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Announcements

• HW 1 is up on the course webpage

• Project topics out tonight

• Next Monday class cancelled (grad 

admissions meeting)

– Will be rescheduled

– Think about your projects!

– Send me the three topics you’d like to present 
(from the class webpage) or propose 
alternatives
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More on BDDs

• Circuit width and bounds on BDD size

• Dynamically changing variable ordering

• Some BDD variants
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Bounds on BDD Size: Warm-up

• Suppose the number of nodes at any level 

in a BDD is bounded above by B

• Then, what is an upper bound on the total 
number of nodes in the BDD?



3

S. A. Seshia 5

Cross-section of a BDD at level i

• Suppose a BDD represents Boolean 

function F(x1, x2, …, xn) with variable order 

x1 < x2 < … < xn

• Size of cross section of the BDD at level i 

is the number of distinct Boolean functions 

F’ that depend on xi given by

F’(xi, xi+1, …, xn) = F(v1, v2, …, vi-1, xi, …, xn)

for some Boolean constants vi’s (in {0,1})
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Circuit Width
• Consider a circuit representation of a Boolean 

function F

• Impose a linear order on the gates of the circuit

– Primary inputs and outputs are also considered as 

“gates” and primary output is at the end of the ordering

– Forward cross section at a gate g: set of wires going 
from output of g1 to input of g2 where  g1 � g < g2

– Similarly define reverse cross section: set of wires 
going from output of g1 to input of g2 where  g2 � g < g1

– Forward width (wf): maximum forward cross section 

size

– Similarly, reverse width wr
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BDD Upper Bounds from Circuit 
Widths

• Theorem: Let a circuit representing F with 
n variables have forward width wf and 

reverse width wr for some linear order L on 

its gates. Then, there is a BDD 

representing F of size bounded above by 
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BDD Ordering in Practice

• If we can derive a small upper bound using 
circuit width, then that’s fine
– Use the corresponding linear order on the variables

• What if we can’t? 

• There are many BDD variable ordering 
heuristics around, but the most common way to 
deal with variable ordering is to start with 
something “reasonable” and then swap variables 
around to improve BDD size
– DYNAMIC VARIABLE REORDERING � SIFTING
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Sifting

• Dynamic variable re-ordering, proposed by R. 
Rudell

• Based on a primitive “swap” operation that 
interchanges xi and xi+1 in the variable order

– Key point: the swap is a local operation involving only 

levels i and i+1

• Overall idea: pick a variable xi and move it up 

and down the order using swaps until the 
process no longer improves the size

– A “hill climbing” strategy

S. A. Seshia 10

Some BDD Variants

• Free BDDs (FBDDs)

– Relax the restriction that variables have to 
appear in the same order along all paths

– How can this help?

– Is it canonical?
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Some BDD Variants

• MTBDD (Multi-Terminal BDD)

– Represents function of Boolean variables with 
non-Boolean value (integer, rational)

• E.g., input-dependent delay in a circuit, transition 

probabilities in a Markov chain

– Similar reduction / construction rules to BDDs
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Some BDD packages

• CUDD – from Colorado University, Fabio 

Somenzi’s group

• BuDDy – from IT Univ. of Copenhagen
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Models and Properties
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Finite-State Model Checking

G(p ���� X q)
Yes, property satisfied

no

pq

p

q

Model Checker

FSM

Temporal logic

System description
(RTL, source code, 

gates, etc.)

Model generation
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Today’s Lecture

G(p ���� X q)
Yes, property satisfied

no

pq

p

q

Model Checker

FSM

Temporal logic

System description
(RTL, source code, 

gates, etc.)

Model generation
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2 Kinds of Systems

1. Open 

2. Closed

• What’s the difference between the two?
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Verifying Closed Systems

• Assumes we have models of

– System

– Environment (a “good enough” one)

• Overall model is the composition of the 

system with its environment

• This will be the topic for most of this 

course
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Questions addressed in this lecture

• What is a model?

• How to compose two models together?

• How to express properties of a model?
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Modeling Finite-State Machines

• Remember, it’s a closed system – i.e., no inputs 
and outputs

• Common representation:
– (S, S0, R)

• Why do we need a transition relation and not just 
a function?

• Representation in practice:
– (V, S0, R)
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Kripke Structure

• Alternative way of representing closed 

finite-state models

(S, S0, R, L)

– S � set of states

– S0 � set of initial states

– R � transition relation (must be total)

– L � labeling function (labels a state with a set 
of “atomic propositions” – think of these as 
“colors”)
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Example of Kripke Structure

S0

S1

S2 S3

Why should we use Kripke structures?
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Why Kripke Structures?

• Representation is independent of state-

encoding 

• Captures notion of “observability” to relate 
to actual executions

– an observer might not be able to read all state 
variables
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How to Compose?

• Synchronous Composition

– All components in the system change their 
state variables simultaneously

• Asynchronous Composition

– At each time point, one component changes 
its state

• Which form of composition exhibits more 

concurrency?
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Specifying Properties

• Ideally, want a complete specification

– Implementation must be equivalent to the 
specification

• In practice, only have partial specifications

– Specify some “good” behaviors and some 
“bad” behaviors
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What’s a Behavior?

• Define in terms of states and transitions

• A sequence of states, starting with an initial state

– s0 s1 s2 … such that R(si, si+1) is true

• Also called “run”, or “(computation) path”

• Trace: sequence of observable parts of states

– Sequence of state labels
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Safety vs. Liveness
• Safety property

• “something bad must not happen”

• E.g.: system should not crash

• Liveness property

• “something good must happen”

• E.g.: every packet sent must be received 

at its destination
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Examples: Safety or Liveness?

1. “No more than one processor (in a multi-processor 
system) should have a cache line in write mode”

2. “The grant signal must be asserted at some time 
after the request signal is asserted”

3. “A request signal must receive an acknowledge 
and the request should stay asserted until the 

acknowledge signal is received”
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Examples: Safety or Liveness?

4. “From any state, it is possible to return to the 
reset state”

5. “The grant signal must be asserted 3 cycles 
after the request signal is asserted”
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Safety vs. Liveness

• Safety property

– Error trace is finite

• Liveness property

– Error trace is infinite
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Summary

• What we did today: BDD wrap-up, Models, 

Properties

• Next: Temporal logic and the simplest 
model checking problem


