
1

EECS 219C: Computer-Aided Verification

Model Checking
Pushdown Systems

Sanjit A. Seshia

EECS, UC Berkeley

Acknowledgments:
S. Rajamani, S. Schwoon

S. A. Seshia 2

Today’s Lecture

• What are Pushdown Systems?

– Formal model

• Model Checking Algorithms

– Reachability Analysis

• Symbolic representation

• LTL Model Checking

• Details in a thesis posted on the webpage

• R. Jhala guest lecture: Application to Software
Model Checking

2

S. A. Seshia 3

Beyond Finite-State Systems

Need to handle procedure calls and recursion

S. A. Seshia 4

Beyond Finite-State Systems

l := 0;

l := 1;

Inlining procedure calls might work sometimes

3

S. A. Seshia 5

Pushdown Automaton

• Finite set of states plus one stack

– Stack can grow unbounded

• Instead of states, we talk of configurations

– Configuration = (State, Stack contents)

• (P, Γ, ∆, c0)

– P � finite set of states (control locations)

– Γ � finite stack alphabet

• ε denotes empty stack, other symbols: γ1, γ2, …

– ∆ ⊆⊆⊆⊆ (P x Γ) x (P x Γ*) � transition relation

– c0 ∈∈∈∈ P x Γ* � initial configuration

S. A. Seshia 6

Transition Relation

• ∆ ⊆⊆⊆⊆ (P x Γ) x (P x Γ*)

– (Current state, top stack symbol) �
(Next state, new top symbols)

– In practice, we can think of ∆ comprising the
following kinds of ‘rules’ / ‘actions’:

• R1: (p, γ) � (p’, ε) [POP]

• R2: (p, γ1) � (p’, γ2 γ1) [PUSH]

• R3: (p, γ1) � (p’, γ2) [SWAP or NOP]

• R4: (p, γ1) � (p’, γ2 γ3) [SWAP + PUSH]

– In theory: The right hand side can have any
finite number of stack symbols (but these are
not needed in practice)

4

S. A. Seshia 7

Programs as Pushdown Systems

• Given a single-threaded program with

variables of finite datatypes (global and

local) and procedure calls [no

pointers/dynamic memory allocation]

• What are the states P? Stack alphabet Γ?

S. A. Seshia 8

Infinite-State Systems?

• Pushdown automata are said to be

“infinite-state”.

Why? Is this true in practice?

5

S. A. Seshia 9

Model Checking

• Given a pushdown system, does it satisfy

an LTL formula φ?

– We will consider the simple case of
reachability analysis

– φ = G p

– Suppose we want to do explicit-state model
checking. What’s the challenge?

S. A. Seshia 10

Representation Issues

• In finite state model checking, we needed

to represent (finite sets of) states and

transitions

• For pushdown model checking, we need

to represent

– Configurations

– Transitions

– (potentially infinite) Sets of them

6

S. A. Seshia 11

Need for Symbolic Repn.

• Pushdown model checking inherently
needs to be symbolic
– to be complete (i.e., find all bugs)

• Representing infinitely many configs.

• Observation: The part that’s infinite is the
stack
– View the stack as a word in the language of

some finite automaton

– The set of possible stacks is the language
(but we need to define the role of P, too)

S. A. Seshia 12

Recap of Finite Automata

• A Finite Automaton is a 5-tuple

M = (S, Σ, R, S0, F)

– S � set of states

– Σ � finite alphabet

– R ⊆⊆⊆⊆ S x Σ x S � transition relation

– S0 � set of initial states

– F � set of accepting (final) states

• A word w ∈∈∈∈ Σ∗ is accepted by M if there’s a
path s0 f with s0 ∈∈∈∈ S0 and f ∈∈∈∈ Fw

7

S. A. Seshia 13

Symbolic Representation

• Given pushdown system (P, Γ, ∆, c0)

• A set of configurations is represented by a
finite automaton (S, Σ, R, S0, F) where
– S0 = P

– S ⊇⊇⊇⊇ P

– Σ = Γ

– Stack configuration (p, w) is represented as a
path from initial state p to a final state f with
edges labeled with the sequence of symbols in
w

S. A. Seshia 14

Reachability Analysis

• Start with (set of) initial / error state(s)

• Repeatedly compute set of next states,

going either

– Forward (next state operation = “post”)

• Post(S) = set of states reachable from S in one
step of the transition relation

– Backward (next state operation = “pre”)

• Pre(S) = set of states that can reach S in one step

8

S. A. Seshia 15

Backward Reachability

• C = set of configurations

– Identified with its finite automaton repn.

• Pre(C) = set of configs that can reach C by

applying one rule in transition relation R

• We want to compute Pre*(C)

– Iteratively compute Pre(C) until no new
configurations added

– Then check if the initial configuration is in
Pre*(C)

• Example: C = err config {p, lock() z* lock() z*}

S. A. Seshia 16

Backward Reachability for
Pushdown Systems

• One step of Pre(C) :

– Given

• Rule (p, γ) � (p’, w)

• Path p’ q in C

– Add an edge p q to C

• Intuition:

– If config c1 = (p’, ww’) is in C, then given

above rule, c2 = (p, γw’) is c1’s predecessor
and should be in C

w

γ

9

S. A. Seshia 17

Backward Reachability for
Pushdown Systems

• One step of Pre(C) :

– Given

• Rule (p, γ) � (p’, w)

• Path p’ q in C

– Add an edge p q to C

• Observe: no new states are added!

– Apart from initial states which are states of the
pushdown system (and possibly some other
pre-existing states)

w

γ

S. A. Seshia 18

Example: C = {p0, γ0 γ0 }

10

S. A. Seshia 19

Pre*(C) for the Example

S. A. Seshia 20

Rules in pre* computation

• 3 kinds of rules:

– (p, γ) � (q, ε)

• Add edge (p, γ, q)

– (p, γ) � (q, γ’)

• Add edge (p, γ, q’) for each (q, γ’, q’)

– (p, γ) � (q, γ1 γ2)

• Add edge (p, γ, q’’) for each {(q, γ1, q’), (q’, γ2, q’’)}

• How many times do we need to process

each kind of rule?

11

S. A. Seshia 21

Rules in pre* computation

• 3 kinds of rules:

– (p, γ) � (q, ε)

• Add edge (p, γ, q)

– (p, γ) � (q, γ’)

• Add edge (p, γ, q’) for each (q, γ’, q’)

– (p, γ) � (q, γ1 γ2)

• Add edge (p, γ, q’’) for each {(q, γ1, q’), (q’, γ2, q’’)}

• How many times do we need to process

each kind of rule?

JUST ONCE

POSSIBLY MANY TIMES

S. A. Seshia 22

Complexity of Pre*(C)

• N = number of states in C

• K = size of stack alphabet

• M = number of rules for pushdown system

• Assume we cycle through the rules on

each iteration, adding edges if any match

• What’s the asymptotic running time of the
Pre*(C) computation?

12

S. A. Seshia 23

Complexity of Pre*

• Turns out we can do better if we iterate

over edges rather than rules

• O(N2 M)

• Key is to process each edge just once

– Iterate through all rules that match that edge

– Add new 1-symbol RHS rules that correspond
to 2-symbol RHS rules matching that edge

– Details in Schwoon’s PhD thesis (posted
online)

S. A. Seshia 24

Schwoon’s Pre* Algorithm

13

S. A. Seshia 25

Forward Reachability Analysis

• Start with initial config (c0, ε)

– Single state finite automaton representation

• Post(C) = set of configs reached from C by

applying one rule in transition relation R

• We want to compute Post*(C)

– Iteratively compute Post(C) until no new
configurations added

– Then check if the error configuration is in
Post*(C)

S. A. Seshia 26

Computing Post*(C)

• One step of Post(C) :

– Given

• Rule (p, γ) � (p’, w)

• Path p q in C (path because of ε-moves)

– If w = ε add edge (p’, ε, q)

– If w = γ’ add edge (p’, γ’, q)

– If w = γ’ γ’’

• add a new state sp’γ’

• add (p’, γ’, sp’γ’) and (sp’γ’, γ’’,q)

γ

14

S. A. Seshia 27

Computing Post*(C)

• One step of Post(C) :
– Given

• Rule (p, γ) � (p’, w)

• Path p q in C (path because of ε-moves)

– If w = ε add edge (p’, ε, q)

– If w = γ’ add edge (p’, γ’, q)

– If w = γ’ γ’’
• add a new state sp’γ’

• add (p’, γ’, sp’γ’) and (sp’γ’, γ’’,q)

• How many new states might we add?

γ

Exercise: Compute Post*(C) for previous example

S. A. Seshia 28

More Symbolic Representation

• Notice that the rules are “explicit-state”

• Typically these can be represented

symbolically

– p ∈∈∈∈ P is a pair (pc, g)

• pc = prog counter, g – global variables

– γ ∈∈∈∈ Γ is a pair (proc, l)

• proc – procedure calls/returns, l – local variables

– Rule’s behavior on global/local variables can
be represented as a relation R(<g,l>,<g’,l’>)
by a Boolean function

15

S. A. Seshia 29

More Symbolic Representation

• Rules can be represented symbolically
– p ∈∈∈∈ P is a pair (pc, g)

– γ ∈∈∈∈ Γ is a pair (proc, l)

– Rule’s behavior on global/local variables can
be represented as a relation R(<g,l>,<g’,l’>)
by a Boolean function

• Set of configs encoded by a finite
automaton with expanded alphabet
– Edges are labeled with these Boolean

functions (BDDs) representing next-state
relations

S. A. Seshia 30

Symbolically Computing Pre*

16

S. A. Seshia 31

LTL Model Checking

• Similar strategy to finite-state systems

• Convert negation of LTL formula into Buchi

automaton

• Construct product of Pushdown system P and
Buchi automaton B

– Transitions of both are synchronized

– Accepting state of product has control part of P’s

configuration as accepting state of B

• Check if such a config. occurs infinitely often

• Run-time: O(|P|2 . |B|3 . |∆|)

S. A. Seshia 32

Next class

• Game Theory and Verification

– Modeling open systems

– Controller synthesis

