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Announcements

• Project topics due by e-mail to me        

next Monday

– Include a short 1 paragraph description of the 
project
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Finite-State Model Checking

G(p ���� X q)
Yes, property satisfied

no

pq

p

q

Model Checker

FSM

Temporal logic

System description
(RTL, source code, 

gates, etc.)

Model generation
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Recap

• We’re verifying closed systems

• Modeled as Kripke structures (S, S0, R, L)

– Represents the product of the “system” with 
its “environment”
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System Behavior

• A sequence of states, starting with an 
initial state
– s0 s1 s2 … such that R(si, si+1) is true

• Also called “run”, or “(computation) path”

• Trace: sequence of observable parts of 
states
– Sequence of state labels
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Safety vs. Liveness

• Safety property

– Error trace is finite

• Liveness property

– Error trace is infinite
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Temporal Logic

• A logic for specifying properties over time

– E.g., Behavior of a finite-state system

• We will study propositional temporal logic

– Other temporal logics exist: 

• e.g., real-time temporal logic
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Atomic State Property (Label)
A Boolean formula over state variables

We will denote each unique Boolean formula by
• a distinct color
• a name such as p, q, …

req req & !ack
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Globally (Always) p: G p
G p is true for a computation path if p holds at all 

states (points of time) along the path

. . .

p = 

Suppose G p holds along the path below

0 1 2
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Eventually p: F p
• F p is true for a path if p holds at some 

state along that path

. . .

p = 

. . .

Does F p holds for the following examples? 

0 1 2
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Next p: X p

• X p is true along a path starting in state si (suffix of 
the main path) if p holds in the next state si+1

. . .

p = 

Suppose X p holds along the path starting at state s2

0 1 2
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Nesting of Formulas

• p need not be just a Boolean formula. 

• It can be a temporal logic formula itself!

p = 

“X p holds for all suffixes of a path”

How do we draw this?

How can we write this in temporal logic?

Write down formal definitions of Gp, Fp, Xp
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Notation

• Sometimes you’ll see alternative notation 

in the literature:
G �

F      ⋄

X      ◦
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Examples: What do they mean?

• G F p

• F G p

• G( p � F q ) 

• F( p � (X X q) )
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p Until q: p U q  

. . .

p = 

Suppose p U q holds for the path below

0 1 2

• p U q is true along a path starting at s if 

– q is true in some state reachable from s

– p is true in all states from s until q holds

q = 
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Temporal Operators & 

Relationships
• G, F, X, U: All express properties along paths

• Can you express G p purely in terms of F, p, 
and Boolean operators ?

• How about G and F in terms of U and Boolean 
operators?

• What about X in terms of G, F, U, and Boolean 
operators?
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Examples in Temporal Logic
1. “No more than one processor (in a 2-processor 

system) should have a cache line in write mode”

• wr1 / wr2 are respectively true if processor 1 / 2 has the 

line in write mode

2. “The grant signal must be asserted at some time 
after the request signal is asserted”

• Signals: grant, req

3. “A request signal must receive an acknowledge and 
the request should stay asserted until the 
acknowledge signal is received”

• Signals: req, ack
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Examples in Temporal Logic

4. “From any state, it is possible to return to the 
reset state along some execution”

• Signal indicating reset state: reset

5. “The grant signal must always be asserted 3 
cycles after the request signal is asserted”

• Signals: grant, req
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Linear Temporal Logic

• What we’ve seen so far are properties 

expressed over a single computation path 

or run

– LTL
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Temporal Logic Flavors

• Linear Temporal Logic 

• Computation Tree Logic 

– Properties expressed over a tree of all 
possible executions

– Where does this “tree” come from? 
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Labelled State Transition Graph
p q

q r r

“Kripke structure”

p q

p q

q r r

rr

.  .  .

Infinite Computation Tree
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Temporal Logic Flavors

• Linear Temporal Logic (LTL)

• Computation Tree Logic (CTL, CTL*)

– Properties expressed over a tree of all 
possible executions

– CTL* gives more expressiveness than LTL

– CTL is a subset of CTL* that is easier to verify 
than arbitrary CTL*
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Computation Tree Logic (CTL*)
• Introduce two new operators A and E called “Path 

quantifiers”
– Corresponding properties hold in states (not paths)

– A p : Property p holds along all computation paths 
starting from the state where A p holds

– E p : Property p holds along at least one path starting 
from the state where E p holds

• Example: 

“The grant signal must always be asserted some 
time after the request signal is asserted”

• Notation: A sometimes written as ∀, E as ∃

A G (req ���� A F grant)

S. A. Seshia 24

CTL

• Every F, G, X, U must be immediately 
preceded by either an A or a E
– E.g., Can’t write A (FG p)

• LTL is just like having an “A” on the outside
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Why CTL?

• Verifying LTL properties turns out to be 

computationally harder than CTL

• But LTL is more intuitive to write

• Complexity of model checking

– Exponential in the size of the LTL expression

– linear for CTL

• For both, model checking is linear in the 
size of the state graph
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CTL as a way to approximate 
LTL

– AG EF p   is weaker than  G F p

p

Good for finding bugs...

Good for verifying 

correctness...
p p

– AF AG p   is stronger than  F G p

Why? And what good is this approximation?
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More CTL

• “From any state, it is possible to get to the 

reset state along some path”

A G ( E F reset )
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CTL vs. LTL Summary

• Have different expressive powers

• Overall: LTL is easier for people to 

understand, hence more commonly used 

in property specification languages
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From Temporal Logic to 
Monitors

• A monitor for a temporal logic formula 

– is a finite state machine (automaton)

– Accepts exactly those behaviors that satisfy 

the temporal logic formula

• “Accepts” means that the accepting state is visited 

infinitely often

• Properties are often specified as automata
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Monitor for G p, p a Boolean 

formula

! p

Error

Start
p



16

S. A. Seshia 31

Monitor for F p, p a Boolean 
formula ?

p

Seen p

Start
! p
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Monitor for GFp, p a Boolean 

formula ?

p

Seen p

Start
! p

! p

p
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Summary

• What we did today: Properties in Temporal 

Logic, LTL, CTL, CTL*

• Next: Start model checking algorithms


