Properties as Automata and Explicit-State Model Checking

Sanjit A. Seshia EECS, UC Berkeley

Announcements

- HW 1 due on Wednesday
- Make-up class on Friday, 2/23
 - 540 Cory
 - 11 am 12:30 pm
- Project topics due tonight
 - proposals due Feb. 21

Today's Lecture

- Recap of Models, Temporal Logic
 - Temporal logic and Automata
- Explicit-state model checking
 - Search algorithms: DFS, BFS
 - Verifying safety and liveness
 - Optimizations

S. A. Seshia

3

Recap

- Models
 - Closed systems
 - Kripke structures (S, S₀, R, L)
 - L is a labeling function, mapping a state to a set of atomic propositions (Boolean formulas) true in that state
- Properties
 - Temporal logic (LTL, CTL)

S. A. Seshia

More on Models

- Typically the overall system is specified as a set of modules, and the environment
 - Assume we have a Kripke structure for each
- There are two ways of constructing the overall Kripke structure
 - Synchronous composition
 - Asynchronous composition

S. A. Seshia

5

Synchronous Product

- Given two Kripke structures
 - $-M1 = (S1, s1_0, R1, L1)$
 - $-M2 = (S2, s2_0, R2, L2)$
- Sync. Product is $M = (S, s_0, R, L)$
 - $-S \subseteq S1 \times S2$
 - $-s_0 = (s1_0, s2_0)$
 - $-R = R1 \wedge R2$
 - -L(s1, s2) = (L1(s1), L2(s2))

Asynchronous Product

Given two Kripke structures

-L(s1, s2) = (L1(s1), L2(s2))

```
- M1 = (S1, s1<sub>0</sub>, R1, L1)

- M2 = (S2, s2<sub>0</sub>, R2, L2)

• Async. Product is M = (S, s<sub>0</sub>, R, L)

- S \subseteq S1 x S2

- s<sub>0</sub> = (s1<sub>0</sub>, s2<sub>0</sub>)

- R(s) = (R1(s1,s1') \wedge s2' = s2)

\vee (R2(s2,s2') \wedge s1' = s1)
```

S. A. Seshia

7

Some Remarks on Temporal Logic

- The vast majority of properties are safety properties
- Liveness properties are useful abstractions of more complicated safety properties (such as real-time response constraints)

S. A. Seshia

°l

Deadlock

- An oft-cited property, especially people building distributed / concurrent systems
- · Can you express it in terms of
 - a property of the state graph?
 - a CTL property?
 - a LTL property?

S. A. Seshia

9

Next

Connections between temporal logic and automata

S. A. Seshia

Automata from Kripke Structures

- Recall: Trace is a sequence of the observable parts of states (labels)
- Each label is a set of atomic propositions, but can be thought of as a symbol in an alphabet
 - Alphabet is 2^{AP}, where AP is set of atomic propositions
- Now we can talk about automata that accept traces

Recap: Automata over Finite Traces

- Just your regular finite automaton with an accepting state
 - All finite traces (words) that take the automaton into the accepting state are "in its language"
- But behaviors (and traces) are infinite length
 - So we need a new notion of acceptance

S. A. Seshia

Automata over Infinite Traces

- What does "Accept" mean?
 - Certain states of the automaton are called "accepting states"
 - At least one accepting state must be visited infinitely often
- Such automata are called Büchi automata
 - Also Omega-automata (written ω-automata)

From Temporal Logic to Automata

- Properties are often specified as automata
- A (Buchi) automaton corresponding to a temporal logic formula φ accepts exactly those traces that satisfy φ

S. A. Seshia

15

Automaton for G p, p a Boolean formula

S. A. Seshia

From LTL to Automata

- Any LTL formula can be translated to a corresponding automaton
- There are many translation algorithms
 - We won't do any in class
- How about the other way around?
 - Can an arbitrary Buchi automaton be translated into an LTL formula?

S. A. Seshia

19

Automaton without LTL counterpart

Automata are more expressive than LTL What traces does the automaton below accept?

Claim: This cannot be expressed in LTL. (How about $a \wedge G (a \Rightarrow X \times a)$?)

S. A. Seshia

On to Model Checking ...

S. A. Seshia

Explicit-State Model Checking

- Model checking exhaustively enumerates the states of the system
- State space can be viewed as a graph
- Explicit-state model checking
 - Explicitly enumerates each state and traverses each edge of the graph
- We will focus on explicit-state techniques as used in SPIN [G. Holzmann, won ACM Software Systems Award]

S. A. Seshia

Issues with Explicit-State MC

- The graph is usually HUGE (> 10⁶ nodes)
 - So can't compute it a-priori
- But we are given an initial state (s₀) and a way of going from state to state (transition relation R)
 - In particular, we'll assume that R is specified as a "set of actions", each having a "enabling condition" and a "set of assignments" that cause a state change

S. A. Seshia 24

Model Checking G p

- Consider the simplest property G p
 - p is a system invariant to be satisfied by all states
- Given the state graph, how can we check this?

S. A. Seshia

25

Model Checking G p

- Consider the simplest property G p
 - p is a system invariant to be satisfied by all states
- Given the state graph, how can we check this?
 - Graph traversal: DFS or BFS

S. A. Seshia

Depth-First Search (DFS)

Maintain 2 data structures:

- 1. Set of visited states
- 2. Stack with current path from the initial state

Potential problems?

S. A. Seshia

2

Generating counterexamples

If the DFS algorithm finds an "error" state (in which p is not satisfied), how can we generate a counterexample trace from the initial state to that state?

S. A. Seshia

Generating counterexamples

If the DFS algorithm finds an "error" state (in which p is not satisfied), how can we generate a counterexample trace from the initial state to that state?

DFS without State Set

- · Only keep track of current stack
- · No set of states to maintain
 - Each time you visit a state, check whether it's on the stack
 - If so, don't explore its edges
 - If not, do.

S. A. Seshia

- Q1: Will this terminate?
- Q2: If yes: on state graph with n states, how long will it take?

S. A. Seshia 30

Bounded Model Checking with DFS

- Same as the original DFS, except that you only allow your stack to grow up to B elements deep
 - Keep track of set of all visited states and explore a state only if it is not in this set
- If this returns "no error within B steps from initial state", can you trust it?

S. A. Seshia 3

Bounded Model Checking with DFS

- Same as the original DFS, except that you only allow your stack to grow up to B elements deep
 - Keep track of set of all visited states and explore a state only if it is not in this set
- If this returns "no error within B steps from initial state", can you trust it?
 - NO! Example on next slide

Breadth-First Search

- Visit states in order of distance from initial state
- Uses queue, No stack: how to generate counterexamples?
- Are the generated counterexamples the shortest?

Comparing DFS and BFS for Gp

- Pros of BFS over DFS
 - Shortest counterexample generated
- Cons of BFS
 - Need to store back-pointers to predecessor with each state in the state space representation (increased memory requirement)
 - Does not efficiently extend to liveness properties
 - Need to do cycle detection

S. A. Seshia

What about non-Gp safety properties?

- Recall: safety properties → finite counterexample trace
- So we can construct a monitor automaton with an "error" state that must be avoided
 - Construct product of that automaton with original system
 - Error state of product has "error" in the component corresponding to the monitor

S. A. Seshia 36