Symmetry Reduction, Compositional Reasoning, Mu-Calculus

Sanjit A. Seshia EECS, UC Berkeley

Acknowledgments: T. Henzinger, K. McMillan, S. Rajamani

Today's Lecture

- Symmetry Reduction
 - Group states into equivalence classes by exploiting symmetries in the model
- · Compositional Reasoning
 - Exploiting modularity by "assume-guarantee" reasoning
- Mu-calculus & the "Property Hierarchy"

Symmetry

- Many systems have inherent symmetry
 - Overall system might be composed of k identical modules
 - E.g., a multi-processor system with k processors
 - E.g., a multi-threaded program with k threads executing the same code with same inputs
 - Anything with replicated structure
- Question: How can we detect and exploit the symmetry in the underlying state space for model checking?

S. A. Seshia

Symmetry in Behavior

- Given a system with two identical modules
 - Run: s_0 , s_1 , s_2 , ...
 - Trace: $L(s_0)$, $L(s_1)$, $L(s_2)$, ...
 - Each $s_i = (s_{i1}, s_{i2}, rest)$ comprises *values to variables* of both modules 1 and 2
 - If we can interchange these without changing the set of traces of the overall system, then there is symmetry in the system behavior

Exploiting Symmetry

- If a state space is symmetric, we can group states into equivalence classes
 - Just as in abstraction
- Resulting state graph/space is called "quotient" graph/space
 - Model check this quotient graph

S. A. Seshia

5

Quotient (first attempt)

```
\begin{array}{lll} M=(S,S_0,R,L)\\ Let \cong be \ an \ equivalence \ relation \ on \ S\\ Assume: \quad s\cong t \quad iff \quad L(s)=L(t)\\ & \quad \& \ s\in S_0 \quad iff \ t\in S_0\\ Quotient: \ M'=(S',S_0',R',L')\\ & \quad -S'=S/\cong \ , \ S_0'=S_0/\cong \ (states \ are \ equivalence \ classes \ with \ respect \ to \cong)\\ & \quad -R'([s],[t]) \ \ whenever \ R(s,t)\\ & \quad -L'([s])=L(s) \end{array}
```

Is that definition enough?

Suppose we want to check an invariant: Does M satisfy ϕ ?

Instead if we check:

Does quotient M' satisfy φ ?

If M' is constructed using the definition of \cong on the previous slide, will the above check generate spurious counterexamples?

S. A. Seshia

7

Stable Equivalences

```
Equivalence \cong is called stable if:
```

 $R(x, y) \Rightarrow$

for every s in [x]

there exists some t in [y] such that R (s,t)

Claim: Suppose \cong is stable, then:

M satisfies φ iff M' satisfies φ

(Why?)

S. A. Seshia

°l

Detecting Symmetry

- Given symmetry expressed as an equivalence relation between states, we know how to exploit it
- How do we detect/compute this equivalence relation?
 - Need to characterize it more formally

S. A. Seshia

9

Symmetry as Permutation

- Symmetry in the state space can be viewed as "equivalence under permutation"
- Permute the set of states so that the set of traces remains the same
 - A subset of states that remains the same under permutation forms the needed equivalence class
- A representation of all possible such permutations represents symmetry in the system

S. A. Seshia

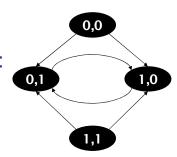
Automorphisms

A permutation function

 $f:S\to S$

is an automorphism if:

 $R(s, t) \Leftrightarrow R(f(s), f(t))$



What is an example automorphism for this state space?

S. A. Seshia

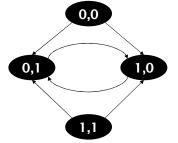
11

Automorphisms

f:
$$f(0,0) = 1,1$$
 $f(1,1) = 0,0$
 $f(0,1) = 0,1$ $f(1,0) = 1,0$

g:
$$g(0,0) = 0,0$$
 $g(1,1) = 1,1$
 $g(0,1) = 1,0$ $g(1,0) = 0,1$

$$A = \{ f, g, f \circ g, id \}$$



The set of all automorphisms forms a group!

S. A. Seshia

Equivalence using Automorphisms

```
Let s \cong t
if there is some automorphism f such that f(s) = t (and L(s) = L(t) \land s \in S_0 iff t \in S_0)
```

The equivalence classes of an automorphism (sets mapped to themselves) are called orbits

Claim 1: \cong is an equivalence

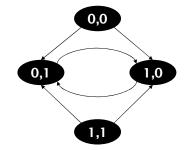
Claim 2: \cong is stable (why?)

S. A. Seshia

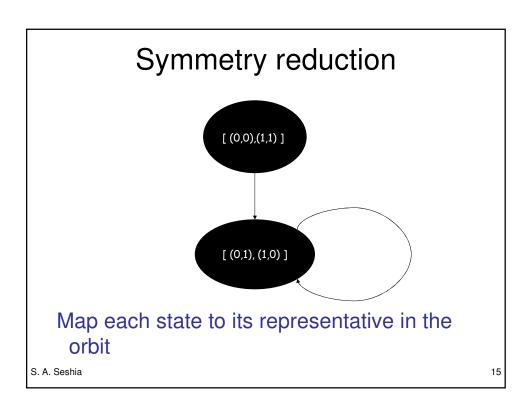
13

Orbits

[(0,1),(1,0)]



S. A. Seshia



How Symmetry Reduction works in practice

- A permutation (automorphism) group is manually constructed
 - Syntactically specify which modules are identical
- Orbit relation (equivalence relation) automatically generated from this
 - Using fixpoint computation (MC, Sec. 14.3)
- An (lexicographically smallest) element of each equivalence class is picked as its representative
- S₀' and R' generated from orbit relation
- Model checking explores only representative states

Symmetry reduction

- Implemented in many model checkers
 - E.g., SMV, Murφ (finite-state systems), Brutus (security protocols)

S. A. Seshia

Compositional Reasoning

Need for Compositional Reasoning

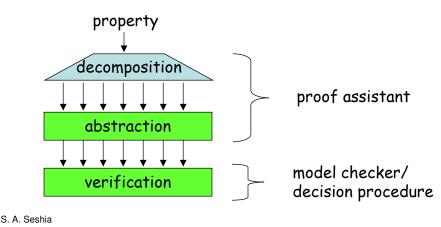
- Model checking "flat" designs/programs does not scale
 - Can be applied locally, to small modules
 - Globally to simplified models
- Model checking simplified, flat designs is mainly a "best-effort debugging" tool

How do we scale up the method so we can use it for "verification", not just "debugging"?

S. A. Seshia

Compositional Reasoning: Divide-and-Conquer

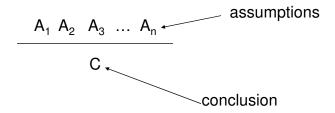
 Idea: use proof techniques to reduce a property to easier, localized properties.



10

Notation

Proof rule specified as:



S. A. Seshia

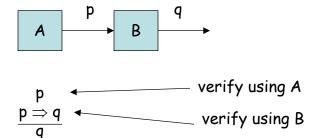
21

Assume/Guarantee Reasoning

- · System and its Environment
- Each makes an assumption about the other's behavior
- In return, each guarantees something about its own behavior
- · Come up with a proof rule
 - Assumptions are what we verify
 - Conclusion is the desired property

S. A. Seshia

Simple assume/guarantee proof

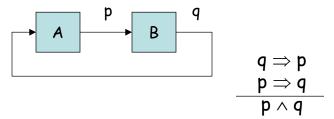


- Thus, we localize the verification process
- Note abstraction is needed to benefit from decomposition (why?)

S. A. Seshia

Mutual property dependence

What about the case of mutual dependence?



Note, this doesn't work (why?)

"Circular" compositional proofs

- Let p → q stand for
 "if p up to time t-1, then q at t"
- Equivalent in LTL of

· Now we can reason as follows:

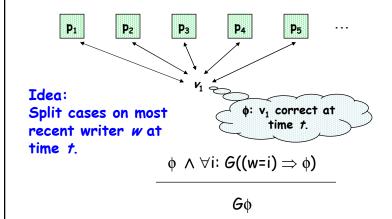
$$q \rightarrow p$$
 verify using A
$$\frac{p \rightarrow q}{Gp \wedge Gq}$$
 verify using B

That is, A only has to "behave" as long as B does, and vice-versa.

S. A. Seshia

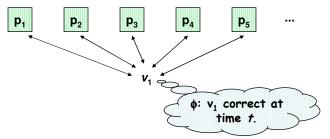
25

Temporal case splitting



Rule can be used to focus within large process arrays ... but still need to deal with interdependencies

S. A. Seshia



To prove case w=i at time t, assume general case up to t-1:

$$\phi \land \forall i : G(\phi \Rightarrow ((w=i) \Rightarrow X\phi)$$

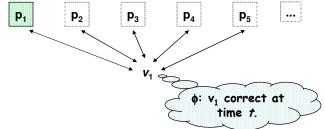
Gφ

S. A. Seshia

still have many cases to prove...

27

Reduction by symmetry



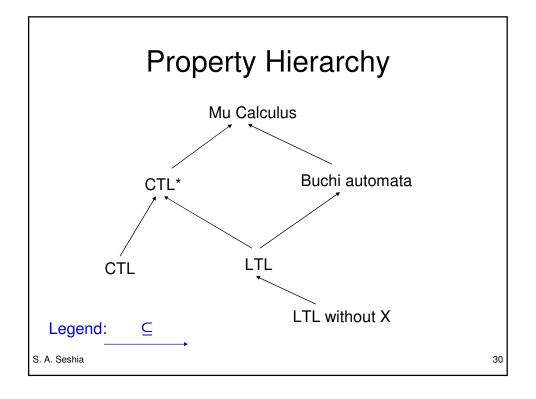
By symmetry, suffices to prove that writes by p_1 are O.K.:

$$\begin{array}{c} \varphi \; \wedge \textit{G}(\varphi \Rightarrow ((\text{w=1}) \Rightarrow X\varphi) \\ \hline \\ \textit{G}\varphi \end{array} \qquad \text{verify using p_1}$$

S. A. Seshia

The Mu-Calculus

S. A. Seshia



The Mu-Calculus

A recursive language for writing symbolic model-checking algorithms

EF
$$\alpha = \mu Z (\alpha \vee EX Z)$$

AG $\alpha = \nu Z (\alpha \wedge AX Z)$

S. A. Seshia

31

Mu-Calculus Syntax

$$\phi ::= \alpha \mid \neg \alpha \mid Z \mid$$

$$\phi \land \psi \mid \phi \lor \psi \mid$$

$$EX \phi \mid AX \phi \mid$$

$$\mu Z \phi \mid \nu Z \phi \mid$$

Z : region variable

Any predicate transformer thus expressed is monotonic, hence all fixed points exist

S. A. Seshia

Mu-Calculus Semantics

```
\begin{split} & [[\ \alpha\ ]]_{\mathsf{Env}} & := \ \  \, < \alpha > \\ & [[\ \neg \alpha\ ]]_{\mathsf{Env}} & := \ \Sigma \ \setminus \  \, < \alpha > \\ & [[\ \phi \land \psi\ ]]_{\mathsf{Env}} := \ [[\ \phi\ ]]_{\mathsf{Env}} \ \cap \ [[\ \psi\ ]]_{\mathsf{Env}} \\ & [[\ \phi \lor \psi\ ]]_{\mathsf{Env}} := \ [[\ \phi\ ]]_{\mathsf{Env}} \ \cup \ [[\ \psi\ ]]_{\mathsf{Env}} \ ) \\ & [[\ \mathsf{EX}\ \phi\ ]]_{\mathsf{Env}} := \ \  \, \forall \mathsf{pre}(\ [[\ \phi\ ]]_{\mathsf{Env}} \ ) \end{split}
```

Env maps each region variable to a region

 Σ is the universe

pre and ∀pre compute set of previous states

S. A. Seshia

Operational Semantics of Mu-Calculus

```
 [[\ \mu Z\ \phi\ ]]_E \quad := \quad S':=\varnothing; \\ \text{repeat $S:=S'$; $S':=[[\phi]]_{E(Z\to S)}$ until $S'=S$; } \\ \text{return $S$}
```

$$[[\, \nu Z \, \phi \,\,]]_E \quad := \quad S' := \Sigma; \\ \text{repeat $S := S'$; $S' := [[\phi]]_{E(Z \to S)}$ until $S' = S$; } \\ \text{return S}$$

Model checking works as above

Complexity

- Every μ/ν alternation adds expressiveness
- Buchi automata in alternation depth of 2
- Model checking complexity: $O((|\phi| \cdot N)^d)$

for formulas of alternation depth d

- N is size of model
- most common implementation (SMV, Mocha):
 use BDDs to represent Boolean regions

S. A. Seshia

Next class

- Model checking pushdown systems
 - Finite state control with a stack

S. A. Seshia 36