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Today’s Lecture

• What are Pushdown Systems?

– Formal model

• Model Checking Algorithms

– Reachability Analysis

• Symbolic representation 

• LTL Model Checking

• Details in a thesis posted on the webpage

• R. Jhala guest lecture: Application to Software 
Model Checking
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Beyond Finite-State Systems

Need to handle procedure calls and recursion
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Beyond Finite-State Systems

l := 0;

l := 1;

Inlining procedure calls might work sometimes



3

S. A. Seshia 5

Pushdown Automaton

• Finite set of states plus one stack 

– Stack can grow unbounded

• Instead of states, we talk of configurations

– Configuration = (State, Stack contents)

• (P, Γ, ∆, c0)

– P � finite set of states (control locations)

– Γ � finite stack alphabet

• ε denotes empty stack, other symbols: γ1, γ2, …

– ∆ ⊆⊆⊆⊆ (P x Γ) x (P x Γ*) � transition relation

– c0 ∈∈∈∈ P x Γ* � initial configuration
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Transition Relation

• ∆ ⊆⊆⊆⊆ (P x Γ) x (P x Γ*)

– (Current state, top stack symbol) �
(Next state, new top symbols)

– In practice, we can think of ∆ comprising the 
following kinds of ‘rules’ / ‘actions’:

• R1:  (p, γ)  � (p’, ε)       [POP]

• R2:  (p, γ1) � (p’, γ2 γ1)  [PUSH]

• R3:  (p, γ1) � (p’, γ2)      [SWAP or NOP]

• R4:  (p, γ1) � (p’, γ2 γ3)  [SWAP + PUSH]

– In theory: The right hand side can have any 
finite number of stack symbols (but these are 
not needed in practice)
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Programs as Pushdown Systems

• Given a single-threaded program with 

variables of finite datatypes (global and 

local) and procedure calls [no 

pointers/dynamic memory allocation] 

• What are the states P? Stack alphabet Γ? 
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Infinite-State Systems?

• Pushdown automata are said to be 

“infinite-state”. 

Why? Is this true in practice?
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Model Checking

• Given a pushdown system, does it satisfy 

an LTL formula φ?

– We will consider the simple case of 
reachability analysis

– φ = G p

– Suppose we want to do explicit-state model 
checking. What’s the challenge?
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Representation Issues

• In finite state model checking, we needed 

to represent (finite sets of) states and 

transitions

• For pushdown model checking, we need 

to represent 

– Configurations

– Transitions

– (potentially infinite) Sets of them



6

S. A. Seshia 11

Need for Symbolic Repn.

• Pushdown model checking inherently 
needs to be symbolic 
– to be complete (i.e., find all bugs) 

• Representing infinitely many configs.

• Observation: The part that’s infinite is the 
stack
– View the stack as a word in the language of 

some finite automaton

– The set of possible stacks is the language 
(but we need to define the role of P, too)

S. A. Seshia 12

Recap of Finite Automata

• A Finite Automaton is a 5-tuple                 

M  = (S, Σ, R, S0, F)

– S � set of states

– Σ � finite alphabet

– R ⊆⊆⊆⊆ S x Σ x S � transition relation

– S0 � set of initial states

– F � set of accepting (final) states

• A word w ∈∈∈∈ Σ∗ is accepted by M if there’s a 
path s0 f with s0 ∈∈∈∈ S0 and f ∈∈∈∈ Fw
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Symbolic Representation

• Given pushdown system (P, Γ, ∆, c0)

• A set of configurations is represented by a 
finite automaton (S, Σ, R, S0, F) where
– S0 = P 

– S ⊇⊇⊇⊇ P

– Σ = Γ

– Stack configuration (p, w) is represented as a 
path from initial state p to a final state f with 
edges labeled with the sequence of symbols in 
w  
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Reachability Analysis

• Start with (set of) initial / error state(s) 

• Repeatedly compute set of next states, 

going either

– Forward (next state operation = “post”)

• Post(S) = set of states reachable from S in one 
step of the transition relation

– Backward (next state operation = “pre”)

• Pre(S) = set of states that can reach S in one step
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Backward Reachability

• C = set of configurations

– Identified with its finite automaton repn.

• Pre(C) = set of configs that can reach C by 

applying one rule in transition relation R

• We want to compute Pre*(C)

– Iteratively compute Pre(C) until no new 
configurations added

– Then check if the initial configuration is in 
Pre*(C)

• Example: C = err config {p, lock() z* lock() z*}
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Backward Reachability for 
Pushdown Systems

• One step of Pre(C) :

– Given

• Rule (p, γ) � (p’, w)

• Path p’ q in C

– Add an edge p       q to C

• Intuition:

– If config c1 = (p’, ww’) is in C, then given 

above rule, c2 = (p, γw’) is c1’s predecessor 
and should be in C

w

γ
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Backward Reachability for 
Pushdown Systems

• One step of Pre(C) :

– Given

• Rule (p, γ) � (p’, w)

• Path p’ q in C

– Add an edge p       q to C

• Observe: no new states are added!

– Apart from initial states which are states of the 
pushdown system (and possibly some other 
pre-existing states)

w

γ
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Example: C = {p0, γ0 γ0 }
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Pre*(C) for the Example
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Rules in pre* computation

• 3 kinds of rules:

– (p, γ) � (q, ε)

• Add edge (p, γ, q)

– (p, γ) � (q, γ’)

• Add edge (p, γ, q’) for each (q, γ’, q’)

– (p, γ) � (q, γ1 γ2) 

• Add edge (p, γ, q’’) for each {(q, γ1, q’),  (q’, γ2, q’’)}

• How many times do we need to process 

each kind of rule?
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Rules in pre* computation

• 3 kinds of rules:

– (p, γ) � (q, ε)

• Add edge (p, γ, q)

– (p, γ) � (q, γ’)

• Add edge (p, γ, q’) for each (q, γ’, q’)

– (p, γ) � (q, γ1 γ2) 

• Add edge (p, γ, q’’) for each {(q, γ1, q’),  (q’, γ2, q’’)}

• How many times do we need to process 

each kind of rule?

JUST ONCE

POSSIBLY MANY TIMES
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Complexity of Pre*(C)

• N = number of states in C 

• K = size of stack alphabet

• M = number of rules for pushdown system

• Assume we cycle through the rules on 

each iteration, adding edges if any match

• What’s the asymptotic running time of the 
Pre*(C) computation?
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Complexity of Pre*

• Turns out we can do better if we iterate 

over edges rather than rules

• O( N2 M )

• Key is to process each edge just once

– Iterate through all rules that match that edge

– Add new 1-symbol RHS rules that correspond 
to 2-symbol RHS rules matching that edge

– Details in Schwoon’s PhD thesis (posted 
online)
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Schwoon’s Pre* Algorithm
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Forward Reachability Analysis

• Start with initial config (c0, ε) 

– Single state finite automaton representation

• Post(C) = set of configs reached from C by 

applying one rule in transition relation R

• We want to compute Post*(C)

– Iteratively compute Post(C) until no new 
configurations added

– Then check if the error configuration is in 
Post*(C)
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Computing Post*(C)

• One step of Post(C) :

– Given

• Rule (p, γ) � (p’, w)

• Path p             q in C (path because of ε-moves)

– If w = ε add edge (p’, ε, q)

– If w = γ’ add edge (p’, γ’, q)

– If w = γ’ γ’’

• add a new state sp’γ’

• add (p’, γ’, sp’γ’) and (sp’γ’, γ’’,q)

γ
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Computing Post*(C)

• One step of Post(C) :
– Given

• Rule (p, γ) � (p’, w)

• Path p             q in C (path because of ε-moves)

– If w = ε add edge (p’, ε, q)

– If w = γ’ add edge (p’, γ’, q)

– If w = γ’ γ’’
• add a new state sp’γ’

• add (p’, γ’, sp’γ’) and (sp’γ’, γ’’,q)

• How many new states might we add?

γ

Exercise: Compute Post*(C) for previous example
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More Symbolic Representation

• Notice that the rules are “explicit-state”

• Typically these can be represented 

symbolically

– p ∈∈∈∈ P is a pair (pc, g)

• pc = prog counter, g – global variables

– γ ∈∈∈∈ Γ is a pair (proc, l)

• proc – procedure calls/returns, l – local variables

– Rule’s behavior on global/local variables can 
be represented as a relation R(<g,l>,<g’,l’>) 
by a Boolean function 
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More Symbolic Representation

• Rules can be represented symbolically
– p ∈∈∈∈ P is a pair (pc, g)

– γ ∈∈∈∈ Γ is a pair (proc, l)

– Rule’s behavior on global/local variables can 
be represented as a relation R(<g,l>,<g’,l’>) 
by a Boolean function

• Set of configs encoded by a finite 
automaton with expanded alphabet
– Edges are labeled with these Boolean 

functions (BDDs) representing next-state 
relations
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Symbolically Computing Pre*
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LTL Model Checking

• Similar strategy to finite-state systems

• Convert negation of LTL formula into Buchi

automaton

• Construct product of Pushdown system P and 
Buchi automaton B

– Transitions of both are synchronized

– Accepting state of product has control part of P’s 

configuration as accepting state of B 

• Check if such a config. occurs infinitely often 

• Run-time: O(|P|2 . |B|3 . |∆|)
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Next class

• Game Theory and Verification

– Modeling open systems

– Controller synthesis


