compute the synchronous product P of A and
B’

• Product computation defines “accepting” states of P
based on those of B’

3. Check if some “accepting” state of P is visited
infinitely often

• If so: we found a bug (What does a counterexample
look like?)

• If not, no bug in M

S. A. Seshia 20

What if our property is not LTL?

• Let’s say the property is specified directly
as a Buchi automaton B

• Then, to check if the system A satisfies the
property, we use the same algorithm as
before:
– Compute complement of B: call it B’

– Compute sync. product of A and B’

– Check for loops involving “accepting” states

• IMP: Buchi automata are closed under
complementation, union, intersection

11

S. A. Seshia 21

Time/Space Complexity
• Size measured in terms of:

– NA – num of states in system automaton

– NB – num of states in property automaton (for

complement of the property we want to prove)

– NS – num of bits to represent each state

– Total size = N = NA * NB * NS

• Checking G p properties w/ DFS

– Time: ? Space: ?

• Checking arbitrary (liveness) properties w/ nested
DFS

– Time: ? Space: ?

S. A. Seshia 22

Time/Space Complexity
• Size measured in terms of:

– NA – num of states in system automaton

– NB – num of states in property automaton (for
complement of the property we want to prove)

– NS – num of bits to represent each state

– Total size = N = NA * NB * NS

• Checking G p properties w/ DFS

– Time: O(N*L) [X] Space: O(N) {L – lookup time to
check if state visited already}

• Checking arbitrary (liveness) properties w/ nested
DFS

– Time: O(N*L) [2X] Space: O(N)

12

S. A. Seshia 23

Optimizations

• Complexity is a function of NA * NB * NS

• Natural strategy to reduce time/space is to

reduce:

– NA � Partial-order reduction, Abstraction
(later lecture)

– NB � not really needed, NB is usually small

– NS � State compression techniques

S. A. Seshia 24

Partial Order Reduction

• Labels on edges of automata can be
thought of as “actions”
– An action for an edge sets the proposition

labeling that edge to true

– Often these actions are “internal actions” of
systems composed asynchronously

• Idea: Some actions are independent of each
other
– You can permute them without changing the

end state reached
• Both interleavings yield same end state

13

S. A. Seshia 25

An Example

S. A. Seshia 26

Some Sample Properties: Are they
preserved by P-O Reduction?

• F (g ≥ 2)

• G (x ≥ y)

Key point: The property matters in deciding

dependencies!

14

S. A. Seshia 27

Implementing P-O Reduction

• At each state s, some set of actions is

enabled: enabled(s)

• Of this set, a subset are such that any
interleaving of them yields the same end

state and they do not “influence” other

actions: ample(s)

– Pick one order for elements of ample(s) and

execute all those actions first in that order

• QN: How to compute ample(s)?

S. A. Seshia 28

Computing ample(s)

• Important characteristics of elements a, b of
ample(s): must be independent & invisible
– Action a should not disable b, and vice-versa

– The effect of ample(s) actions should not affect the
values of any ‘relevant’ atomic propositions in the LTL
property

• Conservative heuristics to compute ample(s):
– If the same variable appears in two actions, they are

dependent

– If two actions appear in the same process/module, they
are dependent

– If an action shares a variable with a relevant atomic
proposition, then it is visible

15

S. A. Seshia 29

Summary of P-O Reduction

• Very effective for asynchronous systems

• SPIN uses it by default

S. A. Seshia 30

State Compression Techniques
• Lossless

– Collapse compaction
• Essential a state encoding method

• Lossy (sacrifice completeness!)
– Hash compaction

• Replace state vector by its hash; if you visit a state with same
hash as previously visited, then what?

– Bit-state hashing
• Think of the hash as a memory address of a single bit that

represents whether the state has/hasn’t been visited

• SPIN uses multiple (2) hashes per state

• 500 MB of memory can store 2 . 109 states with 2 hashes

– Are errors found this way still valid errors?

– Often even if a state is missed, its successors are
reached

16

S. A. Seshia 31

Next class

• Basic concepts for symbolic model

checking

– Start µ-calculus, QBF, etc.

