EECS 219C: Computer-Aided Verification

Model Checking
Pushdown Systems

Sanijit A. Seshia
EECS, UC Berkeley

Acknowledgments:
S. Rajamani, S. Schwoon

Today’s Lecture

» What are Pushdown Systems?
— Formal model

* Model Checking Algorithms
— Reachability Analysis

« Symbolic representation

» LTL Model Checking

» Details in a thesis posted on the webpage

« R. Jhala guest lecture: Application to Software
Model Checking

S. A. Seshia

Beyond Finite-State Systems

void m() { void s() {
if (7) { if (?) return;
s(); right(); up(); m(); down();
if (7) m(); }
b elze {
up(); m(); down(); main{() {
} a();
} 1

!

Need to handle procedure calls and recursion
S. A. Seshia

Beyond Finite-State Systems

bool 1; /* global variable */ bool g (bool x)
return !x;
void lock() { !
if (1) ERROR;
1 :=1; void main() {
- /* acquire a lock */ boel a,b;
} l,a := 0,0;
void unlock() { lock();
if (!1) ERROER; b = gla);
- /* release the lock */ unleck();
1l := 0;
} 1

1

Inlining procedure calls might work sometimes

S. A- oesiid

Pushdown Automaton

 Finite set of states plus one stack
— Stack can grow unbounded

* Instead of states, we talk of configurations
— Configuration = (State, Stack contents)

« (P, T, A, cyp)
— P - finite set of states (control locations)

— I' - finite stack alphabet
+ & denotes empty stack, other symbols: v;, v,, ...
— AC(PxT)x (P xTI™) - transition relation

— Cy € P xI'™™ > initial configuration

S. A. Seshia

Transition Relation

e AC(PxI)x(PxI™)
— (Current state, top stack symbol) >
(Next state, new top symbols)
— In practice, we can think of A comprising the
following kinds of ‘rules’ / ‘actions’:
*R1: (p,7) > (pe) [POP]
*R2: (p,v1) > (P’ v2v4) [PUSH]
*R3: (p,vy) 2 (P,7,) [SWAP or NOP]
* R4: (p,v4) 2> (P, ¥2 ¥5) [SWAP + PUSH]
— In theory: The right hand side can have any
finite number of stack symbols (but these are
not needed in practice)

S. A. Seshia

Programs as Pushdown Systems

» Given a single-threaded program with
variables of finite datatypes (global and
local) and procedure calls [no
pointers/dynamic memory allocation]

« What are the states P? Stack alphabet I'?

S. A. Seshia

Infinite-State Systems?

 Pushdown automata are said to be
“infinite-state”.
Why? Is this true in practice?

S. A. Seshia

Model Checking

» Given a pushdown system, does it satisfy
an LTL formula ¢?
— We will consider the simple case of
reachability analysis
- ¢0=Gp
— Suppose we want to do explicit-state model
checking. What’s the challenge?

S. A. Seshia

Representation Issues

* In finite state model checking, we needed
to represent (finite sets of) states and
transitions

» For pushdown model checking, we need
to represent
— Configurations
— Transitions
— (potentially infinite) Sets of them

S. A. Seshia

Need for Symbolic Repn.

» Pushdown model checking inherently
needs to be symbolic
—to be complete (i.e., find all bugs)
* Representing infinitely many configs.
* Observation: The part that’s infinite is the
stack

— View the stack as a word in the language of
some finite automaton

— The set of possible stacks is the language
(but we need to define the role of P, too)

S. A. Seshia

Recap of Finite Automata

» A Finite Automaton is a 5-tuple
M=(SX%R,S,F)
— S - set of states
— X - finite alphabet
— R C S xX xS - transition relation
— S, = set of initial states
— F = set of accepting (final) states
« A word w € X* is accepted by M if there’s a
path s,—"—fwiths, € Sjandf e F

S. A. Seshia

Symbolic Representation

» Given pushdown system (P, I, A, c,)
» A set of configurations is represented by a
finite automaton (S, £, R, S,, F) where

_S():P
- SDOP
- X=r

— Stack configuration (p, w) is represented as a
path from initial state p to a final state f with
edges labeled with the sequence of symbols in
W

S. A. Seshia

Reachability Analysis

« Start with (set of) initial / error state(s)

» Repeatedly compute set of next states,
going either
— Forward (next state operation = “post”)

» Post(S) = set of states reachable from S in one
step of the transition relation

— Backward (next state operation = “pre”)
» Pre(S) = set of states that can reach S in one step

S. A. Seshia

Backward Reachability

C = set of configurations

— ldentified with its finite automaton repn.
Pre(C) = set of configs that can reach C by
applying one rule in transition relation R
We want to compute Pre*(C)

— lteratively compute Pre(C) until no new
configurations added

— Then check if the initial configuration is in
Pre*(C)

Example: C = err config {p, lock() z* lock() z*}

S. A. Seshia

Backward Reachability for
Pushdown Systems

* One step of Pre(C) :
— Given
* Rule (p,v) 2> (p’, W)
e Pathp— %Y _,qinC
— Add an edge p-X-qto C

* Intuition:
— If config ¢, = (p’, ww’) is in C, then given
above rule, ¢, = (p, YW’) is ¢,’s predecessor
and should be in C

S. A. Seshia

Backward Reachability for
Pushdown Systems
* One step of Pre(C) :
— Given

* Rule (p,7) > (p’, W)
e« Pathp— %Y .qinC
— Add an edge p—Y-qto C

« Observe: no new states are added!

— Apart from initial states which are states of the
pushdown system (and possibly some other
pre-existing states)

S. A. Seshia

Example: C = {py, Yo Yo }

A={ry,ro,r3, ra}
@ r1 = (po,v0) < {P1,7170)
re = (P1.71) = (P2, 727%0)
ry = (P2,72) <= (Po. M)
re = (Po. 1) = (Po, €)

S. A. Seshia

Pre*(C) for the Example

S. A. Seshia

Rules in pre* computation

* 3 kinds of rules:

- (P, v) 2 (q, ¢
» Add edge (p, v, 9)

—(P,v) 2 (9, V)
« Add edge (p, v, q) foreach (g, Y, 9)

=P, 2 (@Y Vo)
* Add edge (p, v, ") for each {(q, v1,), (d’, %2, 9")}
* How many times do we need to process
each kind of rule?

S. A. Seshia

20

10

Rules in pre* computation

* 3 kinds of rules:
» Add edge (p, v, Q)

=P, Y) 2 (a,7) POSSIBLY MANY TIMES
« Add edge (p, Wh @7v,q)
- (ps Y) - (q’ Y1 YZ)
* Add edge (p, v, g") for each {(q, v1, O), (", 2, 9")}
 How many times do we need to process

each kind of rule?

S. A. Seshia

21

Complexity of Pre*(C)

N = number of states in C
K = size of stack alphabet
M = number of rules for pushdown system

Assume we cycle through the rules on
each iteration, adding edges if any match

What'’s the asymptotic running time of the
Pre*(C) computation?

S. A. Seshia

22

11

Complexity of Pre*

* Turns out we can do better if we iterate
over edges rather than rules

« O(N2M)
» Key is to process each edge just once

— Iterate through all rules that match that edge

— Add new 1-symbol RHS rules that correspond
to 2-symbol RHS rules matching that edge

— Details in Schwoon’s PhD thesis (posted
online)

S. A. Seshia 23

Schwoon’s Pre* Algorithm

Algorithm 1
Input: a pushdown system P = (P,T, A, oq);
a P-Automaton A = (I',), —q, P, F') without transitions into P
Output: the set of transitions of App.-
1 rel :=0; trans '= —q; A =1,

2 for all {p,v) — (p',c) € A do trans = trans U {(p,v,p") }:
3 while trans # 0 do

4 pop t =1(q,v,q') from trans;

5 if £ ¢ rel then

6 rel = rel L) {J‘}'.

ki for all {p1,) — -Z:q ~) € do
B trans = t'."{f‘-.f.'h I { |

9 for all {(py, v} = (g, v72)

10 A=A U{{p1.) — ¢, v}

11 for all (¢',~v2,4") € rel do

12 trans == trans U {(p1,11,¢") }

13 return rel

Figure 3.3: An algorithm for computing pre*.
S. A. Se: 24

12

Forward Reachability Analysis

« Start with initial config (c,, €)
— Single state finite automaton representation

» Post(C) = set of configs reached from C by
applying one rule in transition relation R

« We want to compute Post*(C)

— lteratively compute Post(C) until no new
configurations added

— Then check if the error configuration is in
Post*(C)

S. A. Seshia

25

Computing Post*(C)

* One step of Post(C) :
— Given
* Rule (p,7) > (p’, W)
» Path p v g in C (path because of e-moves)

—Ifw=¢ add edge (p, €, q)
—Ifw=7 addedge (p, Y, q)
—lfw=y7y

e add a new state Spry
»add (p’, ¥. Sy) @and (s, ¥7,Q)

S. A. Seshia

26

13

Computing Post*(C)

* One step of Post(C) :
— Given
* Rule (p,v) 2 (p’, W)
« Pathp vy qinC (path because of e-moves)

—Ifw=¢ add edge (p’, €, q)
—Ifw =9 addedge (p, Y, q)
—lfw=y7y

* add a new state Spry
¢ add (p’! Ya Sp’Y) and (Sp’y’! Y’!q)
« How many new states might we add?

S A Sech Exercise: Compute Post*(C) for previous example

More Symbolic Representation

» Notice that the rules are “explicit-state”

» Typically these can be represented
symbolically
— p € Pis apair (pc, g)
* pc = prog counter, g — global variables
— vy€is a pair (proc, I)
 proc — procedure calls/returns, | — local variables

— Rule’s behavior on global/local variables can
be represented as a relation R(<g,|>,<g’,I'>)
by a Boolean function

S. A. Seshia

28

14

More Symbolic Representation

* Rules can be represented symbolically

— p € Pis apair (pc, g)

— vy € I'is a pair (proc,)

— Rule’s behavior on global/local variables can
be represented as a relation R(<g,|>,<g’,I'>)
by a Boolean function

» Set of configs encoded by a finite
automaton with expanded alphabet

— Edges are labeled with these Boolean

functions (BDDs) representing next-state
relations

S. A. Seshia

29

Symbolically Computing Pre*

If {p,7) — (p',w) and p' == q, then add p = q.

(i) If {p,~) = {p',=), then add p

] w7

(i) If {p,~) T {p',~'y and p’ [;1]' g, then add p “;—] q where

R = {{g,L,0) | Fgo,l1: (g, L.go. l1) € R A (gn, Iy, 91) € Ry }.

r RN R i " u K ~y s .
A" and pf —4— ¢ —— ¢, then add p
I I (1] £l [R2] l I

Y. g where
Gl

(iii) If {p,~) ﬁ iy,
R ={(g,l,3) | 3go.li. 1. 12: (g.l. go. l1) € R
A (go i, 1) € BuA(gn,da, o) € R}

S. A. Seshia

30

15

LTL Model Checking

 Similar strategy to finite-state systems

« Convert negation of LTL formula into Buchi
automaton

» Construct product of Pushdown system P and
Buchi automaton B
— Transitions of both are synchronized

— Accepting state of product has control part of P’s
configuration as accepting state of B
+ Check if such a config. occurs infinitely often

- Run-time: O(|P|2.. [B[3 . A|)

S. A. Seshia

31

Next class

« Game Theory and Verification
— Modeling open systems
— Controller synthesis

S. A. Seshia

32

16

