EECS 219C: Computer-Aided Verification Boolean Satisfiability Solving Part I: Basics

Sanjit A. Seshia
EECS, UC Berkeley

Boolean Functions (Formulas) and Propositional Logic

- Variables: $x_{1}, x_{2}, x_{3}, \ldots, x_{n} \in\{0,1\}$ (or \{true, false\})
- $F\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right) \in\{0,1\}$
- F representable as the output (root) of a circuit (expression DAG) constructed with gates (Boolean operators)
- Standard Boolean operators: And ($\wedge, \cdot)$, $\operatorname{Or}(\vee,+), \operatorname{Not}\left(\neg,{ }^{\prime}\right)$
- Derived operators: Implies (\rightarrow) Iff (\Leftrightarrow)

The Boolean Satisfiability Problem (SAT)

- Given:

A Boolean formula $F\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$

- Check if F can ever be true (satisfiable)
- If so, return values to x_{i} 's (satisfying assignment) that make F true

Why is SAT important?

- Theoretical importance:
- First NP-complete problem (Cook, 1971)
- Many practical applications:
- Model Checking
- Automatic Test Pattern Generation
- Combinational Equivalence Checking
- Planning in AI
- Automated Theorem Proving
- Software Verification
- ...

Terminology

- Literal
- Clause
- Conjunctive Normal Form (CNF)
- Disjunctive Normal Form (DNF)
- Tautology
- Complexity of tautology checking for propositional logic?

An Example

- Inputs to SAT solvers are usually represented in CNF
$(a+b+c)\left(a^{\prime}+b^{\prime}+c\right)\left(a+b^{\prime}+c^{\prime}\right)\left(a^{\prime}+b+c^{\prime}\right)$

An Example

- Inputs to SAT solvers are usually represented in CNF

$$
(a+b+c)\left(a^{\prime}+b^{\prime}+c\right)\left(a+b^{\prime}+c^{\prime}\right)\left(a^{\prime}+b+c^{\prime}\right)
$$

Why CNF?

Why CNF?

- Input-related reason
- Can transform from circuit to CNF in linear time \& space (HOW?)
- Solver-related: Most SAT solver variants can exploit CNF
- Easy to detect a conflict
- Easy to remember partial assignments that don't work (just add 'conflict' clauses)
- Other "ease of representation" points?
- Any reasons why CNF might NOT be a good choice?

Complexity Issues

- k-SAT: A SAT problem with input in CNF with at most k literals in each clause
- Complexity for non-trivial values of k :
-2-SAT: ?
-3-SAT: ?
- > 3-SAT:?

2-SAT Algorithm

- Linear-time algorithm (Aspvall, Plass, Tarjan, 1979)
- Think of clauses as implications
- Think of a graph with literals as nodes

3-SAT: Complexity Bounds (circa 2005)

- Obvious upper bound on run-time?
- Best known deterministic upper bound 1.473^{n}
- Best known randomized upper bound 1.324^{n}
- Best known lower bound $n^{2.761}$

Beyond Worst-Case Complexity

- What we really care about is "typical-case" complexity
- But how can one measure "typical-case"?
- Two approaches:
- Is your problem a restricted form of 3-SAT? That might be polynomial-time solvable
- Experiment with (random) SAT instances and see how the solver run-time varies with formula parameters (\#vars, \#clauses, ...)

Special Cases of 3-SAT

- You already know one: 2-SAT
- T. Larrabee observed that many clauses in ATPG tend to be 2-CNF
- Another useful class: Horn-SAT
- A clause is a Horn clause if at most one literal is positive
- If all clauses are Horn, then problem is HornSAT
- E.g. Application:- Simulation checking between 2 finite-state systems

Horn-SAT

- Can we solve Horn-SAT in polynomial time? How?
- Hint: view clauses as implications.
- Variants:
- Negated Horn-SAT: Clauses with at most one literal negative
- Renamable Horn-SAT: Doesn't look like a Horn-SAT problem, but turns into one when polarities of some variables are flipped

Phase Transitions in k-SAT

- Consider a fixed-length clause model
- k-SAT means that each clause contains exactly k literals
- Let SAT problem comprise m clauses and \mathbf{n} variables
- Randomly generate the problem for fixed k and varying m and n
- Question: How does the problem hardness vary with m / n ?

3-SAT Hardness

As n increases hardness transition grows sharper

Threshold Conjecture

- For every k, there exists a c* such that
- For $\mathrm{m} / \mathrm{n}<\mathrm{c}^{*}$, as $\mathrm{n} \rightarrow \infty$, problem is satisfiable with probability 1
- For $m / n>c^{*}$, as $n \rightarrow \infty$, problem is unsatisfiable with probability 1
- Conjecture proved true for $k=2$ and $c^{*}=1$
- For $\mathrm{k}=3$, current status is that c^{*} is in the range 3.42-4.51

The ($2+p$)-SAT Model

- We know:
- 2-SAT is in P
-3-SAT is in NP
- Problems are (typically) a mix of binary and ternary clauses
- Let $p \in\{0,1\}$
- Let problem comprise (1-p) fraction of binary clauses and p of ternary
- So-called (2+p)-SAT problem

Experimentation with random (2+p)-SAT

- When p < ~0.41
- Problem behaves like 2-SAT
- Linear scaling
- When $p>\sim 0.42$
- Problem behaves like 3-SAT
- Exponential scaling
- Nice observations, but don't help us predict behavior of problems in practice

Backbones and Backdoors

- Backbone [Parkes; Monasson et al.]
- Subset of literals that must be true in every satisfying assignment (if one exists)
- Empirically related to hardness of problems
- Backdoor [Williams, Gomes, Selman]
- Subset of variables such that once you've given those a suitable assignment (if one exists), the rest of the problem is poly-time solvable
- Also empirically related to hardness
- But no easy way to find such backbones / backdoors! :

A Classification of SAT Algorithms

- Davis-Putnam (DP)
- Based on resolution
- Davis-Logemann-Loveland (DLL/DPLL)
- Search-based
- Basis for current most successful solvers
- Stalmarck's algorithm
- "Different" kind of search, proprietary algorithm
- Stochastic search
- Local search, hill climbing, etc.
- Unable to prove unsatisfiability (incomplete)

Resolution

- Two CNF clauses that contain a variable x in opposite phases (polarities) imply a new CNF clause that contains all literals except x and x^{\prime}
- $(\mathrm{a}+\mathrm{b})\left(\mathrm{a}^{\prime}+\mathrm{c}\right)=(\mathrm{a}+\mathrm{b})\left(\mathrm{a}^{\prime}+\mathrm{c}\right)(\mathrm{b}+\mathrm{c})$
- Why is this true?

The Davis-Putnam Algorithm

- Iteratively select a variable x to perform resolution on
- Retain only the newly added clauses and the ones not containing x
- Termination: You either
- Derive the empty clause (conclude UNSAT)
- Or all variables have been selected

Resolution Example

How many clauses can you end up with?
(at any iteration)

- How DLL algorithm works in current SAT solvers

