
1

EECS 219C: Computer-Aided Verification

Models and Properties:

Temporal Logic

Sanjit A. Seshia

EECS, UC Berkeley

S. A. Seshia 2

Announcements

• Project topics due by e-mail to me

next Monday

– Include a short 1 paragraph description of the
project

2

S. A. Seshia 3

Finite-State Model Checking

G(p ���� X q)
Yes, property satisfied

no

pq

p

q

Model Checker

FSM

Temporal logic

System description
(RTL, source code,

gates, etc.)

Model generation

S. A. Seshia 4

Recap

• We’re verifying closed systems

• Modeled as Kripke structures (S, S0, R, L)

– Represents the product of the “system” with
its “environment”

3

S. A. Seshia 5

System Behavior

• A sequence of states, starting with an
initial state
– s0 s1 s2 … such that R(si, si+1) is true

• Also called “run”, or “(computation) path”

• Trace: sequence of observable parts of
states
– Sequence of state labels

S. A. Seshia 6

Safety vs. Liveness

• Safety property

– Error trace is finite

• Liveness property

– Error trace is infinite

4

S. A. Seshia 7

Temporal Logic

• A logic for specifying properties over time

– E.g., Behavior of a finite-state system

• We will study propositional temporal logic

– Other temporal logics exist:

• e.g., real-time temporal logic

S. A. Seshia 8

Atomic State Property (Label)
A Boolean formula over state variables

We will denote each unique Boolean formula by
• a distinct color
• a name such as p, q, …

req req & !ack

5

S. A. Seshia 9

Globally (Always) p: G p
G p is true for a computation path if p holds at all

states (points of time) along the path

. . .

p =

Suppose G p holds along the path below

0 1 2

S. A. Seshia 10

Eventually p: F p
• F p is true for a path if p holds at some

state along that path

. . .

p =

. . .

Does F p holds for the following examples?

0 1 2

6

S. A. Seshia 11

Next p: X p

• X p is true along a path starting in state si (suffix of
the main path) if p holds in the next state si+1

. . .

p =

Suppose X p holds along the path starting at state s2

0 1 2

S. A. Seshia 12

Nesting of Formulas

• p need not be just a Boolean formula.

• It can be a temporal logic formula itself!

p =

“X p holds for all suffixes of a path”

How do we draw this?

How can we write this in temporal logic?

Write down formal definitions of Gp, Fp, Xp

7

S. A. Seshia 13

Notation

• Sometimes you’ll see alternative notation

in the literature:
G �

F ⋄

X ◦

S. A. Seshia 14

Examples: What do they mean?

• G F p

• F G p

• G(p � F q)

• F(p � (X X q))

8

S. A. Seshia 15

p Until q: p U q

. . .

p =

Suppose p U q holds for the path below

0 1 2

• p U q is true along a path starting at s if

– q is true in some state reachable from s

– p is true in all states from s until q holds

q =

S. A. Seshia 16

Temporal Operators &

Relationships
• G, F, X, U: All express properties along paths

• Can you express G p purely in terms of F, p,
and Boolean operators ?

• How about G and F in terms of U and Boolean
operators?

• What about X in terms of G, F, U, and Boolean
operators?

9

S. A. Seshia 17

Examples in Temporal Logic
1. “No more than one processor (in a 2-processor

system) should have a cache line in write mode”

• wr1 / wr2 are respectively true if processor 1 / 2 has the

line in write mode

2. “The grant signal must be asserted at some time
after the request signal is asserted”

• Signals: grant, req

3. “A request signal must receive an acknowledge and
the request should stay asserted until the
acknowledge signal is received”

• Signals: req, ack

S. A. Seshia 18

Examples in Temporal Logic

4. “From any state, it is possible to return to the
reset state along some execution”

• Signal indicating reset state: reset

5. “The grant signal must always be asserted 3
cycles after the request signal is asserted”

• Signals: grant, req

10

S. A. Seshia 19

Linear Temporal Logic

• What we’ve seen so far are properties

expressed over a single computation path

or run

– LTL

S. A. Seshia 20

Temporal Logic Flavors

• Linear Temporal Logic

• Computation Tree Logic

– Properties expressed over a tree of all
possible executions

– Where does this “tree” come from?

11

S. A. Seshia 21

Labelled State Transition Graph
p q

q r r

“Kripke structure”

p q

p q

q r r

rr

. . .

Infinite Computation Tree

S. A. Seshia 22

Temporal Logic Flavors

• Linear Temporal Logic (LTL)

• Computation Tree Logic (CTL, CTL*)

– Properties expressed over a tree of all
possible executions

– CTL* gives more expressiveness than LTL

– CTL is a subset of CTL* that is easier to verify
than arbitrary CTL*

12

S. A. Seshia 23

Computation Tree Logic (CTL*)
• Introduce two new operators A and E called “Path

quantifiers”
– Corresponding properties hold in states (not paths)

– A p : Property p holds along all computation paths
starting from the state where A p holds

– E p : Property p holds along at least one path starting
from the state where E p holds

• Example:

“The grant signal must always be asserted some
time after the request signal is asserted”

• Notation: A sometimes written as ∀, E as ∃

A G (req ���� A F grant)

S. A. Seshia 24

CTL

• Every F, G, X, U must be immediately
preceded by either an A or a E
– E.g., Can’t write A (FG p)

• LTL is just like having an “A” on the outside

13

S. A. Seshia 25

Why CTL?

• Verifying LTL properties turns out to be

computationally harder than CTL

• But LTL is more intuitive to write

• Complexity of model checking

– Exponential in the size of the LTL expression

– linear for CTL

• For both, model checking is linear in the
size of the state graph

S. A. Seshia 26

CTL as a way to approximate
LTL

– AG EF p is weaker than G F p

p

Good for finding bugs...

Good for verifying

correctness...
p p

– AF AG p is stronger than F G p

Why? And what good is this approximation?

14

S. A. Seshia 27

More CTL

• “From any state, it is possible to get to the

reset state along some path”

A G (E F reset)

S. A. Seshia 28

CTL vs. LTL Summary

• Have different expressive powers

• Overall: LTL is easier for people to

understand, hence more commonly used

in property specification languages

15

S. A. Seshia 29

From Temporal Logic to
Monitors

• A monitor for a temporal logic formula

– is a finite state machine (automaton)

– Accepts exactly those behaviors that satisfy

the temporal logic formula

• “Accepts” means that the accepting state is visited

infinitely often

• Properties are often specified as automata

S. A. Seshia 30

Monitor for G p, p a Boolean

formula

! p

Error

Start
p

16

S. A. Seshia 31

Monitor for F p, p a Boolean
formula ?

p

Seen p

Start
! p

S. A. Seshia 32

Monitor for GFp, p a Boolean

formula ?

p

Seen p

Start
! p

! p

p

17

S. A. Seshia 33

Summary

• What we did today: Properties in Temporal

Logic, LTL, CTL, CTL*

• Next: Start model checking algorithms

