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EECS 219C:  Computer-Aided Verification

Explicit-State Model Checking: 

Liveness and Optimizations

Sanjit A. Seshia

EECS, UC Berkeley

Thanks to G. Holzmann
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Deadlock

• Any insights on how to specify deadlock?
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Deadlock

• Some observations

– OS textbook: by Silberschatz, Galvin, …
defines deadlock-freedom in a way that be 
written as a “G p” property

• But “natural” way of defining it is as a 

liveness property

AG EF (“make progress”)
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Today’s Lecture

• Explicit-state model checking

– Verifying liveness

– Optimizations needed to make it work in 

practice
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Focus on Asynchronous Systems

• Today’s lecture will focus on 

asynchronous systems

• This is what SPIN is targeted towards

– Key optimizations in SPIN make use of the 
asynchronous composition of systems

– However, synchronous composition has one 
important use too
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Recap: Checking G p

• Explore states and check that each one 

satisfies p

– Alternatively check that none satisfy  ¬ p

• This works for safety properties that are 

properties of a single “state”

– Deadlock could be characterized this way if 
defined as a safety property

• Need something different for general 

properties
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Properties and Automata

• Every LTL property has a corresponding 
Buchi automaton

• Given a “good” property φ that you want to 
prove, its negation is a “bad” property φ’
that the system should not satisfy
– φ’ has a corresponding Buchi automaton B’

too

– Error conditions indicated by visiting 
“accepting states” of B’ infinitely often 

• If the system M satisfies φ’, it means that M 
has a bug, otherwise, it’s correct
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Example: Automata for F p & G (¬p)

p

Seen p

Start
¬ ¬ ¬ ¬ p

‘Error’
¬ ¬ ¬ ¬ p

p
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Checking Arbitrary LTL

• Given: 

– Kripke structure for system, M

– Buchi automata for negation of LTL property, 

B’

• How do we check if M satisfies B’ (and 

hence has a bug)?
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Checking if M satisfies B’: Steps

1. Compute the Buchi automaton A 
corresponding to the system M

2. Compute the synchronous product P of A 
and B’

• Product computation defines “accepting”
states of P based on those of B’

3. Check if some “accepting” state of P is 
visited infinitely often

• If so: we found a bug

• If not, no bug in M
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Example of Step 1

Kripke structure

Corresponding Buchi automaton

What’s different between 

the two? What’s same?

S. A. Seshia 12

Step 1: Buchi Automaton from 
Kripke Structure

• Given: Kripke structure M = (S, S0, R, L)

– L : S � 2AP, AP – set of atomic propositions

• Construct Buchi automaton                                  
A = (Σ, S ∪ {α0}, ∆, {α0}, S ∪ {α0}) where:

– Alphabet, Σ = 2AP

– Set of states = S ∪ {α0} 

• α0 is a special start state

– All states are accepting

– ∆ is transition relation of A such that:

• ∆(s, σ, s’) iff R(s, s’) and σ = L(s’) 

• ∆(α0, σ, s) iff s ∈ S0 and σ = L(s)
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Step 2: Compute synchronous 
product of A with B’

• A and B’ are both Buchi automata with the 

same alphabet

• Synchronous product:

– A = (Σ, S1, ∆1, {s0}, S1)

– B’ = (Σ, S2, ∆2, {s0’}, F’)

– Product P = (Σ, S1 x S2, ∆, {s0, s0’}, F)

• ∆((s1, s2), σ, (s1’, s2’))                                               
= ∆1 (s1, σ, s1’) ∧ ∆2 (s2, σ, s2’) 

• (s1, s2) ∈ F iff s2 ∈ F’ (i.e., an accepting state is 

defined by an accepting state of B’)
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Example of Step 2

• Compute product of this example 
automaton A with that for G ¬ p 

(all states are accepting)

Note that the labels in the 

property automaton are to 

be interpreted differently 

from those in A
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Step 3: Checking if some state is 
visited infinitely often

• Suppose I show you the graph 

corresponding to the product automaton

• What graph property corresponds to 
“visited infinitely often”?
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Step 3: Checking if some state is 
visited infinitely often

• Suppose I show you the graph 

corresponding to the product automaton

• What graph property corresponds to 
“visited infinitely often”?

– Checking for a cycle with an accepting state

– We also need to check that the accepting 
state is reachable from the initial state
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DFS + cycle detection

• How can we modify DFS to do cycle 

detection?
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DFS + cycle detection
• How can we modify DFS to do cycle 

detection?
– Find strongly connected components, and then 

check if there’s one with an accepting state    
[But: we don’t have the graph with us to start with]

– Use DFS to find an accepting state s
• On finding one, explore its child nodes.

• If a child node is on the stack, or if s has a self loop, 
we’re done

• Else, do a new DFS starting from s to see if you can 
reach it again

• SPIN’s “nested DFS” algorithm

[Why will this work? Any modifications to 
the basic DFS needed?]

[Why?]
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Checking if M satisfies B’: Steps

1. Compute the Buchi automaton A 
corresponding to the system M

2. Compute the synchronous product P of A and 
B’

• Product computation defines “accepting” states of P 
based on those of B’

3. Check if some “accepting” state of P is visited 
infinitely often

• If so: we found a bug (What does a counterexample 
look like?)

• If not, no bug in M
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What if our property is not LTL?

• Let’s say the property is specified directly 
as a Buchi automaton B

• Then, to check if the system A satisfies the 
property, we use the same algorithm as 
before:
– Compute complement of B: call it B’

– Compute sync. product of A and B’

– Check for loops involving “accepting” states

• IMP: Buchi automata are closed under 
complementation, union, intersection
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Time/Space Complexity
• Size measured in terms of:

– NA – num of states in system automaton

– NB – num of states in property automaton (for 

complement of the property we want to prove)

– NS – num of bits to represent each state

– Total size = N = NA * NB * NS

• Checking G p properties w/ DFS

– Time: ?   Space: ?

• Checking arbitrary (liveness) properties w/ nested 
DFS

– Time: ?    Space: ?
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Time/Space Complexity
• Size measured in terms of:

– NA – num of states in system automaton

– NB – num of states in property automaton (for 
complement of the property we want to prove)

– NS – num of bits to represent each state

– Total size = N = NA * NB * NS

• Checking G p properties w/ DFS 

– Time: O(N*L)  [X] Space: O(N) {L – lookup time to 
check if state visited already}

• Checking arbitrary (liveness) properties w/ nested 
DFS

– Time: O(N*L)  [2X]   Space: O(N)
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Optimizations

• Complexity is a function of NA * NB * NS

• Natural strategy to reduce time/space is to 

reduce:

– NA � Partial-order reduction, Abstraction 
(later lecture) 

– NB � not really needed, NB is usually small

– NS � State compression techniques
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Partial Order Reduction

• Labels on edges of automata can be 
thought of as “actions”
– An action for an edge sets the proposition 

labeling that edge to true

– Often these actions are “internal actions” of 
systems composed asynchronously

• Idea: Some actions are independent of each 
other
– You can permute them without changing the 

end state reached
• Both interleavings yield same end state
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An Example
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Some Sample Properties: Are they 
preserved by P-O Reduction?

• F (g ≥ 2)

• G (x ≥ y)

Key point: The property matters in deciding 

dependencies!
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Implementing P-O Reduction

• At each state s, some set of actions is 

enabled: enabled(s)

• Of this set, a subset are such that any 
interleaving of them yields the same end 

state and they do not “influence” other 

actions: ample(s)

– Pick one order for elements of ample(s) and 

execute all those actions first in that order

• QN: How to compute ample(s)?
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Computing ample(s)

• Important characteristics of elements a, b of 
ample(s): must be independent & invisible
– Action a should not disable b, and vice-versa

– The effect of ample(s) actions should not affect the 
values of any ‘relevant’ atomic propositions in the LTL 
property 

• Conservative heuristics to compute ample(s):
– If the same variable appears in two actions, they are 

dependent

– If two actions appear in the same process/module, they 
are dependent

– If an action shares a variable with a relevant atomic 
proposition, then it is visible
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Summary of P-O Reduction

• Very effective for asynchronous systems

• SPIN uses it by default
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State Compression Techniques
• Lossless

– Collapse compaction
• Essential a state encoding method

• Lossy (sacrifice completeness!)
– Hash compaction

• Replace state vector by its hash; if you visit a state with same
hash as previously visited, then what?

– Bit-state hashing
• Think of the hash as a memory address of a single bit that 

represents whether the state has/hasn’t been visited

• SPIN uses multiple (2) hashes per state  

• 500 MB of memory can store 2 . 109 states with 2 hashes

– Are errors found this way still valid errors?

– Often even if a state is missed, its successors are 
reached
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Next class

• Basic concepts for symbolic model 

checking

– Start µ-calculus, QBF, etc.


