
1

EECS 219C:  Computer-Aided Verification

Boolean Satisfiability Solving III 

& Binary Decision Diagrams

Sanjit A. Seshia

EECS, UC Berkeley

With thanks to Lintao Zhang (MSR)
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DLL Algorithm Pseudo-code

Preprocess

Branch

Propagate 

implications of that 

branch and deal 

with conflicts
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DLL Algorithm Pseudo-code

Pre-processing

Branching

Unit propagation 

(apply unit rule)

Conflict Analysis 

& Backtracking

Main Steps:
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Comparison: 
Naïve 2-counters/clause vs 2-literal watching

• When a literal is set to 1, 

update counters for all 
clauses it appears in

• Same when literal is set 

to 0

• If a literal is set, need to 

update each clause the 
variable appears in

• During backtrack, must 

update counters

• No need for update

• Update watched literal

• If a literal is set to 0, need 

to update only each 
clause it is watched in 

• No updates needed 

during backtrack! (why?)

Overall effect: Fewer clauses accesses in 2-lit
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zChaff Relative Cache Performance
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Key Ideas in Modern DLL SAT 
Solving

• Data structures: Implication graph

• Conflict Analysis: Learn (using cuts in implication 
graph) and use non-chronological backtracking 

• Decision heuristic: must be dynamic, low 
overhead, quick to conflict/solution

• Unit propagation (BCP): 2-literal watching helps 
keep memory accesses down 

• Principle: Keep #(memory accesses)/step low
– A step � a primitive operation for SAT solving, such 

as a branch 
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Other Techniques

• Random Restarts
– Periodically throw away current decision stack 

and start from the beginning
• Why will this change the search on restart?

– Used in most modern SAT solvers

• Clause deletion
– Conflict clauses take up memory

• What’s the worst-case blow-up?

– Delete periodically based on some heuristic 
(“age”, length, etc.)
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Proof Generation
• If the SAT solver returns “satisfiable”, we can 

check that solution by evaluating the circuit

• If it returns “unsatisfiable”, what then?
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Proof

• Starting from facts (clauses), the SAT 

solver has presumably derived 

“unsatisfiable” (the empty clause)

• So there must be a way of going step-by-

step from input clauses to the empty 

clause using rules

– In fact, there’s only one rule: resolution
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Resolution as a Cut in Implication 
Graph
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Resolution Graph
• Nodes are clauses

• Edges are applications of resolution
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Proof Checker

• Given resolution graph, how to check it?

• Traverse it, checking that each node is 

correctly obtained from its predecessor 
nodes using resolution 

– This generates proof
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Unsatisfiable Core
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Incremental SAT Solving

• Suppose you have not just one SAT 

problem to solver, but many “slightly 

differing” problems over the same 

variables

• Can we re-use the search over many 

problems?

– i.e. perform only “incremental” work
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Operations Needed

1. Adding clauses

2. Deleting clauses

• Which is easy and which is hard?

– If previous problem is unsat, how does an 
operation change it?

– If previous is sat?
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Deleting Clauses
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Deleting Clauses
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Engineering Issues

• Too expensive to traverse graph

• Instead, group original clauses into groups

• Each derived clause belongs to all groups 

that it is resolved from

– Implement with bit-vector
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Binary Decision Diagrams
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Boolean Function Representations

• Syntactic: e.g.: CNF, DNF, Circuit

• Semantic: e.g.: Truth table, Binary 

Decision Tree, BDD
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Reduced Ordered BDDs
• Invented by Randal E. Bryant in mid-80s

– IEEE Transactions on Computers 1986 paper 
is one of the most highly cited papers in EECS 

• Useful data structure to represent Boolean 

functions

– Applications in synthesis, verification, program 
analysis, …

• Commonly known simply as BDDs

• Many variants of BDDs have proved useful in 

other tasks

• Links to coding theory (trellises), etc.
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Cofactors
• A Boolean function F of n variables x1, x2, …, 

xn

• F : {0,1}n � {0,1}

• Suppose we define new Boolean functions of 
n-1 variables as follows:

• Fx1
(x2, …, xn)  = F(1, x2, x3, …, xn)

• Fx1’ (x2, …, xn) = F(0, x2, x3, …, xn)

• Fx1
and Fx1’ are cofactors of F.  
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Shannon Expansion

• F(x1, …, xn) =  xi . Fxi
+  xi’ . Fxi’

• Proof?
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Shannon expansion with many 
variables

• F(x, y, z, w) = 

xy Fxy + x’y Fx’y + xy’ Fxy’ + x’y’ Fx’y’
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Properties of Cofactors

• Suppose you construct a new function H 

from two existing functions F and G: e.g.,

– H = F’

– H = F.G

– H = F + G

– Etc.

• What is the relation between cofactors of H 

and those of F and G?
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Very Useful Property

• Cofactor of NOT is NOT of cofactors

• Cofactor of AND is AND of cofactors

• …

• Works for any binary operator
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BDDs from Truth Tables

Truth Table

Binary Decision Tree

Binary Decision Diagram (BDD)

Ordered Binary Decision Diagram (OBDD)

Reduced Ordered Binary Decision Diagram 
(ROBDD, simply called BDD)
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Example: Odd Parity Function

Binary Decision Tree

a
b

c
d
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Nodes & Edges
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Ordering
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Reduction

• Identify Redundancies

• 3 Rules:

1. Merge equivalent leaves

2. Merge isomorphic nodes

3. Eliminate redundant tests
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Merge Equivalent Leaves
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Merge Isomorphic Nodes
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Eliminate Redundant Tests
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Example
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Example
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Final ROBDD for Odd Parity Function
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Example of Rule 3
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What can BDDs be used for?

• Uniquely representing a Boolean function

– And a Boolean function can represent sets

• Satisfiability solving!
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(RO)BDDs are canonical
• Theorem (R. Bryant): If G, G’ are 

ROBDD’s of a Boolean function f with k 

inputs, using same variable ordering, then 

G and G’ are identical. 
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Sensitivity to Ordering
• Given a function with n inputs, one input ordering 

may require exponential # vertices in ROBDD, while 
other may be linear in size.

• Example: f = x1 x2 + x3 x4 + x5 x6

x1 < x4 < x5 < x2 < x3 < x6x1 < x2 < x3 < x4 < x5 < x6

1

2

3

4
5

0 1

6

1

4

5
4

2

5

6

5

2

5

3
2

3

2

0 1
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Applying an Operator to BDDs

• Two options:

1. Construct an operator for each logic 

operator: AND, OR, NOT, EXOR, …

2. Build a few core operators and define 

everything else in terms of those

Advantage of 2:
• Less programming work
• Easier to add new operators later by writing “wrappers”
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Core Operators

• Just two of them!

1. Restrict(Function F, variable v, constant 

k)

• Shannon cofactor of F w.r.t. v=k

2. ITE(Function I, Function T, Function E)

• “if-then-else” operator
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ITE
• Just like:

– “if then else” in a programming language

– A mux in hardware

• ITE(I(x), T(x), E(x))

– If I(x) then T(x) else E(x)

I(x)

T(x)

E(x)

1

0

ITE(I(x), T(x), E(x))
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The ITE Function

• ITE( I(x), T(x), E(x) ) 

• =

• I(x) . T(x)   +  I’(x). E(x) 
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What good is the ITE?

• How do we express

• NOT?

• OR?

• AND?
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How do we implement ITE?

• Divide and conquer!

• Use Shannon cofactoring…

• Recall: Operator of cofactors is Cofactor of 

operators…
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ITE Algorithm
ITE (bdd I, bdd T, bdd E) {

if (terminal case) { return computed result; 
}
else { // general case

Let x be the topmost variable of I, T, E;
PosFactor = ITE(Ix , Tx , Ex) ;

NegFactor = ITE(Ix’ , Tx’ , Ex’);
R = new node labeled by x;
R.low = NegFactor;
R.high = PosFactor;
Reduce(R);
return R;

}
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Terminal Cases
• ITE(1, T, E) = 

• ITE(0, T, E) =

• ITE(I, T, T) =

• ITE(I, 1, 0) = 

• …
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General Case

• Still need to do cofactor (Restrict)

• How hard is that?

– Which variable are we cofactoring out? (2 
cases)
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Practical Issues

• Previous calls to ITE are cached

– “memoization”

• Every BDD node created goes into a 

“unique table”

– Before creating a new node R, look up this 
table

– Avoids need for reduction
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Sharing: Multi-Rooted DAG

• BDD for 4-bit adder

• Each output bit (of the 

sum & carry) is a 
distinct rooted BDD

• But they share sub-
DAGs
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Wrap-up

• What you know: SAT Solving, BDD Basics

• Finish BDDs, actually get to model 

checking!


