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EECS 219C:  Computer-Aided Verification

Boolean Satisfiability Solving  

Part I: Basics

Sanjit A. Seshia

EECS, UC Berkeley
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Boolean Functions (Formulas) and 
Propositional Logic

• Variables: x1, x2, x3, …, xn ∈ {0, 1} (or 
{true, false})

• F(x1, x2, x3, …, xn) ∈ {0,1} 

• F representable as the output (root) of a 
circuit (expression DAG) constructed with 
gates (Boolean operators)
– Standard Boolean operators: 

And (∧ , ·), Or (∨, +), Not (¬, ’)

– Derived operators: Implies (�) Iff (⇔ )
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The Boolean Satisfiability Problem 
(SAT)

• Given: 

A Boolean formula F(x1, x2, x3, …, xn)

• Check if F can ever be true (satisfiable)

– If so, return values to xi’s (satisfying 
assignment) that make F true 
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Why is SAT important?

• Theoretical importance:
– First NP-complete problem (Cook, 1971)

• Many practical applications:
– Model Checking

– Automatic Test Pattern Generation

– Combinational Equivalence Checking

– Planning in AI

– Automated Theorem Proving

– Software Verification

– …
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Terminology
• Literal

• Clause

• Conjunctive Normal Form (CNF)

• Disjunctive Normal Form (DNF)

• Tautology
– Complexity of tautology checking for propositional 

logic?
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An Example

• Inputs to SAT solvers are usually 

represented in CNF

(a + b + c) (a’ + b’ + c) (a + b’ + c’) (a’ + b + c’)
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An Example

• Inputs to SAT solvers are usually 

represented in CNF

(a + b + c) (a’ + b’ + c) (a + b’ + c’) (a’ + b + c’)
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Why CNF?
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Why CNF?

• Input-related reason
– Can transform from circuit to CNF in linear time & 

space (HOW?)

• Solver-related: Most SAT solver variants can 
exploit CNF
– Easy to detect a conflict 

– Easy to remember partial assignments that don’t work 
(just add ‘conflict’ clauses)

– Other “ease of representation” points?

• Any reasons why CNF might NOT be a good 
choice?
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Complexity Issues

• k-SAT: A SAT problem with input in CNF 

with at most k literals in each clause

• Complexity for non-trivial values of k:

– 2-SAT:  ?

– 3-SAT:  ?

– > 3-SAT: ?
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2-SAT Algorithm

• Linear-time algorithm (Aspvall, Plass, Tarjan, 1979)

– Think of clauses as implications

– Think of a graph with literals as nodes
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3-SAT: Complexity Bounds (circa 2005)

• Obvious upper bound on run-time?

• Best known deterministic upper bound

1.473n

• Best known randomized upper bound

1.324n

• Best known lower bound

n2.761
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Worst-Case 
Complexity
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Beyond Worst-Case Complexity

• What we really care about is “typical-case”

complexity

• But how can one measure “typical-case”?

• Two approaches:

– Is your problem a restricted form of 3-SAT? 

That might be polynomial-time solvable

– Experiment with (random) SAT instances and 
see how the solver run-time varies with 
formula parameters (#vars, #clauses, … )
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Special Cases of 3-SAT

• You already know one: 2-SAT

– T. Larrabee observed that many clauses in 
ATPG tend to be 2-CNF

• Another useful class: Horn-SAT

– A clause is a Horn clause if at most one literal 
is positive

– If all clauses are Horn, then problem is Horn-
SAT

– E.g. Application:- Simulation checking 
between 2 finite-state systems
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Horn-SAT

• Can we solve Horn-SAT in polynomial 
time? How?
– Hint: view clauses as implications.

• Variants:
– Negated Horn-SAT: Clauses with at most one 

literal negative

– Renamable Horn-SAT: Doesn’t look like a 
Horn-SAT problem, but turns into one when 
polarities of some variables are flipped 
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Phase Transitions in k-SAT

• Consider a fixed-length clause model

– k-SAT means that each clause contains 
exactly k literals 

• Let SAT problem comprise m clauses and 

n variables

– Randomly generate the problem for fixed k 
and varying m and n

• Question: How does the problem hardness 

vary with m/n ?

S. A. Seshia 18

3-SAT Hardness

As n increases 

hardness 
transition 

grows sharper

m / n
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Transition 
at m/n ≃ 4.3

m / n
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Threshold Conjecture

• For every k, there exists a c* such that

– For m/n < c*, as n � ∞∞∞∞ , problem is satisfiable
with probability 1

– For m/n > c*, as n � ∞∞∞∞ , problem is 
unsatisfiable with probability 1

• Conjecture proved true for k=2 and c*=1

• For k=3, current status is that c* is in the 

range 3.42 – 4.51
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The (2+p)-SAT Model

• We know:

– 2-SAT is in P

– 3-SAT is in NP

• Problems are (typically) a mix of binary 

and ternary clauses

– Let p ∈ {0,1}

– Let problem comprise (1-p) fraction of binary 

clauses and p of ternary

– So-called (2+p)-SAT problem
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Experimentation with random 
(2+p)-SAT

• When p < ~0.41
– Problem behaves like 2-SAT

– Linear scaling

• When p > ~0.42
– Problem behaves like 3-SAT

– Exponential scaling

• Nice observations, but don’t help us 
predict behavior of problems in practice
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Backbones and Backdoors

• Backbone [Parkes; Monasson et al.]

– Subset of literals that must be true in every satisfying 
assignment (if one exists)

– Empirically related to hardness of problems

• Backdoor [Williams, Gomes, Selman]

– Subset of variables such that once you’ve given those 
a suitable assignment (if one exists), the rest of the 
problem is poly-time solvable

– Also empirically related to hardness

• But no easy way to find such backbones / 
backdoors! �
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A Classification of SAT Algorithms

• Davis-Putnam (DP)

– Based on resolution

• Davis-Logemann-Loveland (DLL/DPLL)

– Search-based

– Basis for current most successful solvers

• Stalmarck’s algorithm

– “Different” kind of search, proprietary algorithm

• Stochastic search

– Local search, hill climbing, etc.

– Unable to prove unsatisfiability (incomplete)
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Resolution

• Two CNF clauses that contain a variable x 

in opposite phases (polarities) imply a new 

CNF clause that contains all literals except 

x and x’

• (a + b) (a’ + c) = (a + b)(a’ + c)(b + c)

• Why is this true? 
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The Davis-Putnam Algorithm

• Iteratively select a variable x to perform 

resolution on

• Retain only the newly added clauses and 
the ones not containing x

• Termination: You either

– Derive the empty clause (conclude UNSAT)

– Or all variables have been selected
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Resolution Example

How many clauses can you end up with?
(at any iteration)
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Next Class

• How DLL algorithm works in current SAT 

solvers


