
1

EECS 219C: Computer-Aided Verification

Boolean Satisfiability Solving III

& Binary Decision Diagrams

Sanjit A. Seshia

EECS, UC Berkeley

With thanks to Lintao Zhang (MSR)

S. A. Seshia 2

DLL Algorithm Pseudo-code

Preprocess

Branch

Propagate

implications of that

branch and deal

with conflicts

2

S. A. Seshia 3

DLL Algorithm Pseudo-code

Pre-processing

Branching

Unit propagation

(apply unit rule)

Conflict Analysis

& Backtracking

Main Steps:

S. A. Seshia 4

Comparison:
Naïve 2-counters/clause vs 2-literal watching

• When a literal is set to 1,

update counters for all
clauses it appears in

• Same when literal is set

to 0

• If a literal is set, need to

update each clause the
variable appears in

• During backtrack, must

update counters

• No need for update

• Update watched literal

• If a literal is set to 0, need

to update only each
clause it is watched in

• No updates needed

during backtrack! (why?)

Overall effect: Fewer clauses accesses in 2-lit

3

S. A. Seshia 5

zChaff Relative Cache Performance

S. A. Seshia 6

Key Ideas in Modern DLL SAT
Solving

• Data structures: Implication graph

• Conflict Analysis: Learn (using cuts in implication
graph) and use non-chronological backtracking

• Decision heuristic: must be dynamic, low
overhead, quick to conflict/solution

• Unit propagation (BCP): 2-literal watching helps
keep memory accesses down

• Principle: Keep #(memory accesses)/step low
– A step � a primitive operation for SAT solving, such

as a branch

4

S. A. Seshia 7

Other Techniques

• Random Restarts
– Periodically throw away current decision stack

and start from the beginning
• Why will this change the search on restart?

– Used in most modern SAT solvers

• Clause deletion
– Conflict clauses take up memory

• What’s the worst-case blow-up?

– Delete periodically based on some heuristic
(“age”, length, etc.)

S. A. Seshia 8

Proof Generation
• If the SAT solver returns “satisfiable”, we can

check that solution by evaluating the circuit

• If it returns “unsatisfiable”, what then?

5

S. A. Seshia 9

Proof

• Starting from facts (clauses), the SAT

solver has presumably derived

“unsatisfiable” (the empty clause)

• So there must be a way of going step-by-

step from input clauses to the empty

clause using rules

– In fact, there’s only one rule: resolution

S. A. Seshia 10

Resolution as a Cut in Implication
Graph

6

S. A. Seshia 11

Resolution Graph
• Nodes are clauses

• Edges are applications of resolution

S. A. Seshia 12

Proof Checker

• Given resolution graph, how to check it?

• Traverse it, checking that each node is

correctly obtained from its predecessor
nodes using resolution

– This generates proof

7

S. A. Seshia 13

Unsatisfiable Core

S. A. Seshia 14

Incremental SAT Solving

• Suppose you have not just one SAT

problem to solver, but many “slightly

differing” problems over the same

variables

• Can we re-use the search over many

problems?

– i.e. perform only “incremental” work

8

S. A. Seshia 15

Operations Needed

1. Adding clauses

2. Deleting clauses

• Which is easy and which is hard?

– If previous problem is unsat, how does an
operation change it?

– If previous is sat?

S. A. Seshia 16

Deleting Clauses

9

S. A. Seshia 17

Deleting Clauses

S. A. Seshia 18

Engineering Issues

• Too expensive to traverse graph

• Instead, group original clauses into groups

• Each derived clause belongs to all groups

that it is resolved from

– Implement with bit-vector

10

S. A. Seshia 19

Binary Decision Diagrams

S. A. Seshia 20

Boolean Function Representations

• Syntactic: e.g.: CNF, DNF, Circuit

• Semantic: e.g.: Truth table, Binary

Decision Tree, BDD

11

S. A. Seshia 21

Reduced Ordered BDDs
• Invented by Randal E. Bryant in mid-80s

– IEEE Transactions on Computers 1986 paper
is one of the most highly cited papers in EECS

• Useful data structure to represent Boolean

functions

– Applications in synthesis, verification, program
analysis, …

• Commonly known simply as BDDs

• Many variants of BDDs have proved useful in

other tasks

• Links to coding theory (trellises), etc.

S. A. Seshia 22

Cofactors
• A Boolean function F of n variables x1, x2, …,

xn

• F : {0,1}n � {0,1}

• Suppose we define new Boolean functions of
n-1 variables as follows:

• Fx1
(x2, …, xn) = F(1, x2, x3, …, xn)

• Fx1’ (x2, …, xn) = F(0, x2, x3, …, xn)

• Fx1
and Fx1’ are cofactors of F.

12

S. A. Seshia 23

Shannon Expansion

• F(x1, …, xn) = xi . Fxi
+ xi’ . Fxi’

• Proof?

S. A. Seshia 24

Shannon expansion with many
variables

• F(x, y, z, w) =

xy Fxy + x’y Fx’y + xy’ Fxy’ + x’y’ Fx’y’

13

S. A. Seshia 25

Properties of Cofactors

• Suppose you construct a new function H

from two existing functions F and G: e.g.,

– H = F’

– H = F.G

– H = F + G

– Etc.

• What is the relation between cofactors of H

and those of F and G?

S. A. Seshia 26

Very Useful Property

• Cofactor of NOT is NOT of cofactors

• Cofactor of AND is AND of cofactors

• …

• Works for any binary operator

14

S. A. Seshia 27

BDDs from Truth Tables

Truth Table

Binary Decision Tree

Binary Decision Diagram (BDD)

Ordered Binary Decision Diagram (OBDD)

Reduced Ordered Binary Decision Diagram
(ROBDD, simply called BDD)

S. A. Seshia 28

Example: Odd Parity Function

Binary Decision Tree

a
b

c
d

15

S. A. Seshia 29

Nodes & Edges

S. A. Seshia 30

Ordering

16

S. A. Seshia 31

Reduction

• Identify Redundancies

• 3 Rules:

1. Merge equivalent leaves

2. Merge isomorphic nodes

3. Eliminate redundant tests

S. A. Seshia 32

Merge Equivalent Leaves

17

S. A. Seshia 33

Merge Isomorphic Nodes

S. A. Seshia 34

Eliminate Redundant Tests

18

S. A. Seshia 35

Example

S. A. Seshia 36

Example

19

S. A. Seshia 37

Final ROBDD for Odd Parity Function

S. A. Seshia 38

Example of Rule 3

20

S. A. Seshia 39

What can BDDs be used for?

• Uniquely representing a Boolean function

– And a Boolean function can represent sets

• Satisfiability solving!

S. A. Seshia 40

(RO)BDDs are canonical
• Theorem (R. Bryant): If G, G’ are

ROBDD’s of a Boolean function f with k

inputs, using same variable ordering, then

G and G’ are identical.

21

S. A. Seshia 41

Sensitivity to Ordering
• Given a function with n inputs, one input ordering

may require exponential # vertices in ROBDD, while
other may be linear in size.

• Example: f = x1 x2 + x3 x4 + x5 x6

x1 < x4 < x5 < x2 < x3 < x6x1 < x2 < x3 < x4 < x5 < x6

1

2

3

4
5

0 1

6

1

4

5
4

2

5

6

5

2

5

3
2

3

2

0 1

S. A. Seshia 42

Applying an Operator to BDDs

• Two options:

1. Construct an operator for each logic

operator: AND, OR, NOT, EXOR, …

2. Build a few core operators and define

everything else in terms of those

Advantage of 2:
• Less programming work
• Easier to add new operators later by writing “wrappers”

22

S. A. Seshia 43

Core Operators

• Just two of them!

1. Restrict(Function F, variable v, constant

k)

• Shannon cofactor of F w.r.t. v=k

2. ITE(Function I, Function T, Function E)

• “if-then-else” operator

S. A. Seshia 44

ITE
• Just like:

– “if then else” in a programming language

– A mux in hardware

• ITE(I(x), T(x), E(x))

– If I(x) then T(x) else E(x)

I(x)

T(x)

E(x)

1

0

ITE(I(x), T(x), E(x))

23

S. A. Seshia 45

The ITE Function

• ITE(I(x), T(x), E(x))

• =

• I(x) . T(x) + I’(x). E(x)

S. A. Seshia 46

What good is the ITE?

• How do we express

• NOT?

• OR?

• AND?

24

S. A. Seshia 47

How do we implement ITE?

• Divide and conquer!

• Use Shannon cofactoring…

• Recall: Operator of cofactors is Cofactor of

operators…

S. A. Seshia 48

ITE Algorithm
ITE (bdd I, bdd T, bdd E) {

if (terminal case) { return computed result;
}
else { // general case

Let x be the topmost variable of I, T, E;
PosFactor = ITE(Ix , Tx , Ex) ;

NegFactor = ITE(Ix’ , Tx’ , Ex’);
R = new node labeled by x;
R.low = NegFactor;
R.high = PosFactor;
Reduce(R);
return R;

}

25

S. A. Seshia 49

Terminal Cases
• ITE(1, T, E) =

• ITE(0, T, E) =

• ITE(I, T, T) =

• ITE(I, 1, 0) =

• …

S. A. Seshia 50

General Case

• Still need to do cofactor (Restrict)

• How hard is that?

– Which variable are we cofactoring out? (2
cases)

26

S. A. Seshia 51

Practical Issues

• Previous calls to ITE are cached

– “memoization”

• Every BDD node created goes into a

“unique table”

– Before creating a new node R, look up this
table

– Avoids need for reduction

S. A. Seshia 52

Sharing: Multi-Rooted DAG

• BDD for 4-bit adder

• Each output bit (of the

sum & carry) is a
distinct rooted BDD

• But they share sub-
DAGs

27

S. A. Seshia 53

Wrap-up

• What you know: SAT Solving, BDD Basics

• Finish BDDs, actually get to model

checking!

