
1

EECS 219C: Computer-Aided Verification

Properties as Automata and

Explicit-State Model Checking

Sanjit A. Seshia

EECS, UC Berkeley

S. A. Seshia 2

Announcements

• HW 1 due on Wednesday

• Make-up class on Friday, 2/23

– 540 Cory

– 11 am - 12:30 pm

• Project topics due tonight

– proposals due Feb. 21

2

S. A. Seshia 3

Today’s Lecture

• Recap of Models, Temporal Logic

– Temporal logic and Automata

• Explicit-state model checking

– Search algorithms: DFS, BFS

– Verifying safety and liveness

– Optimizations

S. A. Seshia 4

Recap

• Models

– Closed systems

– Kripke structures (S, S0, R, L)

• L is a labeling function, mapping a state to a set of

atomic propositions (Boolean formulas) true in that

state

• Properties

– Temporal logic (LTL, CTL)

3

S. A. Seshia 5

More on Models

• Typically the overall system is specified as

a set of modules, and the environment

– Assume we have a Kripke structure for each

• There are two ways of constructing the

overall Kripke structure

– Synchronous composition

– Asynchronous composition

S. A. Seshia 6

Synchronous Product

• Given two Kripke structures

– M1 = (S1, s10, R1, L1)

– M2 = (S2, s20, R2, L2)

• Sync. Product is M = (S, s0, R, L)

– S ⊆ S1 x S2

– s0 = (s10, s20)

– R = R1 ∧ R2

– L(s1, s2) = (L1(s1), L2(s2))

4

S. A. Seshia 7

Asynchronous Product

• Given two Kripke structures

– M1 = (S1, s10, R1, L1)

– M2 = (S2, s20, R2, L2)

• Async. Product is M = (S, s0, R, L)

– S ⊆ S1 x S2

– s0 = (s10, s20)

– R(s) = (R1(s1,s1’) ∧ s2’ = s2)
∨ (R2(s2,s2’) ∧ s1’ = s1)

– L(s1, s2) = (L1(s1), L2(s2))

S. A. Seshia 8

Some Remarks on Temporal Logic

• The vast majority of properties are safety

properties

• Liveness properties are useful
abstractions of more complicated safety

properties (such as real-time response

constraints)

5

S. A. Seshia 9

Deadlock

• An oft-cited property, especially people

building distributed / concurrent systems

• Can you express it in terms of

– a property of the state graph?

– a CTL property?

– a LTL property?

S. A. Seshia 10

Next

• Connections between temporal logic and

automata

6

S. A. Seshia 11

Mental Picture

System

Automaton

“checking that
trace is correct”

trace

S. A. Seshia 12

Automata from Kripke Structures

• Recall: Trace is a sequence of the

observable parts of states (labels)

• Each label is a set of atomic propositions,
but can be thought of as a symbol in an

alphabet

– Alphabet is 2AP, where AP is set of atomic
propositions

• Now we can talk about automata that

accept traces

7

S. A. Seshia 13

Recap: Automata over Finite
Traces

• Just your regular finite automaton with an

accepting state

– All finite traces (words) that take the
automaton into the accepting state are “in its
language”

• But behaviors (and traces) are infinite

length

– So we need a new notion of acceptance

S. A. Seshia 14

Automata over Infinite Traces

• What does “Accept” mean?

– Certain states of the automaton are called
“accepting states”

– At least one accepting state must be visited
infinitely often

• Such automata are called Büchi automata

– Also Omega-automata (written ω-automata)

8

S. A. Seshia 15

From Temporal Logic to
Automata

• Properties are often specified as automata

• A (Buchi) automaton corresponding to a

temporal logic formula φ accepts exactly
those traces that satisfy φ

S. A. Seshia 16

Automaton for G p, p a Boolean

formula

! p

Error

Start
p

9

S. A. Seshia 17

Automaton for F p

p

Seen p

Start
! p

S. A. Seshia 18

Automaton for GFp

p

Seen p

Start
! p

! p

p

10

S. A. Seshia 19

From LTL to Automata

• Any LTL formula can be translated to a

corresponding automaton

• There are many translation algorithms

– We won’t do any in class

• How about the other way around?

– Can an arbitrary Buchi automaton be
translated into an LTL formula?

S. A. Seshia 20

Automaton without LTL counterpart

Automata are more expressive than LTL

What traces does the automaton below accept?

Claim: This cannot be expressed in LTL.

(How about a ∧ G (a ⇒ X X a) ?)

a

true

11

S. A. Seshia 21

On to Model Checking …

S. A. Seshia 22

Finite-State Model Checking

G(p ���� X q)
Yes, property satisfied

no

pq

p

q

Model Checker

FSM

Temporal logic

System description
(RTL, source code,

gates, etc.)

Model generation

Explicit-State

12

S. A. Seshia 23

Explicit-State Model Checking

• Model checking exhaustively enumerates

the states of the system

• State space can be viewed as a graph

• Explicit-state model checking

– Explicitly enumerates each state and

traverses each edge of the graph

• We will focus on explicit-state techniques

as used in SPIN [G. Holzmann, won ACM Software

Systems Award]

S. A. Seshia 24

Issues with Explicit-State MC

• The graph is usually HUGE (> 106 nodes)

– So can’t compute it a-priori

• But we are given an initial state (s0) and a

way of going from state to state (transition

relation R)

– In particular, we’ll assume that R is specified
as a “set of actions”, each having a “enabling
condition” and a “set of assignments” that
cause a state change

13

S. A. Seshia 25

Model Checking G p

• Consider the simplest property G p

– p is a system invariant to be satisfied by all
states

• Given the state graph, how can we check

this?

S. A. Seshia 26

Model Checking G p

• Consider the simplest property G p

– p is a system invariant to be satisfied by all
states

• Given the state graph, how can we check

this?

– Graph traversal: DFS or BFS

14

S. A. Seshia 27

Depth-First Search (DFS)

Maintain 2 data

structures:
1. Set of visited

states

2. Stack with current

path from the

initial state

Potential problems?

S. A. Seshia 28

Generating counterexamples

If the DFS algorithm finds an “error” state (in

which p is not satisfied), how can we generate
a counterexample trace from the initial state to

that state?

15

S. A. Seshia 29

Generating counterexamples

If the DFS algorithm finds an “error” state (in

which p is not satisfied), how can we generate a
counterexample trace from the initial state to that

state?

err

s0

s1

Stack:

s0

s1

err

Will this be the shortest

counterexample?

S. A. Seshia 30

DFS without State Set

• Only keep track of current stack

• No set of states to maintain

– Each time you visit a state, check whether it’s
on the stack

• If so, don’t explore its edges

• If not, do.

• Q1: Will this terminate?

• Q2: If yes: on state graph with n states,

how long will it take?

16

S. A. Seshia 31

Bounded Model Checking with DFS

• Same as the original DFS, except that you

only allow your stack to grow up to B

elements deep

– Keep track of set of all visited states and
explore a state only if it is not in this set

• If this returns “no error within B steps from

initial state”, can you trust it?

S. A. Seshia 32

Bounded Model Checking with DFS

• Same as the original DFS, except that you

only allow your stack to grow up to B

elements deep

– Keep track of set of all visited states and
explore a state only if it is not in this set

• If this returns “no error within B steps from

initial state”, can you trust it?

– NO! Example on next slide

17

S. A. Seshia 33

Example

err

Bound, B = 3

Solution: For each state, keep

track of the least stack depth
with which it was visited

S. A. Seshia 34

Breadth-First Search

• Visit states in order of distance from initial

state

• Uses queue, No stack: how to generate
counterexamples?

• Are the generated counterexamples the

shortest?

18

S. A. Seshia 35

Comparing DFS and BFS for Gp

• Pros of BFS over DFS
– Shortest counterexample generated

• Cons of BFS
– Need to store back-pointers to predecessor

with each state in the state space
representation (increased memory
requirement)

– Does not efficiently extend to liveness
properties

• Need to do cycle detection

S. A. Seshia 36

What about non-Gp safety
properties?

• Recall: safety properties � finite

counterexample trace

• So we can construct a monitor automaton
with an “error” state that must be avoided

– Construct product of that automaton with
original system

– Error state of product has “error” in the
component corresponding to the monitor

