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Today’s Lecture

• Generating models of finite-state systems by 

observing execution traces

– Based on a machine learning algorithm first 
proposed by D. Angluin in ’87 and improved 
upon by Rivest & Schapire in ’93  

• Apr 4: Guest lecture by Anubhav Gupta on 

using learning in model checking
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Setting

System M Environment

EVM

VE

State variables V = VE ∪∪∪∪ VM , VE ∩∩∩∩ VM = φ

Want to observe E and generate a good model of it

Usually easy to get a model of M
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Why Learn Environment Models?

• As a middle ground between 

– Traditional, pessimistic (worst-case) verification

– Optimistic verification (“does there exist an 

environment that makes my system work?”)

• To generate environment assumptions for 

use in assume-guarantee reasoning

• To deal with incorrect models (of system 

modules or environment)

– May miss behaviors and also include spurious 
behaviors
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A Quote

• “Assumptions are the things you don't 
know you're making”
— Douglas Adams, Mark Cawardine,             
"Last Chance to See"
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Learning Env. Model

• Model: (Deterministic) Finite Automaton
– As a representation of the set of traces of env.

• What we can do: 
– Provide inputs to the environment

– Observe (finite) prefixes of environment’s 
output trace

• Note:
– Env. is a reactive system too, has infinitely long traces 

but we can only observe finite prefixes

– So we are learning a finite automaton (not a Buchi
automaton)
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Another View
• Environment is a box, 

with input buttons and 
output lights
– Outputs capture 

observable part of env
state

• We can press some 
subset of input 
buttons at any time 
step

• Observe what lights 
turn on

.
 
.
 
.

.
 
.
 
.

inputs outputs

Assumption for this lecture: 

We can “reset” the environment at any time
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Angluin’s DFA Learning Algo.

• Input: A box as in the previous picture 
• inputs from an alphabet Σ

• Outputs: a DFA that accurately represents 

all (finite) output traces seen so far

• What it can do:

– Generate environment traces by supplying 
inputs

– Ask an oracle whether a candidate DFA is 
indeed correct (if not, get a counterexample)

– Reset environment model to initial state  

(adapted to our setting)
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Angluin’s DFA Learning Algo.

• Input: A box as in the previous picture 
• inputs from an alphabet Σ

• Outputs: a DFA that accurately represents 
all (finite) output traces seen so far

• Given an oracle that precisely knows the 
environment, it learns the DFA representing exactly 
the output traces of the env.

• What it can do:
– Generate environment traces by supplying 

inputs

– Ask an oracle whether a candidate DFA is 
indeed correct (if not, get a counterexample)

– Reset environment model to initial state  

(adapted to our setting)
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Formal Setup

• Want to learn (synthesize) a DFA (Q, Σ, δ, 
L) 

– Q : set of states

– Σ : input alphabet

– δ : transition function: Q x Σ � Q

– L : labeling/output function

• What does it mean for two states of the 

DFA to be different?

(In terms of the labels we observe)
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Formal Setup

• Want to learn a DFA (Q, Σ, δ, L) 
– Q : set of states

– Σ : input alphabet

– δ : transition function: Q x Σ � Q

– L : labeling/output function

• What does it mean for two states of the 
DFA to be different?
– q and q’ are different if there is a input 

sequence s.t. the states reachable on that 
sequence from q and q’ respectively have 
different labels
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What defines a state

• Its label (observable part)

• What input sequence gets us to that state
– Could be many, pick a representative

• What output sequence we see from that 
state
– Perform “experiments” from that state to see 

this

• Angluin’s algorithm “names” a state by the 
latter two things
– A prefix and a suffix
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Algorithm Sketch

1. Start with only the DFA’s initial state q0

2. Generate a “new” state by supplying inputs

3. Check if its next states are observationally 

different from those of existing states

– If yes, add it in

– If not, ask the oracle if we have the correct DFA

• If yes, we’re done

• If not, use the counterexample to figure out what new 

state(s) to add until that counterex goes away

– Go back to step 2
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An Example

x, y y

x
x

yy

x

This is the DFA we want to learn 

(the correct environment model)
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How the algorithm works on the previous 

example – worked out on board
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Complexity

• Polynomial in size of environment model 

• Good if environment model is small

– This is why it is especially good for learning 
assumptions or concise env specifications
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Some Refs. to Applications

• “Adaptive Model Checking” -- Groce, 

Peled, Yannakakis, TACAS’02

• “Learning Assumptions for Compositional 
Verification” -- Cobleigh et al., TACAS’03
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Next: Part III of the course

• Next week: Decision procedures for 

fragments of first-order logic

– Equivalent of Part I lectures on “SAT solving”

• After spring break: 

– Guest lecture

– Your presentations


