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EECS 219C:  Computer-Aided Verification

Games and Verification

Sanjit A. Seshia

EECS, UC Berkeley
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Today’s Lecture

• The role of Games in Design & Verification

• Safety Games and their solution

• Two applications

– Controller synthesis

– Detecting errors before reaching them
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Scenario so far

• 2 (finite-state) machines: 

– M models the system

– E models the environment

– Compose M and E to get closed system and 
check property

• Traditional viewpoint: E is a conservative 

model of the environment

– E models a worst-case (adversarial) scenario

– Pros/cons of this approach?
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An Optimistic View

• Instead of asking:

Does system M work correctly in all 

environments?

• Consider asking:

Is there an env E in which M works 

correctly?

– If yes, and we had one such E, how could we 
use it in practice?
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General Setting

Module M Module C
VM

VC

State variables V = VC ∪∪∪∪ VM , VC ∩∩∩∩ VM = φ

C is “controller”

M’s output cannot be controlled.
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An Instance

bool l;

lock() {

assert(!l);

l := 1;

/* acquire lock */

...

}

unlock() {

assert(l);

l := 0;

/* release lock */

...

}

foo() {

...

while(*) {

if (*) 

lock();

else

unlock();

}

...

}

M

Module A

{lock, unlock}
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An Instance

bool l;

lock() {

assert(!l);

l := 1;

/* acquire lock */

...

}

unlock() {

assert(l);

l := 0;

/* release lock */

...

}

foo() {

...

while(*) {

if (*) 

lock();

else

unlock();

}

...

}

M

Module A

{lock, 

unlock}

lock unlock

Module C

unlock

lock

{lock, 

unlock}
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Controller Synthesis

• Given finite-state machine M and an LTL 

formula ψ

• Is there a controller C which ensures that 

M || C satisfies ψ ?

– If yes, how do we find such a C?

– If not, M is said to be uncontrollable (from its 
initial states)
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Controller Synthesis

• Given finite-state machines M and an LTL 

formula ψ

• Is there a controller C which ensures that 

M || C satisfies ψ ?

– If yes, how do we find such a C?

– If not, M is said to be uncontrollable (from its 
initial states)

• M is controllable from state s if considering s to be 

initial, M is controllable 
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Games

• We view the problem as a game between 
the controller C and the system M

• Assume property ψ = G p

• Player M wins if M||C reaches an error      
(¬¬¬¬ p) state

• C wins if it keeps M||C outside the error 
states 

• Assume perfect information: C and M have 
perfect knowledge about each other



6

S. A. Seshia 11

Games on Graphs

• Defined over the state space S of M || C

• Asynchronous composition

– Each node/state is either a “M state” or a “C 
state”

• Assume one module changes variables at a time

• “Turn-based” games

• Synchronous composition

– Both M and C simultaneously decide their 

next states (moves) and move together 
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Reachability Games

• Let p ⊆ S be a set of target states of M||C  

Reachability objective requires us to visit 

the set p 

– i.e., find C s.t. M||C satisfies LTL formula ___ ?

p
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Safety Games

• Let p ⊆ S be the set of safe states               

Safety objective requires us never to visit 

any vertex outside p

– i.e., find C s.t. M||C satisfies LTL formula ___ 

p

S. A. Seshia 14

Games with Buchi Objectives

• Let p ⊆ S be a set of states 

Buchi objective requires that the set p is 

visited infinitely often

– i.e., find C s.t. M||C satisfies LTL formula ___

p
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Solving Safety Games

• Given: M, C, property Gp

– Assume synchronous composition

• What we want: 

A strategy for C s.t. no matter what M 
does, C can keep M||C within the region 

satisfying p

• What is a “strategy for C” (informally)?
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Strategy σ

• For C: Mapping from a finite history of 
states to next state values of VC

σC : Val(V)+ � Val(VC)

• Similarly, strategy for M is
σM : Val(V)+ � Val(VM)

• Taken together, σC and σM define the next 
state for C||M

• C wins from initial state s if for every σM it 
has a σC that keeps C||M in the safe states
– Note that initial state is important 
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Memoryless Strategy σ

• For C: Mapping from current state to next 

state values of VC

σC : Val(V) � Val(VC)

• Similarly, strategy for M is

σM : Val(V) � Val(VM)

• Taken together, σC and σM define the next 
state for C||M
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Local Strategy

• The overall strategy comprises many 

“local” decisions 

– which state to go to next

• Given a state s = (sM, sC) how should M 

and C choose their next states?
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Local Strategy

• The overall strategy comprises many 

“local” decisions 

– which state to go to next

• Given a state s = (sM, sC) how should M 

and C choose their next states?

– No matter what C does, M wants to force it 
into an error state (¬¬¬¬ p)

– No matter what M does, C wants to continue 
satisfying p
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Controller Synthesis for Gp

• M chooses its next state according to its 

transition relation R

• We want to compute a transition relation 

(strategy) for C, σC so that p is always true

• Given a state s = (sM, sC),                       

What is σC(s, sC’) ?
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Controller Synthesis for Gp

• M chooses its next state according to its 

transition relation R

• We want to compute a transition relation 

(strategy) for C, σC so that p is always true

• Given a state s = (sM, sC), 

σC(s, sC’) 

= ∀∀∀∀ sM’ R(s, sM’) � p(s’) 

= Set of all pairs (s, sC’) s.t. no matter what M does in 

s, p holds in s’
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Solving Safety Games backwards

• We can work backwards from error states

• PreM(s) 

= set of states from which, regardless of the 
controller, M can enter an error (¬¬¬¬ p) state

= ∀∀∀∀ sC’ ∃∃∃∃ sM’ ( R(s, sM’) ∧∧∧∧ ¬¬¬¬ p(s’) ) 
– Note: Pre is used above in a different sense from the normal pre

operator

– If least fixed point of the following operator is 
B, then controllable states are ¬¬¬¬ B 

• ττττ(Z) = ¬¬¬¬ p(s)   ∨∨∨∨ ∀∀∀∀ sC’ ∃∃∃∃ sM’ ( R(s, sM’) ∧∧∧∧ Z )
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Early Error Detection

• We can use the game formulation to 

speed up symbolic model checking of LTL 

properties

• Idea: (for Gp)

– Given modules A and B

– Find all states of A that are controllable w.r.t. 
Gp and similarly for B

• Denote by CA and CB

• Then check if A||B satisfies G(CA ∧∧∧∧ CB) 

• Suppose this check fails. What do we know? 

[de Alfaro, Henzinger, Mang, CAV’00]

S. A. Seshia 24

Early Error Detection

• Idea: (for Gp)

– Given modules A and B

– Find all states of A that are controllable w.r.t. 

Gp and similarly for B

• Denote by CA and CB

• Then check if A||B satisfies G(CA ∧∧∧∧ CB) 

• Suppose this check fails. What do we know? 

– Either CA or CB is not satisfied in some state s of A||B

– Say CA:  Thus, A is not controllable from s – no 
environment can prevent it from reaching a ¬¬¬¬ p state!

– So we know that “A is doomed to fail” even before it fails!
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Pros of Early Error Detection

• Computing CA and CB does not require 
composing A and B together
– Avoids state space explosion

• Model checking for G(CA ∧∧∧∧ CB) can find 
bugs faster 
– Reach uncontrollable states earlier

• Note: uncontrollable states are like the 
“root cause” of the bug
– Useful for error localization
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Complexity

• Synthesis is (not surprisingly) harder than 
verification

• Verification of LTL properties of finite-state 
systems
– PSPACE

• Synthesis of finite-state systems to satisfy 
an LTL objective
– 2EXPTIME-complete

– For Gp it is EXPTIME-complete



14

S. A. Seshia 27

Next class

• Model generation


