
1

EECS 219C: Computer-Aided Verification

Boolean Satisfiability Solving

Part II: DLL-based Solvers

Sanjit A. Seshia

EECS, UC Berkeley

With thanks to Lintao Zhang (MSR)

S. A. Seshia 2

Announcements

• Paper readings will be up on the webpage

by the weekend

– Readings will be assigned by me based on
your feedback on what interests you

• Suggested project topics will be

announced next week

– Welcome to pick your own, but talk to me first

2

S. A. Seshia 3

A Classification of SAT Algorithms

• Davis-Putnam (DP)

– Based on resolution

• Davis-Logemann-Loveland (DLL/DPLL)

– Search-based

– Basis for current most successful solvers

• Stalmarck’s algorithm

– “Different” kind of search, proprietary algorithm

• Stochastic search

– Local search, hill climbing, etc.

– Unable to prove unsatisfiability (incomplete)

S. A. Seshia 4

DLL Algorithm: General Ideas

• Iteratively set variables until you find a
satisfying assignment or reach a conflict

• Two main rules:
– Unit Literal Rule: If an unsatisfied clause has

all but 1 literal set to 0, the remaining literal
must be set to 1

(a + b + c) (d’ + e) (a + c’ + d)

– Conflict Rule: If all literals in a clause have
been set to 0, the formula is unsatisfiable
along the current assignment path

3

S. A. Seshia 5

Search Tree

Decision

level

S. A. Seshia 6

DLL Example 1

4

S. A. Seshia 7

DLL Algorithm Pseudo-code

Pre-processing

Branching

Unit propagation

(apply unit rule)

Conflict Analysis

& Backtracking

Main Steps:

S. A. Seshia 8

Pre-processing: Pure Literal Rule

• If a variable appears in only one phase

throughout the problem, then you can set

the corresponding literal to 1

• Why?

5

S. A. Seshia 9

DLL Algorithm Pseudo-code

Pre-processing

Branching

Unit propagation

(apply unit rule)

Conflict Analysis

& Backtracking

Main Steps:

S. A. Seshia 10

Conflicts & Backtracking

• Chronological Backtracking

– Proposed in original DLL paper

– Backtrack to highest decision level that has

not been tried with both values

• But does this decision level have to be the reason

for the conflict?

6

S. A. Seshia 11

Non-Chronological Backtracking

• Jump back to a decision level “higher”

than the last one

• Also combined with “conflict-driven
learning”

– Keep track of the reason for the conflict

• Proposed by Marques-Silva and Sakallah

in 1996

– Similar work by Bayardo and Schrag in ‘97

S. A. Seshia 12

DLL Example 2

7

S. A. Seshia 13

DLL Algorithm Pseudo-code

Pre-processing

Branching

Unit propagation

(apply unit rule)

Conflict Analysis

& Backtracking

Main Steps:

S. A. Seshia 14

Branching

• Which variable (literal) to branch on (set)?

• This is determined by a “decision heuristic”

• What makes a “decision heuristic” good?

8

S. A. Seshia 15

Decision Heuristic Desiderata

• If the problem is satisfiable
– Find a short partial satisfying assignment

– GREEDY: If setting a literal will satisfy many
clauses, it might be a good choice

• If the problem is unsatisfiable
– Reach conflicts quickly (rules out bigger

chunks of the search space)

– Similar to above: need to find a short partial
falsifying assignment

• Also: Heuristic must be cheap to compute!

S. A. Seshia 16

Sample Decision Heuristics

• RAND

– Pick a literal to set at random

– What’s good about this? What’s not?

• Dynamic Largest Individual Sum (DLIS)

– Let cnt(l) = number of occurrences of literal l
in unsatisfied clauses

– Set the l with highest cnt(l)

– What’s good about this heuristic?

– Any shortcomings?

9

S. A. Seshia 17

DLIS: A Typical Old-Style Heuristic

• Advantages
– Simple to state and intuitive

– Targeted towards satisfying many clauses

– Dynamic: Based on current search state

• Disadvantages
– Very expensive!

– Each time a literal is set, need to update counts for all
other literals that appear in those clauses

– Similar thing during backtracking (unsetting literals)

• Even though it is dynamic, it is “Markovian” –
somewhat static
– Is based on current state, without any knowledge of

the search path to that state

S. A. Seshia 18

VSIDS: The Chaff SAT solver
heuristic

• Variable State Independent Decaying Sum
– For each literal l, maintain a VSIDS score

– Initially: set to cnt(l)

– Increment score by 1 each time it appears in an added
(conflict) clause

– Divide all scores by a constant (2) periodically (every N
backtracks)

• Advantages:
– Cheap: Why?

– Dynamic: Based on search history

– Steers search towards variables that are common
reasons for conflicts (and hence need to be set
differently)

10

S. A. Seshia 19

Current State of Heuristics

• VSIDS has been improved upon, but

mostly minor improvements

• MiniSat (current champion) decays score
after each conflict by a smaller fraction

(5%)

S. A. Seshia 20

Key Ideas so Far

• Data structures: Implication graph

• Conflict Analysis: Learn (using cuts in implication

graph) and use non-chronological backtracking

• Decision heuristic: must be dynamic, low
overhead, quick to conflict/solution

• Principle: Keep #(memory accesses)/step low

– A step � a primitive operation for SAT solving, such

as a branch

11

S. A. Seshia 21

DLL Algorithm Pseudo-code

Pre-processing

Branching

Unit propagation

(apply unit rule)

Conflict Analysis

& Backtracking

Main Steps:

S. A. Seshia 22

Unit Propagation
• Also called Boolean constraint propagation

(BCP)

• Set a literal and propagate its implications
– Find all clauses that become unit clauses

– Detect conflicts

• Backtracking is the reverse of BCP
– Need to unset a literal and ‘rollback’

• In practice: Most of solver time is spent in
BCP
– Must optimize!

12

S. A. Seshia 23

BCP

• Suppose literal l is set. How much time will

it take to propagate just that assignment?

• How do we check if a clause has become
a unit clause?

• How do we know if there’s a conflict?

S. A. Seshia 24

• Introductory BCP slides

13

S. A. Seshia 25

Detecting when a clause becomes
unit

• Watch only two literals per clause. Why
does this work?

• If one of the watched literals is assigned 0,
what should we do?

• A clause has become unit if
– Literal assigned 0 must continue to be

watched, other watched literal unassigned

• What if other watched literal is 0?

• What if a watched literal is assigned 1?

S. A. Seshia 26

• Lintao’s BCP example

14

S. A. Seshia 27

2-literal Watching

• In a L-literal clause, L ≥ 3, which 2 literals

should we watch?

S. A. Seshia 28

Next Class

• Finishing up SAT: incremental, proof gen.

• Start BDDs

