
1

EECS 219C: Computer-Aided Verification

Binary Decision Diagrams &

Models and Properties

Sanjit A. Seshia

EECS, UC Berkeley

S. A. Seshia 2

Announcements

• HW 1 is up on the course webpage

• Project topics out tonight

• Next Monday class cancelled (grad

admissions meeting)

– Will be rescheduled

– Think about your projects!

– Send me the three topics you’d like to present
(from the class webpage) or propose
alternatives

2

S. A. Seshia 3

More on BDDs

• Circuit width and bounds on BDD size

• Dynamically changing variable ordering

• Some BDD variants

S. A. Seshia 4

Bounds on BDD Size: Warm-up

• Suppose the number of nodes at any level

in a BDD is bounded above by B

• Then, what is an upper bound on the total
number of nodes in the BDD?

3

S. A. Seshia 5

Cross-section of a BDD at level i

• Suppose a BDD represents Boolean

function F(x1, x2, …, xn) with variable order

x1 < x2 < … < xn

• Size of cross section of the BDD at level i

is the number of distinct Boolean functions

F’ that depend on xi given by

F’(xi, xi+1, …, xn) = F(v1, v2, …, vi-1, xi, …, xn)

for some Boolean constants vi’s (in {0,1})

S. A. Seshia 6

Circuit Width
• Consider a circuit representation of a Boolean

function F

• Impose a linear order on the gates of the circuit

– Primary inputs and outputs are also considered as

“gates” and primary output is at the end of the ordering

– Forward cross section at a gate g: set of wires going
from output of g1 to input of g2 where g1 � g < g2

– Similarly define reverse cross section: set of wires
going from output of g1 to input of g2 where g2 � g < g1

– Forward width (wf): maximum forward cross section

size

– Similarly, reverse width wr

4

S. A. Seshia 7

BDD Upper Bounds from Circuit
Widths

• Theorem: Let a circuit representing F with
n variables have forward width wf and

reverse width wr for some linear order L on

its gates. Then, there is a BDD

representing F of size bounded above by

S. A. Seshia 8

BDD Ordering in Practice

• If we can derive a small upper bound using
circuit width, then that’s fine
– Use the corresponding linear order on the variables

• What if we can’t?

• There are many BDD variable ordering
heuristics around, but the most common way to
deal with variable ordering is to start with
something “reasonable” and then swap variables
around to improve BDD size
– DYNAMIC VARIABLE REORDERING � SIFTING

5

S. A. Seshia 9

Sifting

• Dynamic variable re-ordering, proposed by R.
Rudell

• Based on a primitive “swap” operation that
interchanges xi and xi+1 in the variable order

– Key point: the swap is a local operation involving only

levels i and i+1

• Overall idea: pick a variable xi and move it up

and down the order using swaps until the
process no longer improves the size

– A “hill climbing” strategy

S. A. Seshia 10

Some BDD Variants

• Free BDDs (FBDDs)

– Relax the restriction that variables have to
appear in the same order along all paths

– How can this help?

– Is it canonical?

6

S. A. Seshia 11

Some BDD Variants

• MTBDD (Multi-Terminal BDD)

– Represents function of Boolean variables with
non-Boolean value (integer, rational)

• E.g., input-dependent delay in a circuit, transition

probabilities in a Markov chain

– Similar reduction / construction rules to BDDs

S. A. Seshia 12

Some BDD packages

• CUDD – from Colorado University, Fabio

Somenzi’s group

• BuDDy – from IT Univ. of Copenhagen

7

S. A. Seshia 13

Models and Properties

S. A. Seshia 14

Finite-State Model Checking

G(p ���� X q)
Yes, property satisfied

no

pq

p

q

Model Checker

FSM

Temporal logic

System description
(RTL, source code,

gates, etc.)

Model generation

8

S. A. Seshia 15

Today’s Lecture

G(p ���� X q)
Yes, property satisfied

no

pq

p

q

Model Checker

FSM

Temporal logic

System description
(RTL, source code,

gates, etc.)

Model generation

S. A. Seshia 16

2 Kinds of Systems

1. Open

2. Closed

• What’s the difference between the two?

9

S. A. Seshia 17

Verifying Closed Systems

• Assumes we have models of

– System

– Environment (a “good enough” one)

• Overall model is the composition of the

system with its environment

• This will be the topic for most of this

course

S. A. Seshia 18

Questions addressed in this lecture

• What is a model?

• How to compose two models together?

• How to express properties of a model?

10

S. A. Seshia 19

Modeling Finite-State Machines

• Remember, it’s a closed system – i.e., no inputs
and outputs

• Common representation:
– (S, S0, R)

• Why do we need a transition relation and not just
a function?

• Representation in practice:
– (V, S0, R)

S. A. Seshia 20

Kripke Structure

• Alternative way of representing closed

finite-state models

(S, S0, R, L)

– S � set of states

– S0 � set of initial states

– R � transition relation (must be total)

– L � labeling function (labels a state with a set
of “atomic propositions” – think of these as
“colors”)

11

S. A. Seshia 21

Example of Kripke Structure

S0

S1

S2 S3

Why should we use Kripke structures?

S. A. Seshia 22

Why Kripke Structures?

• Representation is independent of state-

encoding

• Captures notion of “observability” to relate
to actual executions

– an observer might not be able to read all state
variables

12

S. A. Seshia 23

How to Compose?

• Synchronous Composition

– All components in the system change their
state variables simultaneously

• Asynchronous Composition

– At each time point, one component changes
its state

• Which form of composition exhibits more

concurrency?

S. A. Seshia 24

Specifying Properties

• Ideally, want a complete specification

– Implementation must be equivalent to the
specification

• In practice, only have partial specifications

– Specify some “good” behaviors and some
“bad” behaviors

13

S. A. Seshia 25

What’s a Behavior?

• Define in terms of states and transitions

• A sequence of states, starting with an initial state

– s0 s1 s2 … such that R(si, si+1) is true

• Also called “run”, or “(computation) path”

• Trace: sequence of observable parts of states

– Sequence of state labels

S. A. Seshia 26

Safety vs. Liveness
• Safety property

• “something bad must not happen”

• E.g.: system should not crash

• Liveness property

• “something good must happen”

• E.g.: every packet sent must be received

at its destination

14

S. A. Seshia 27

Examples: Safety or Liveness?

1. “No more than one processor (in a multi-processor
system) should have a cache line in write mode”

2. “The grant signal must be asserted at some time
after the request signal is asserted”

3. “A request signal must receive an acknowledge
and the request should stay asserted until the

acknowledge signal is received”

S. A. Seshia 28

Examples: Safety or Liveness?

4. “From any state, it is possible to return to the
reset state”

5. “The grant signal must be asserted 3 cycles
after the request signal is asserted”

15

S. A. Seshia 29

Safety vs. Liveness

• Safety property

– Error trace is finite

• Liveness property

– Error trace is infinite

S. A. Seshia 30

Summary

• What we did today: BDD wrap-up, Models,

Properties

• Next: Temporal logic and the simplest
model checking problem

