EECS 219C: Computer-Aided Verification Boolean Satisfiability Solving III \& Binary Decision Diagrams

Sanjit A. Seshia
EECS, UC Berkeley

With thanks to Lintao Zhang (MSR)

DLL Algorithm Pseudo-code

DLL Algorithm Pseudo-code

```
DLL_iterative()
{
    status = preprocess(); \longleftarrow Pre-processing
    if (status!=UNKNOWN)
        return status;
        while(1) {
            decide_next_branch();\longleftarrow Branching
            while (true)
            {
            status = deduce();
            ; 
            if (status == CONFLICT)
            {
                blevel = analyze_conflict();
                        mopagation
                if (blevel < 0)
                return UNSATISFIABLE
                    \
                    else
                    Conflict Analysis
                backtrack(blevel);
            }
            else if (status == SATISFIABLE)
                return SATISFIABLE;
            else break;
            }
}
```

S. A. Sesh \}

Comparison:

Naïve 2-counters/clause vs 2 -literal watching

- When a literal is set to 1 , update counters for all
- No need for update clauses it appears in
- Same when literal is set
- Update watched literal to 0
- If a literal is set, need to update each clause the variable appears in
- If a literal is set to 0 , need to update only each clause it is watched in
- During backtrack, must update counters
- No updates needed during backtrack! (why?)

Overall effect: Fewer clauses accesses in 2-lit

zChaff Relative Cache Performance

		1dlx_c_mc_ex_bp_f		Hanoi4	
		Num Access	Miss Rate	Num Access	Miss Rate
Z-Chaff	L1	$24,029,356$	4.75%	$364,782,257$	5.38%
	L2	$1,659,877$	4.63%	$30,396,519$	11.65%
SATO $(-$ g100 $)$	L1	L2	$788,352,975$	36.76%	$465,160,957$
	L1	$415,572,501$	31.76%		
	L2	$153,490,555$	50.89%	$876,250,978$	32.53%

The programs are compiled with -O3 using g++ 2.8.1(for GRASP and Chaff) or gcc 2.8.1 (for Sato3.2.1) on Sun OS 4.1.2 Trace was generated with QPT quick tracing and profiling tool. Trace was processed with dineroIV, the memory configuration is similar to a Pentium III processor:

L1: 16 K Data, 16 K Instruction, L2: 256 k Unified. Both have 32 byte cache line, 4 way set associativity.

Key Ideas in Modern DLL SAT Solving

- Data structures: Implication graph
- Conflict Analysis: Learn (using cuts in implication graph) and use non-chronological backtracking
- Decision heuristic: must be dynamic, low overhead, quick to conflict/solution
- Unit propagation (BCP): 2-literal watching helps keep memory accesses down
- Principle: Keep \#(memory accesses)/step low
- A step \rightarrow a primitive operation for SAT solving, such as a branch

Other Techniques

- Random Restarts
- Periodically throw away current decision stack and start from the beginning
- Why will this change the search on restart?
- Used in most modern SAT solvers
- Clause deletion
- Conflict clauses take up memory
- What's the worst-case blow-up?
- Delete periodically based on some heuristic ("age", length, etc.)

Proof Generation

- If the SAT solver returns "satisfiable", we can check that solution by evaluating the circuit
- If it returns "unsatisfiable", what then?

"You whit PROOF? I'Ll GIVE You Proof!"

Proof

- Starting from facts (clauses), the SAT solver has presumably derived "unsatisfiable" (the empty clause)
- So there must be a way of going step-bystep from input clauses to the empty clause using rules
- In fact, there's only one rule: resolution

Resolution as a Cut in Implication

 Graph

$$
\left(V_{2}+V_{3}{ }^{\prime}+V_{5}^{\prime}+V_{6}\right)
$$

$$
\left(V_{3}^{\prime}+V_{6}+V_{4}\right)
$$

$$
\left(V_{6}+V_{5}^{\prime}+V_{1}^{\prime}\right)
$$

$$
\left(V_{2}+V_{4}^{\prime}+V_{6}+V_{1}\right)
$$

$$
\left(\mathrm{V}_{2}+\mathrm{V}_{4}^{\prime}+\mathrm{V}_{6}+\mathrm{V}_{5}^{\prime}\right)
$$

$$
\left(V_{2}+V_{3}^{\prime}+V_{5}^{\prime}+V_{6}\right)
$$

Resolution Graph

- Nodes are clauses
- Edges are applications of resolution

Proof Checker

- Given resolution graph, how to check it?
- Traverse it, checking that each node is correctly obtained from its predecessor nodes using resolution
- This generates proof

Unsatisfiable Core

Incremental SAT Solving

- Suppose you have not just one SAT problem to solver, but many "slightly differing" problems over the same variables
- Can we re-use the search over many problems?
- i.e. perform only "incremental" work

Operations Needed

1. Adding clauses
2. Deleting clauses

- Which is easy and which is hard?
- If previous problem is unsat, how does an operation change it?
- If previous is sat?

Deleting Clauses

Deleting Clauses

Engineering Issues

- Too expensive to traverse graph
- Instead, group original clauses into groups
- Each derived clause belongs to all groups that it is resolved from
- Implement with bit-vector

Binary Decision Diagrams

Boolean Function Representations

- Syntactic: e.g.: CNF, DNF, Circuit
- Semantic: e.g.: Truth table, Binary Decision Tree, BDD

Reduced Ordered BDDs

- Invented by Randal E. Bryant in mid-80s
- IEEE Transactions on Computers 1986 paper is one of the most highly cited papers in EECS
- Useful data structure to represent Boolean functions
- Applications in synthesis, verification, program analysis, ...
- Commonly known simply as BDDs
- Many variants of BDDs have proved useful in other tasks
- Links to coding theory (trellises), etc.

Cofactors

- A Boolean function F of n variables x_{1}, x_{2}, \ldots, X_{n}
- $\quad F:\{0,1\}^{n} \rightarrow\{0,1\}$
- Suppose we define new Boolean functions of n -1 variables as follows:
- $\quad F_{x_{1}}\left(x_{2}, \ldots, x_{n}\right)=F\left(1, x_{2}, x_{3}, \ldots, x_{n}\right)$
- $\quad F_{x_{1}}{ }^{\prime}\left(x_{2}, \ldots, x_{n}\right)=F\left(0, x_{2}, x_{3}, \ldots, x_{n}\right)$
- $F_{x_{1}}$ and $F_{x_{1}}$ are cofactors of F.

Shannon Expansion

- $F\left(x_{1}, \ldots, x_{n}\right)=x_{i} \cdot F_{x_{i}}+x_{i}^{\prime} \cdot F_{x_{i}^{\prime}}$
- Proof?

Shannon expansion with many variables

- $F(x, y, z, w)=$
$x y F_{x y}+x^{\prime} y F_{x^{\prime} y}+x y^{\prime} F_{x y^{\prime}}+x^{\prime} y^{\prime} F_{x^{\prime} y^{\prime}}$

Properties of Cofactors

- Suppose you construct a new function H from two existing functions F and G : e.g.,
$-\mathrm{H}=\mathrm{F}$ '
$-H=F . G$
$-H=F+G$
- Etc.
- What is the relation between cofactors of H and those of F and G ?

Very Useful Property

- Cofactor of NOT is NOT of cofactors
- Cofactor of AND is AND of cofactors
- ...
- Works for any binary operator

BDDs from Truth Tables

Truth Table

Binary Decision Tree

Binary Decision Diagram (BDD)

Ordered Binary Decision Diagram (OBDD)

Reduced Ordered Binary Decision Diagram (ROBDD, simply called BDD)

Example: Odd Parity Function

Binary Decision Tree

Reduction

- Identify Redundancies
- 3 Rules:

1. Merge equivalent leaves
2. Merge isomorphic nodes
3. Eliminate redundant tests

Merge Equivalent Leaves

" a " is either 0 or 1

Merge Isomorphic Nodes

Eliminate Redundant Tests

Final ROBDD for Odd Parity Function

Example of Rule 3

What can BDDs be used for?

- Uniquely representing a Boolean function
- And a Boolean function can represent sets
- Satisfiability solving!

(RO)BDDs are canonical

- Theorem (R. Bryant): If G, G' are ROBDD's of a Boolean function f with k inputs, using same variable ordering, then G and G^{\prime} are identical.

Sensitivity to Ordering

- Given a function with n inputs, one input ordering may require exponential \# vertices in ROBDD, while other may be linear in size.
- Example: $f=x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6}$

$$
x_{1}<x_{2}<x_{3}<x_{4}<x_{5}<x_{6}
$$

$$
x_{1}<x_{4}<x_{5}<x_{2}<x_{3}<x_{6}
$$

Applying an Operator to BDDs

- Two options:

1. Construct an operator for each logic operator: AND, OR, NOT, EXOR, ...
2. Build a few core operators and define everything else in terms of those

Advantage of 2:

- Less programming work
- Easier to add new operators later by writing "wrappers"

Core Operators

- Just two of them!

1. Restrict(Function F, variable v, constant k)

- Shannon cofactor of F w.r.t. $\mathrm{v}=\mathrm{k}$

2. ITE(Function I, Function T, Function E)

- "if-then-else" operator

ITE

- Just like:
- "if then else" in a programming language
- A mux in hardware
- ITE(I(x), T(x), E(x))
- If $I(x)$ then $T(x)$ else $E(x)$

The ITE Function

- ITE(I(x), T(x), E(x))
- =
- $I(x) \cdot T(x)+I^{\prime}(x) \cdot E(x)$

What good is the ITE?

- How do we express
- NOT?
- OR?
- AND?

How do we implement ITE?

- Divide and conquer!
- Use Shannon cofactoring...
- Recall: Operator of cofactors is Cofactor of operators...

ITE Algorithm

ITE (bdd I, bdd T, bdd E) \{

if (terminal case) \{ return computed result;

\}
else \{ // general case
Let x be the topmost variable of $\mathrm{I}, \mathrm{T}, \mathrm{E}$;
PosFactor $=\operatorname{ITE}\left(I_{x}, T_{x}, E_{x}\right)$;
NegFactor $=\operatorname{ITE}\left(\mathrm{I}_{\mathrm{x}^{\prime}}, \mathrm{T}_{\mathrm{x}^{\prime}}, \mathrm{E}_{\mathrm{x}^{\prime}}\right)$;
$R=$ new node labeled by x;
R.low = NegFactor;
R.high = PosFactor;

Reduce(R);
return R;

Terminal Cases

- $\operatorname{ITE}(1, \mathrm{~T}, \mathrm{E})=$
- $\operatorname{ITE}(0, T, E)=$
- ITE(I, T, T) =
- ITE(I, 1, 0) =
- ...

General Case

- Still need to do cofactor (Restrict)
- How hard is that?
- Which variable are we cofactoring out? (2 cases)

Practical Issues

- Previous calls to ITE are cached
- "memoization"
- Every BDD node created goes into a "unique table"
- Before creating a new node R, look up this table
- Avoids need for reduction

Sharing: Multi-Rooted DAG

- BDD for 4-bit adder
- Each output bit (of the sum \& carry) is a distinct rooted BDD
- But they share subDAGs

Wrap-up

- What you know: SAT Solving, BDD Basics
- Finish BDDs, actually get to model checking!

