
1

EECS 219C: Computer-Aided Verification

Games and Verification

Sanjit A. Seshia

EECS, UC Berkeley

S. A. Seshia 2

Today’s Lecture

• The role of Games in Design & Verification

• Safety Games and their solution

• Two applications

– Controller synthesis

– Detecting errors before reaching them

2

S. A. Seshia 3

Scenario so far

• 2 (finite-state) machines:

– M models the system

– E models the environment

– Compose M and E to get closed system and
check property

• Traditional viewpoint: E is a conservative

model of the environment

– E models a worst-case (adversarial) scenario

– Pros/cons of this approach?

S. A. Seshia 4

An Optimistic View

• Instead of asking:

Does system M work correctly in all

environments?

• Consider asking:

Is there an env E in which M works

correctly?

– If yes, and we had one such E, how could we
use it in practice?

3

S. A. Seshia 5

General Setting

Module M Module C
VM

VC

State variables V = VC ∪∪∪∪ VM , VC ∩∩∩∩ VM = φ

C is “controller”

M’s output cannot be controlled.

S. A. Seshia 6

An Instance

bool l;

lock() {

assert(!l);

l := 1;

/* acquire lock */

...

}

unlock() {

assert(l);

l := 0;

/* release lock */

...

}

foo() {

...

while(*) {

if (*)

lock();

else

unlock();

}

...

}

M

Module A

{lock, unlock}

4

S. A. Seshia 7

An Instance

bool l;

lock() {

assert(!l);

l := 1;

/* acquire lock */

...

}

unlock() {

assert(l);

l := 0;

/* release lock */

...

}

foo() {

...

while(*) {

if (*)

lock();

else

unlock();

}

...

}

M

Module A

{lock,

unlock}

lock unlock

Module C

unlock

lock

{lock,

unlock}

S. A. Seshia 8

Controller Synthesis

• Given finite-state machine M and an LTL

formula ψ

• Is there a controller C which ensures that

M || C satisfies ψ ?

– If yes, how do we find such a C?

– If not, M is said to be uncontrollable (from its
initial states)

5

S. A. Seshia 9

Controller Synthesis

• Given finite-state machines M and an LTL

formula ψ

• Is there a controller C which ensures that

M || C satisfies ψ ?

– If yes, how do we find such a C?

– If not, M is said to be uncontrollable (from its
initial states)

• M is controllable from state s if considering s to be

initial, M is controllable

S. A. Seshia 10

Games

• We view the problem as a game between
the controller C and the system M

• Assume property ψ = G p

• Player M wins if M||C reaches an error
(¬¬¬¬ p) state

• C wins if it keeps M||C outside the error
states

• Assume perfect information: C and M have
perfect knowledge about each other

6

S. A. Seshia 11

Games on Graphs

• Defined over the state space S of M || C

• Asynchronous composition

– Each node/state is either a “M state” or a “C
state”

• Assume one module changes variables at a time

• “Turn-based” games

• Synchronous composition

– Both M and C simultaneously decide their

next states (moves) and move together

S. A. Seshia 12

Reachability Games

• Let p ⊆ S be a set of target states of M||C

Reachability objective requires us to visit

the set p

– i.e., find C s.t. M||C satisfies LTL formula ___ ?

p

7

S. A. Seshia 13

Safety Games

• Let p ⊆ S be the set of safe states

Safety objective requires us never to visit

any vertex outside p

– i.e., find C s.t. M||C satisfies LTL formula ___

p

S. A. Seshia 14

Games with Buchi Objectives

• Let p ⊆ S be a set of states

Buchi objective requires that the set p is

visited infinitely often

– i.e., find C s.t. M||C satisfies LTL formula ___

p

8

S. A. Seshia 15

Solving Safety Games

• Given: M, C, property Gp

– Assume synchronous composition

• What we want:

A strategy for C s.t. no matter what M
does, C can keep M||C within the region

satisfying p

• What is a “strategy for C” (informally)?

S. A. Seshia 16

Strategy σ

• For C: Mapping from a finite history of
states to next state values of VC

σC : Val(V)+ � Val(VC)

• Similarly, strategy for M is
σM : Val(V)+ � Val(VM)

• Taken together, σC and σM define the next
state for C||M

• C wins from initial state s if for every σM it
has a σC that keeps C||M in the safe states
– Note that initial state is important

9

S. A. Seshia 17

Memoryless Strategy σ

• For C: Mapping from current state to next

state values of VC

σC : Val(V) � Val(VC)

• Similarly, strategy for M is

σM : Val(V) � Val(VM)

• Taken together, σC and σM define the next
state for C||M

S. A. Seshia 18

Local Strategy

• The overall strategy comprises many

“local” decisions

– which state to go to next

• Given a state s = (sM, sC) how should M

and C choose their next states?

10

S. A. Seshia 19

Local Strategy

• The overall strategy comprises many

“local” decisions

– which state to go to next

• Given a state s = (sM, sC) how should M

and C choose their next states?

– No matter what C does, M wants to force it
into an error state (¬¬¬¬ p)

– No matter what M does, C wants to continue
satisfying p

S. A. Seshia 20

Controller Synthesis for Gp

• M chooses its next state according to its

transition relation R

• We want to compute a transition relation

(strategy) for C, σC so that p is always true

• Given a state s = (sM, sC),

What is σC(s, sC’) ?

11

S. A. Seshia 21

Controller Synthesis for Gp

• M chooses its next state according to its

transition relation R

• We want to compute a transition relation

(strategy) for C, σC so that p is always true

• Given a state s = (sM, sC),

σC(s, sC’)

= ∀∀∀∀ sM’ R(s, sM’) � p(s’)

= Set of all pairs (s, sC’) s.t. no matter what M does in

s, p holds in s’

S. A. Seshia 22

Solving Safety Games backwards

• We can work backwards from error states

• PreM(s)

= set of states from which, regardless of the
controller, M can enter an error (¬¬¬¬ p) state

= ∀∀∀∀ sC’ ∃∃∃∃ sM’ (R(s, sM’) ∧∧∧∧ ¬¬¬¬ p(s’))
– Note: Pre is used above in a different sense from the normal pre

operator

– If least fixed point of the following operator is
B, then controllable states are ¬¬¬¬ B

• ττττ(Z) = ¬¬¬¬ p(s) ∨∨∨∨ ∀∀∀∀ sC’ ∃∃∃∃ sM’ (R(s, sM’) ∧∧∧∧ Z)

12

S. A. Seshia 23

Early Error Detection

• We can use the game formulation to

speed up symbolic model checking of LTL

properties

• Idea: (for Gp)

– Given modules A and B

– Find all states of A that are controllable w.r.t.
Gp and similarly for B

• Denote by CA and CB

• Then check if A||B satisfies G(CA ∧∧∧∧ CB)

• Suppose this check fails. What do we know?

[de Alfaro, Henzinger, Mang, CAV’00]

S. A. Seshia 24

Early Error Detection

• Idea: (for Gp)

– Given modules A and B

– Find all states of A that are controllable w.r.t.

Gp and similarly for B

• Denote by CA and CB

• Then check if A||B satisfies G(CA ∧∧∧∧ CB)

• Suppose this check fails. What do we know?

– Either CA or CB is not satisfied in some state s of A||B

– Say CA: Thus, A is not controllable from s – no
environment can prevent it from reaching a ¬¬¬¬ p state!

– So we know that “A is doomed to fail” even before it fails!

13

S. A. Seshia 25

Pros of Early Error Detection

• Computing CA and CB does not require
composing A and B together
– Avoids state space explosion

• Model checking for G(CA ∧∧∧∧ CB) can find
bugs faster
– Reach uncontrollable states earlier

• Note: uncontrollable states are like the
“root cause” of the bug
– Useful for error localization

S. A. Seshia 26

Complexity

• Synthesis is (not surprisingly) harder than
verification

• Verification of LTL properties of finite-state
systems
– PSPACE

• Synthesis of finite-state systems to satisfy
an LTL objective
– 2EXPTIME-complete

– For Gp it is EXPTIME-complete

14

S. A. Seshia 27

Next class

• Model generation

