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Announcements

• HW 1 due on Wednesday

• Make-up class on Friday, 2/23  

– 540 Cory 

– 11 am - 12:30 pm

• Project topics due tonight

– proposals due Feb. 21
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Today’s Lecture

• Recap of Models, Temporal Logic 

– Temporal logic and Automata

• Explicit-state model checking

– Search algorithms: DFS, BFS

– Verifying safety and liveness

– Optimizations
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Recap

• Models

– Closed systems

– Kripke structures (S, S0, R, L)

• L is a labeling function, mapping a state to a set of 

atomic propositions (Boolean formulas) true in that 

state

• Properties

– Temporal logic (LTL, CTL)
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More on Models

• Typically the overall system is specified as 

a set of modules, and the environment

– Assume we have a Kripke structure for each

• There are two ways of constructing the 

overall Kripke structure

– Synchronous composition

– Asynchronous composition

S. A. Seshia 6

Synchronous Product

• Given two Kripke structures

– M1 = (S1, s10, R1, L1)

– M2 = (S2, s20, R2, L2) 

• Sync. Product is M = (S, s0, R, L)

– S ⊆ S1 x S2

– s0 = (s10, s20)

– R = R1 ∧ R2

– L(s1, s2) = (L1(s1), L2(s2)) 
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Asynchronous Product

• Given two Kripke structures

– M1 = (S1, s10, R1, L1)

– M2 = (S2, s20, R2, L2) 

• Async. Product is M = (S, s0, R, L)

– S ⊆ S1 x S2

– s0 = (s10, s20)

– R(s) =   ( R1(s1,s1’) ∧ s2’ = s2)                             
∨ ( R2(s2,s2’) ∧ s1’ = s1) 

– L(s1, s2) = (L1(s1), L2(s2)) 
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Some Remarks on Temporal Logic

• The vast majority of properties are safety 

properties

• Liveness properties are useful 
abstractions of more complicated safety 

properties (such as real-time response 

constraints)
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Deadlock

• An oft-cited property, especially people 

building distributed / concurrent systems

• Can you express it in terms of 

– a property of the state graph?

– a CTL property?

– a LTL property?
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Next

• Connections between temporal logic and 

automata
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Mental Picture

System

Automaton 

“checking that   
trace is correct”

trace
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Automata from Kripke Structures

• Recall: Trace is a sequence of the 

observable parts of states (labels)

• Each label is a set of atomic propositions, 
but can be thought of as a symbol in an 

alphabet

– Alphabet is 2AP, where AP is set of atomic 
propositions 

• Now we can talk about automata that 

accept traces
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Recap: Automata over Finite 
Traces

• Just your regular finite automaton with an 

accepting state

– All finite traces (words) that take the 
automaton into the accepting state are “in its 
language”

• But behaviors (and traces) are infinite 

length

– So we need a new notion of acceptance
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Automata over Infinite Traces

• What does “Accept” mean?

– Certain states of the automaton are called 
“accepting states”

– At least one accepting state must be visited 
infinitely often

• Such automata are called Büchi automata

– Also Omega-automata (written ω-automata)
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From Temporal Logic to 
Automata

• Properties are often specified as automata 

• A (Buchi) automaton corresponding to a 

temporal logic formula φ accepts exactly 
those traces that satisfy φ
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Automaton for G p, p a Boolean 

formula

! p

Error

Start
p
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Automaton for F p

p

Seen p

Start
! p
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Automaton for GFp

p

Seen p

Start
! p

! p

p
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From LTL to Automata

• Any LTL formula can be translated to a 

corresponding automaton

• There are many translation algorithms

– We won’t do any in class

• How about the other way around?

– Can an arbitrary Buchi automaton be 
translated into an LTL formula?
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Automaton without LTL counterpart

Automata are more expressive than LTL

What traces does the automaton below accept?

Claim: This cannot be expressed in LTL.

(How about  a ∧ G (a ⇒ X X a) ?)

a

true
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On to Model Checking …
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Finite-State Model Checking

G(p ���� X q)
Yes, property satisfied

no

pq

p

q

Model Checker

FSM

Temporal logic

System description
(RTL, source code, 

gates, etc.)

Model generation

Explicit-State
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Explicit-State Model Checking

• Model checking exhaustively enumerates 

the states of the system

• State space can be viewed as a graph

• Explicit-state model checking 

– Explicitly enumerates each state and 

traverses each edge of the graph

• We will focus on explicit-state techniques 

as used in SPIN [G. Holzmann, won ACM Software 

Systems Award]
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Issues with Explicit-State MC

• The graph is usually HUGE (> 106 nodes)

– So can’t compute it a-priori

• But we are given an initial state (s0) and a 

way of going from state to state (transition 

relation R)

– In particular, we’ll assume that R is specified 
as a “set of actions”, each having a “enabling 
condition” and a “set of assignments” that 
cause a state change
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Model Checking G p

• Consider the simplest property G p

– p is a system invariant to be satisfied by all 
states

• Given the state graph, how can we check 

this?
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Model Checking G p

• Consider the simplest property G p

– p is a system invariant to be satisfied by all 
states

• Given the state graph, how can we check 

this?

– Graph traversal: DFS or BFS
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Depth-First Search (DFS)

Maintain 2 data 

structures:
1. Set of visited 

states

2. Stack with current 

path from the 

initial state

Potential problems?
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Generating counterexamples

If the DFS algorithm finds an “error” state (in 

which p is not satisfied), how can we generate 
a counterexample trace from the initial state to 

that state?
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Generating counterexamples

If the DFS algorithm finds an “error” state (in 

which p is not satisfied), how can we generate a 
counterexample trace from the initial state to that 

state?

err

s0

s1

Stack:

s0

s1

err

Will this be the shortest 

counterexample?
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DFS without State Set

• Only keep track of current stack

• No set of states to maintain

– Each time you visit a state, check whether it’s 
on the stack

• If so, don’t explore its edges

• If not, do.

• Q1: Will this terminate?

• Q2: If yes: on state graph with n states, 

how long will it take?
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Bounded Model Checking with DFS

• Same as the original DFS, except that you 

only allow your stack to grow up to B 

elements deep

– Keep track of set of all visited states and 
explore a state only if it is not in this set

• If this returns “no error within B steps from 

initial state”, can you trust it?
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Bounded Model Checking with DFS

• Same as the original DFS, except that you 

only allow your stack to grow up to B 

elements deep

– Keep track of set of all visited states and 
explore a state only if it is not in this set

• If this returns “no error within B steps from 

initial state”, can you trust it?

– NO!  Example on next slide
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Example

err

Bound, B = 3

Solution: For each state, keep 

track of the least stack depth 
with which it was visited 
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Breadth-First Search

• Visit states in order of distance from initial 

state

• Uses queue, No stack: how to generate 
counterexamples?

• Are the generated counterexamples the 

shortest?
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Comparing DFS and BFS for Gp

• Pros of BFS over DFS
– Shortest counterexample generated

• Cons of BFS
– Need to store back-pointers to predecessor 

with each state in the state space 
representation (increased memory 
requirement)

– Does not efficiently extend to liveness
properties

• Need to do cycle detection
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What about non-Gp safety 
properties?

• Recall: safety properties � finite 

counterexample trace

• So we can construct a monitor automaton 
with an “error” state that must be avoided

– Construct product of that automaton with 
original system

– Error state of product has “error” in the 
component corresponding to the monitor


