Model Checking Pushdown Systems

Sanjit A. Seshia EECS, UC Berkeley

Acknowledgments: S. Rajamani, S. Schwoon

Today's Lecture

- · What are Pushdown Systems?
 - Formal model
- Model Checking Algorithms
 - Reachability Analysis
- Symbolic representation
- LTL Model Checking
- Details in a thesis posted on the webpage
- R. Jhala guest lecture: Application to Software Model Checking

Beyond Finite-State Systems

```
void m() {
    if (?) {
        if (?) return;
        s(); right();
        if (?) m();
        if (?) m();
    }
} else {
        up(); m(); down();
        main() {
        s();
}
```

Need to handle procedure calls and recursion

S. A. Seshia

3

Beyond Finite-State Systems

```
bool 1; /* global variable */
                                   bool g (bool x) {
                                        return !x;
void lock() {
   if (1) ERROR;
        1 := 1;
                                  void main() {
    ··· /* acquire a lock */
                                       bool a,b;
                                        1,a := 0,0;
void unlock() {
                                        lock();
    if (!1) ERROR;
                                      b := g(a);
    ··· /* release the lock */
                                       unlock();
        1 := 0;
```

Inlining procedure calls might work sometimes

S. A. ၁৮১111a

Pushdown Automaton

- Finite set of states plus one stack
 - Stack can grow unbounded
- Instead of states, we talk of configurations
 - Configuration = (State, Stack contents)
- (P, Γ , Δ , c_0)
 - P → finite set of states (control locations)
 - $-\Gamma \rightarrow$ finite stack alphabet
 - ϵ denotes empty stack, other symbols: $\gamma_1, \gamma_2, \dots$
 - $-\Delta \subseteq (P \times \Gamma) \times (P \times \Gamma^*) \rightarrow \text{transition relation}$
 - $-c_0$ ∈ P x Γ^* → initial configuration

S. A. Seshia

5

Transition Relation

- $\Delta \subseteq (P \times \Gamma) \times (P \times \Gamma^*)$
 - (Current state, top stack symbol) →
 (Next state, new top symbols)
 - In practice, we can think of Δ comprising the following kinds of 'rules' / 'actions':
 - R1: $(p, \gamma) \rightarrow (p', \varepsilon)$ [POP]
 - R2: $(p, \gamma_1) \rightarrow (p', \gamma_2, \gamma_1)$ [PUSH]
 - R3: $(p, \gamma_1) \rightarrow (p', \gamma_2)$ [SWAP or NOP]
 - R4: $(p, \gamma_1) \rightarrow (p', \gamma_2 \gamma_3)$ [SWAP + PUSH]
 - In theory: The right hand side can have any finite number of stack symbols (but these are not needed in practice)

S. A. Seshia

Programs as Pushdown Systems

- Given a single-threaded program with variables of finite datatypes (global and local) and procedure calls [no pointers/dynamic memory allocation]
- What are the states P? Stack alphabet Γ ?

S. A. Seshia

7

Infinite-State Systems?

 Pushdown automata are said to be "infinite-state".

Why? Is this true in practice?

S. A. Seshia

°l

Model Checking

- Given a pushdown system, does it satisfy an LTL formula φ?
 - We will consider the simple case of reachability analysis
 - $\phi = G p$
 - Suppose we want to do explicit-state model checking. What's the challenge?

S. A. Seshia

9

Representation Issues

- In finite state model checking, we needed to represent (finite sets of) states and transitions
- For pushdown model checking, we need to represent
 - Configurations
 - Transitions
 - (potentially infinite) Sets of them

S. A. Seshia

Need for Symbolic Repn.

- Pushdown model checking inherently needs to be symbolic
 - to be complete (i.e., find all bugs)
 - · Representing infinitely many configs.
- Observation: The part that's infinite is the stack
 - View the stack as a word in the language of some finite automaton
 - The set of possible stacks is the language (but we need to define the role of P, too)

S. A. Seshia

Recap of Finite Automata

- A Finite Automaton is a 5-tuple
 M = (S, Σ, R, S₀, F)
 - $-S \rightarrow set of states$
 - $-\Sigma \rightarrow$ finite alphabet
 - R ⊆ S x Σ x S → transition relation
 - $-S_0 \rightarrow$ set of initial states
 - F → set of accepting (final) states
- A word $w \in \Sigma^*$ is accepted by M if there's a path $s_0 \xrightarrow{w} f$ with $s_0 \in S_0$ and $f \in F$

Symbolic Representation

- Given pushdown system (P, Γ, Δ, c₀)
- A set of configurations is represented by a finite automaton (S, Σ, R, S₀, F) where
 - $-S_0 = P$
 - $-S\supseteq P$
 - $-\Sigma = \Gamma$
 - Stack configuration (p, w) is represented as a path from initial state p to a final state f with edges labeled with the sequence of symbols in w

S. A. Seshia

Reachability Analysis

- Start with (set of) initial / error state(s)
- Repeatedly compute set of next states, going either
 - Forward (next state operation = "post")
 - Post(S) = set of states reachable from S in one step of the transition relation
 - Backward (next state operation = "pre")
 - Pre(S) = set of states that can reach S in one step

Backward Reachability

- C = set of configurations
 - Identified with its finite automaton repn.
- Pre(C) = set of configs that can reach C by applying one rule in transition relation R
- We want to compute Pre*(C)
 - Iteratively compute Pre(C) until no new configurations added
 - Then check if the initial configuration is in Pre*(C)
- Example: C = err config {p, lock() z* lock() z*}

S. A. Seshia

15

Backward Reachability for Pushdown Systems

- One step of Pre(C):
 - Given
 - Rule $(p, \gamma) \rightarrow (p', w)$
 - Path p' w q in C
 - Add an edge $p \xrightarrow{\gamma} q$ to C
- Intuition:
 - If config $c_1 = (p', ww')$ is in C, then given above rule, $c_2 = (p, \gamma w')$ is c_1 's predecessor and should be in C

Backward Reachability for Pushdown Systems

- One step of Pre(C):
 - Given
 - Rule $(p, \gamma) \rightarrow (p', w)$
 - Path p' w q in C
 - Add an edge $p \xrightarrow{\gamma} q$ to C
- Observe: no new states are added!
 - Apart from initial states which are states of the pushdown system (and possibly some other pre-existing states)

S. A. Seshia

Example: $C = \{p_0, \gamma_0 \gamma_0 \}$

$$\Delta = \{r_1, r_2, r_3, r_4\}
r_1 = \langle p_0, \gamma_0 \rangle \hookrightarrow \langle p_1, \gamma_1 \gamma_0 \rangle
r_2 = \langle p_1, \gamma_1 \rangle \hookrightarrow \langle p_2, \gamma_2 \gamma_0 \rangle
r_3 = \langle p_2, \gamma_2 \rangle \hookrightarrow \langle p_0, \gamma_1 \rangle
r_4 = \langle p_0, \gamma_1 \rangle \hookrightarrow \langle p_0, \varepsilon \rangle$$

S. A. Seshia

19

Rules in pre* computation

- 3 kinds of rules:
 - $-(p, \gamma) \rightarrow (q, \varepsilon)$
 - Add edge (p, γ , q)
 - $-(p, \gamma) \rightarrow (q, \gamma')$
 - Add edge (p, $\gamma,$ q') for each (q, $\gamma',$ q')
 - $-(p, \gamma) \rightarrow (q, \gamma_1, \gamma_2)$
 - Add edge (p, $\gamma,$ q'') for each {(q, $\gamma_1,$ q'), (q', $\gamma_2,$ q'')}
- How many times do we need to process each kind of rule?

S. A. Seshia

Rules in pre* computation

- 3 kinds of rules:
 - $-(p, \gamma) \rightarrow (q, \varepsilon)$ JUST ONCE
 - Add edge (p, γ, q)
 - $-(p, \gamma) \rightarrow (q, \gamma')$ POSSIBLY MANY TIMES
 - Add edge (p, γ, q') for each (q, γ', q')
 - $-(p, \gamma) \rightarrow (q, \gamma_1, \gamma_2)$
 - Add edge (p, γ , q'') for each {(q, γ_1 , q'), (q', γ_2 , q'')}
- How many times do we need to process each kind of rule?

S. A. Seshia

Complexity of Pre*(C)

- N = number of states in C
- K = size of stack alphabet
- M = number of rules for pushdown system
- Assume we cycle through the rules on each iteration, adding edges if any match
- What's the asymptotic running time of the Pre*(C) computation?

Complexity of Pre*

- Turns out we can do better if we iterate over edges rather than rules
- O(N² M)
- Key is to process each edge just once
 - Iterate through all rules that match that edge
 - Add new 1-symbol RHS rules that correspond to 2-symbol RHS rules matching that edge
 - Details in Schwoon's PhD thesis (posted online)

S. A. Seshia

Schwoon's Pre* Algorithm

```
Algorithm 1
Input: a pushdown system \mathcal{P} = (P, \Gamma, \Delta, c_0);
             a \mathcal{P}-Automaton \mathcal{A} = (\Gamma, Q, \rightarrow_0, P, F) without transitions into P
Output: the set of transitions of A_{pre^*}
 1 rel := \emptyset; trans := \rightarrow_0; \Delta' := \emptyset;
 2 for all \langle p, \gamma \rangle \hookrightarrow \langle p', \varepsilon \rangle \in \Delta do trans := trans \cup \{(p, \gamma, p')\};
 3 while trans \neq \emptyset do
         pop t = (q, \gamma, q') from trans;
          if t \notin rel then
               rel := rel \cup \{t\};
               for all \langle p_1, \gamma_1 \rangle \hookrightarrow \langle q, \gamma \rangle \in (\Delta \cup \Delta') do
 7
                  trans := trans \cup \{(p_1, \gamma_1, q')\};
               for all \langle p_1, \gamma_1 \rangle \hookrightarrow \langle q, \gamma \gamma_2 \rangle \in \Delta do
 9
10
                   \Delta' := \Delta' \cup \{ \langle p_1, \gamma_1 \rangle \hookrightarrow \langle q', \gamma_2 \rangle \};
                    for all (q', \gamma_2, q'') \in rel do
11
12
                       trans := trans \cup \{(p_1, \gamma_1, q'')\};
13 return rel
```

Figure 3.3: An algorithm for computing pre^* .

S. A. Ses

Forward Reachability Analysis

- Start with initial config (c_0 , ϵ)
 - Single state finite automaton representation
- Post(C) = set of configs reached from C by applying one rule in transition relation R
- We want to compute Post*(C)
 - Iteratively compute Post(C) until no new configurations added
 - Then check if the error configuration is in Post*(C)

S. A. Seshia

25

Computing Post*(C)

- One step of Post(C):
 - Given
 - Rule $(p, \gamma) \rightarrow (p', w)$
 - Path p $\xrightarrow{\gamma}$ q in C (path because of ε -moves)
 - If $w = \varepsilon$ add edge (p', ε , q)
 - If $w = \gamma'$ add edge (p', γ', q)
 - If $\mathbf{w} = \gamma' \gamma''$
 - add a new state $s_{p'\gamma}$
 - add (p', $\gamma',\,s_{p'\gamma'})$ and $(s_{p'\gamma'},\,\gamma'',q)$

Computing Post*(C)

- One step of Post(C):
 - Given
 - Rule $(p, \gamma) \rightarrow (p', w)$
 - Path p γ q in C (path because of ϵ -moves)
 - If $w = \varepsilon$ add edge (p', ε , q)
 - If $w = \gamma'$ add edge (p', γ', q)
 - If $w = \gamma' \gamma''$
 - add a new state spirit
 - add (p', γ' , $s_{p'\gamma'}$) and ($s_{p'\gamma'}$, γ'' ,q)
- How many new states might we add?

Exercise: Compute Post*(C) for previous example

S. A. Seshia

More Symbolic Representation

- Notice that the rules are "explicit-state"
- Typically these can be represented symbolically
 - $-p \in P$ is a pair (pc, g)
 - pc = prog counter, g global variables
 - $-\gamma \in \Gamma$ is a pair (proc, l)
 - proc procedure calls/returns, I local variables
 - Rule's behavior on global/local variables can be represented as a relation $R(\langle g, l \rangle, \langle g', l' \rangle)$ by a Boolean function

S. A. Seshia

28

More Symbolic Representation

- Rules can be represented symbolically
 - $-p \in P$ is a pair (pc, g)
 - $-\gamma \in \Gamma$ is a pair (proc, I)
 - Rule's behavior on global/local variables can be represented as a relation R(<g,l>,<g',l'>) by a Boolean function
- Set of configs encoded by a finite automaton with expanded alphabet
 - Edges are labeled with these Boolean functions (BDDs) representing next-state relations

S. A. Seshia

Symbolically Computing Pre*

If $\langle p, \gamma \rangle \hookrightarrow \langle p', w \rangle$ and $p' \xrightarrow{w} q$, then add $p \xrightarrow{\gamma} q$.

- (i) If $\langle p,\gamma\rangle \xleftarrow[R]} \langle p',\varepsilon\rangle,$ then add $p\xrightarrow[[R]]{\gamma} p'.$
- (ii) If $\langle p, \gamma \rangle \xrightarrow[[R]]{} \langle p', \gamma' \rangle$ and $p' \xrightarrow[[R_1]]{} q$, then add $p \xrightarrow[[R']]{} q$ where $R' = \{ (g, l, g_1) \mid \exists g_0, l_1 \colon (g, l, g_0, l_1) \in R \land (g_0, l_1, g_1) \in R_1 \}.$
- (iii) If $\langle p, \gamma \rangle \xrightarrow[R]{} \langle p', \gamma' \gamma'' \rangle$ and $p' \xrightarrow[R_1]{} q' \xrightarrow[R_2]{} q$, then add $p \xrightarrow[R']{} q$ where $R' = \{ (g, l, g_2) \mid \exists g_0, l_1, g_1, l_2 \colon (g, l, g_0, l_1) \in R \\ \land (g_0, l_1, g_1) \in R_1 \land (g_1, l_2, g_2) \in R_2 \}.$

LTL Model Checking

- Similar strategy to finite-state systems
- Convert negation of LTL formula into Buchi automaton
- Construct product of Pushdown system P and Buchi automaton B
 - Transitions of both are synchronized
 - Accepting state of product has control part of P's configuration as accepting state of B
 - · Check if such a config. occurs infinitely often
- Run-time: O(|P|² . |B|³ . |Δ|)

S. A. Seshia 31

Next class

- Game Theory and Verification
 - Modeling open systems
 - Controller synthesis

S. A. Seshia 32