EECS 219C: Computer-Aided Verification Games and Verification

Sanjit A. Seshia EECS, UC Berkeley

Today's Lecture

- The role of Games in Design & Verification
- · Safety Games and their solution
- Two applications
 - Controller synthesis
 - Detecting errors before reaching them

Scenario so far

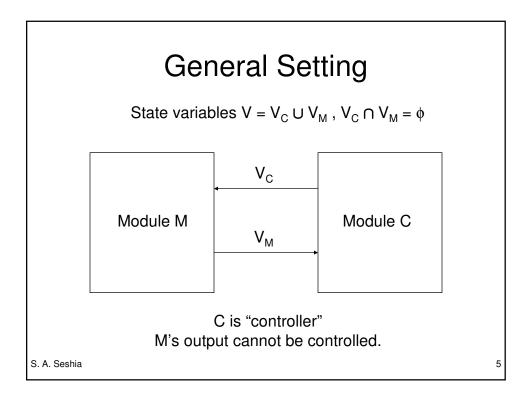
- 2 (finite-state) machines:
 - M models the system
 - E models the environment
 - Compose M and E to get closed system and check property
- Traditional viewpoint: E is a conservative model of the environment
 - E models a worst-case (adversarial) scenario
 - Pros/cons of this approach?

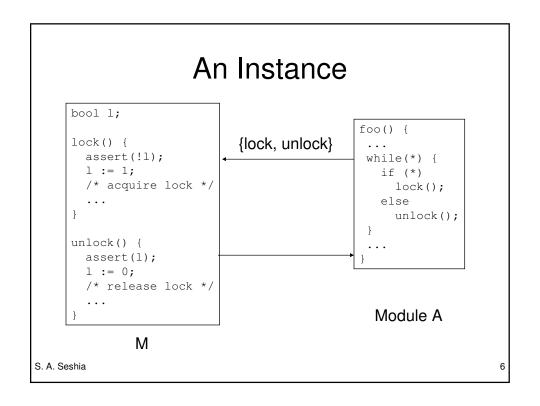
S. A. Seshia

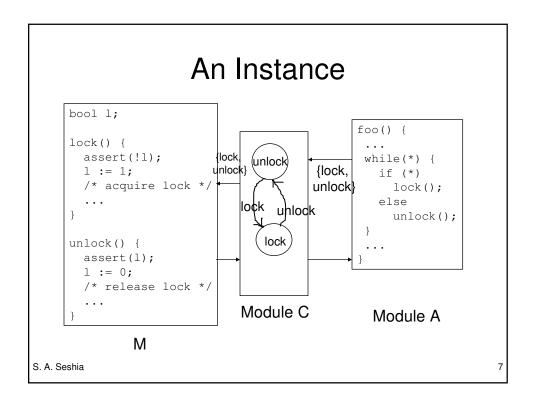
An Optimistic View

- Instead of asking:
 Does system M work correctly in all environments?
- Consider asking:
 Is there an env E in which M works correctly?
 - If yes, and we had one such E, how could we use it in practice?

S. A. Seshia







Controller Synthesis

- Given finite-state machine M and an LTL formula $\boldsymbol{\psi}$
- Is there a controller C which ensures that M $\mid\mid$ C satisfies ψ ?
 - If yes, how do we find such a C?
 - If not, M is said to be uncontrollable (from its initial states)

Controller Synthesis

- Given finite-state machines M and an LTL formula ψ
- Is there a controller C which ensures that M || C satisfies ψ?
 - If yes, how do we find such a C?
 - If not, M is said to be uncontrollable (from its initial states)
 - M is controllable from state s if considering s to be initial, M is controllable

S. A. Seshia

Games

- We view the problem as a game between the controller C and the system M
- Assume property $\psi = G p$
- Player M wins if M||C reaches an error (¬p) state
- C wins if it keeps M||C outside the error states
- Assume perfect information: C and M have perfect knowledge about each other

S. A. Seshia

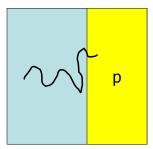
Games on Graphs

- Defined over the state space S of M || C
- · Asynchronous composition
 - Each node/state is either a "M state" or a "C state"
 - · Assume one module changes variables at a time
 - "Turn-based" games
- Synchronous composition
 - Both M and C simultaneously decide their next states (moves) and move together

S. A. Seshia

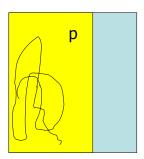
Reachability Games

- Let p ⊆ S be a set of target states of M||C
 Reachability objective requires us to visit the set p
 - i.e., find C s.t. M||C satisfies LTL formula ____ ?



Safety Games

- Let p ⊆ S be the set of safe states
 Safety objective requires us never to visit any vertex outside p
 - i.e., find C s.t. M||C satisfies LTL formula ____

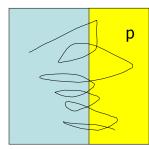


S. A. Seshia

13

Games with Buchi Objectives

- Let p ⊆ S be a set of states
 Buchi objective requires that the set p is visited infinitely often
 - i.e., find C s.t. M||C satisfies LTL formula ____



S. A. Seshia

Solving Safety Games

- Given: M, C, property Gp
 - Assume synchronous composition
- What we want:

A strategy for C s.t. no matter what M does, C can keep M||C within the region satisfying p

What is a "strategy for C" (informally)?

S. A. Seshia

15

Strategy σ

 For C: Mapping from a finite history of states to next state values of V_C

 σ_{C} : Val(V)+ \rightarrow Val(V_C)

- Similarly, strategy for M is
 - $\sigma_{M}: Val(V)^{+} \rightarrow Val(V_{M})$
- Taken together, σ_{C} and σ_{M} define the next state for C||M
- C wins from initial state s if for every σ_M it has a σ_C that keeps C||M in the safe states Note that initial state is important

Memoryless Strategy σ

 For C: Mapping from current state to next state values of V_C

 σ_{C} : Val(V) \rightarrow Val(V_C)

Similarly, strategy for M is

 σ_{M} : Val(V) \rightarrow Val(V_M)

• Taken together, σ_{C} and σ_{M} define the next state for C||M

S. A. Seshia

17

Local Strategy

- The overall strategy comprises many "local" decisions
 - which state to go to next
- Given a state s = (s_M, s_C) how should M and C choose their next states?

S. A. Seshia

Local Strategy

- The overall strategy comprises many "local" decisions
 - which state to go to next
- Given a state s = (s_M, s_C) how should M and C choose their next states?
 - No matter what C does, M wants to force it into an error state (¬p)
 - No matter what M does, C wants to continue satisfying p

S. A. Seshia

Controller Synthesis for Gp

- M chooses its next state according to its transition relation R
- We want to compute a transition relation (strategy) for C, σ_C so that p is always true
- Given a state $s = (s_M, s_C)$, What is $\sigma_C(s, s_C)$?

S. A. Seshia 20

Controller Synthesis for Gp

- M chooses its next state according to its transition relation R
- We want to compute a transition relation (strategy) for C, σ_C so that p is always true
- Given a state $s = (s_M, s_C)$,

$$\sigma_{\rm C}(s, s_{\rm C}')$$

- $= \forall s_M' R(s, s_M') \rightarrow p(s')$
 - = Set of all pairs (s, s_C') s.t. no matter what M does in s, p holds in s'

S. A. Seshia

Solving Safety Games backwards

- · We can work backwards from error states
- Pre_M(s)
- = set of states from which, regardless of the controller, M can enter an error (¬ p) state
- $= \forall s_C' \exists s_M' (R(s, s_M') \land \neg p(s'))$
 - Note: Pre is used above in a different sense from the normal pre operator
 - If least fixed point of the following operator is B, then controllable states are ¬ B
 - $\tau(Z) = \neg p(s) \lor \forall s_C' \exists s_M' (R(s, s_M') \land Z)$

Early Error Detection

[de Alfaro, Henzinger, Mang, CAV'00]

- We can use the game formulation to speed up symbolic model checking of LTL properties
- Idea: (for Gp)
 - Given modules A and B
 - Find all states of A that are controllable w.r.t.
 Gp and similarly for B
 - Denote by C_A and C_B
 - Then check if A||B satisfies G(C_A ∧ C_B)
 - Suppose this check fails. What do we know?

S. A. Seshia

Early Error Detection

- Idea: (for Gp)
 - Given modules A and B
 - Find all states of A that are controllable w.r.t.
 Gp and similarly for B
 - Denote by C_A and C_B
 - Then check if A||B satisfies $G(C_A \wedge C_B)$
 - Suppose this check fails. What do we know?
 - Either C_A or C_B is not satisfied in some state s of A||B
 - Say C_A: Thus, A is not controllable from s no environment can prevent it from reaching a ¬ p state!
 - So we know that "A is doomed to fail" even before it fails!

S. A. Seshia 24

Pros of Early Error Detection

- Computing C_A and C_B does not require composing A and B together
 - Avoids state space explosion
- Model checking for G(C_A ∧ C_B) can find bugs faster
 - Reach uncontrollable states earlier
- Note: uncontrollable states are like the "root cause" of the bug
 - Useful for error localization

S. A. Seshia

Complexity

- Synthesis is (not surprisingly) harder than verification
- Verification of LTL properties of finite-state systems
 - PSPACE
- Synthesis of finite-state systems to satisfy an LTL objective
 - 2EXPTIME-complete
 - For Gp it is EXPTIME-complete

S. A. Seshia

Next class

• Model generation

S. A. Seshia