
1

EECS 219C: Computer-Aided Verification

Model Generation
from Execution Traces

Sanjit A. Seshia

EECS, UC Berkeley

Acknowledgments: Avrim Blum

S. A. Seshia 2

Today’s Lecture

• Generating models of finite-state systems by

observing execution traces

– Based on a machine learning algorithm first
proposed by D. Angluin in ’87 and improved
upon by Rivest & Schapire in ’93

• Apr 4: Guest lecture by Anubhav Gupta on

using learning in model checking

2

S. A. Seshia 3

Setting

System M Environment

EVM

VE

State variables V = VE ∪∪∪∪ VM , VE ∩∩∩∩ VM = φ

Want to observe E and generate a good model of it

Usually easy to get a model of M

S. A. Seshia 4

Why Learn Environment Models?

• As a middle ground between

– Traditional, pessimistic (worst-case) verification

– Optimistic verification (“does there exist an

environment that makes my system work?”)

• To generate environment assumptions for

use in assume-guarantee reasoning

• To deal with incorrect models (of system

modules or environment)

– May miss behaviors and also include spurious
behaviors

3

S. A. Seshia 5

A Quote

• “Assumptions are the things you don't
know you're making”
— Douglas Adams, Mark Cawardine,
"Last Chance to See"

S. A. Seshia 6

Learning Env. Model

• Model: (Deterministic) Finite Automaton
– As a representation of the set of traces of env.

• What we can do:
– Provide inputs to the environment

– Observe (finite) prefixes of environment’s
output trace

• Note:
– Env. is a reactive system too, has infinitely long traces

but we can only observe finite prefixes

– So we are learning a finite automaton (not a Buchi
automaton)

4

S. A. Seshia 7

Another View
• Environment is a box,

with input buttons and
output lights
– Outputs capture

observable part of env
state

• We can press some
subset of input
buttons at any time
step

• Observe what lights
turn on

.

.

.

.

.

.

inputs outputs

Assumption for this lecture:

We can “reset” the environment at any time

S. A. Seshia 8

Angluin’s DFA Learning Algo.

• Input: A box as in the previous picture
• inputs from an alphabet Σ

• Outputs: a DFA that accurately represents

all (finite) output traces seen so far

• What it can do:

– Generate environment traces by supplying
inputs

– Ask an oracle whether a candidate DFA is
indeed correct (if not, get a counterexample)

– Reset environment model to initial state

(adapted to our setting)

5

S. A. Seshia 9

Angluin’s DFA Learning Algo.

• Input: A box as in the previous picture
• inputs from an alphabet Σ

• Outputs: a DFA that accurately represents
all (finite) output traces seen so far

• Given an oracle that precisely knows the
environment, it learns the DFA representing exactly
the output traces of the env.

• What it can do:
– Generate environment traces by supplying

inputs

– Ask an oracle whether a candidate DFA is
indeed correct (if not, get a counterexample)

– Reset environment model to initial state

(adapted to our setting)

S. A. Seshia 10

Formal Setup

• Want to learn (synthesize) a DFA (Q, Σ, δ,
L)

– Q : set of states

– Σ : input alphabet

– δ : transition function: Q x Σ � Q

– L : labeling/output function

• What does it mean for two states of the

DFA to be different?

(In terms of the labels we observe)

6

S. A. Seshia 11

Formal Setup

• Want to learn a DFA (Q, Σ, δ, L)
– Q : set of states

– Σ : input alphabet

– δ : transition function: Q x Σ � Q

– L : labeling/output function

• What does it mean for two states of the
DFA to be different?
– q and q’ are different if there is a input

sequence s.t. the states reachable on that
sequence from q and q’ respectively have
different labels

S. A. Seshia 12

What defines a state

• Its label (observable part)

• What input sequence gets us to that state
– Could be many, pick a representative

• What output sequence we see from that
state
– Perform “experiments” from that state to see

this

• Angluin’s algorithm “names” a state by the
latter two things
– A prefix and a suffix

7

S. A. Seshia 13

Algorithm Sketch

1. Start with only the DFA’s initial state q0

2. Generate a “new” state by supplying inputs

3. Check if its next states are observationally

different from those of existing states

– If yes, add it in

– If not, ask the oracle if we have the correct DFA

• If yes, we’re done

• If not, use the counterexample to figure out what new

state(s) to add until that counterex goes away

– Go back to step 2

S. A. Seshia 14

An Example

x, y y

x
x

yy

x

This is the DFA we want to learn

(the correct environment model)

8

S. A. Seshia 15

How the algorithm works on the previous

example – worked out on board

S. A. Seshia 16

Complexity

• Polynomial in size of environment model

• Good if environment model is small

– This is why it is especially good for learning
assumptions or concise env specifications

9

S. A. Seshia 17

Some Refs. to Applications

• “Adaptive Model Checking” -- Groce,

Peled, Yannakakis, TACAS’02

• “Learning Assumptions for Compositional
Verification” -- Cobleigh et al., TACAS’03

S. A. Seshia 18

Next: Part III of the course

• Next week: Decision procedures for

fragments of first-order logic

– Equivalent of Part I lectures on “SAT solving”

• After spring break:

– Guest lecture

– Your presentations

