
1

EECS 219C: Computer-Aided Verification

Symmetry Reduction,
Compositional Reasoning,

Mu-Calculus

Sanjit A. Seshia

EECS, UC Berkeley

Acknowledgments:
T. Henzinger, K. McMillan, S. Rajamani

S. A. Seshia 2

Today’s Lecture

• Symmetry Reduction

– Group states into equivalence classes by
exploiting symmetries in the model

• Compositional Reasoning

– Exploiting modularity by “assume-guarantee”
reasoning

• Mu-calculus & the “Property Hierarchy”

2

S. A. Seshia 3

Symmetry

• Many systems have inherent symmetry

– Overall system might be composed of k identical
modules

– E.g., a multi-processor system with k processors

– E.g., a multi-threaded program with k threads
executing the same code with same inputs

– Anything with replicated structure

• Question: How can we detect and exploit the

symmetry in the underlying state space for

model checking?

S. A. Seshia 4

Symmetry in Behavior

• Given a system with two identical modules

– Run: s0, s1, s2, …

– Trace: L(s0), L(s1), L(s2), …

– Each si = (si1, si2, rest) comprises values to

variables of both modules 1 and 2

– If we can interchange these without changing
the set of traces of the overall system, then
there is symmetry in the system behavior

3

S. A. Seshia 5

Exploiting Symmetry

• If a state space is symmetric, we can

group states into equivalence classes

– Just as in abstraction

• Resulting state graph/space is called

“quotient” graph/space

– Model check this quotient graph

S. A. Seshia 6

Quotient (first attempt)

M = (S, S0, R, L)

Let ≅ be an equivalence relation on S

Assume: s ≅ t iff L(s) = L(t)

& s ∈ S0 iff t ∈ S0

Quotient: M’ = (S’, S0’, R’, L’)

– S’ = S/≅ , S0’ = S0/≅ (states are equivalence
classes with respect to ≅)

– R’([s], [t]) whenever R(s,t)

– L’([s]) = L(s)

4

S. A. Seshia 7

Is that definition enough?

Suppose we want to check an invariant:

Does M satisfy ϕ ?

Instead if we check:

Does quotient M’ satisfy ϕ ?

If M’ is constructed using the definition of ≅ on
the previous slide, will the above check

generate spurious counterexamples?

S. A. Seshia 8

Stable Equivalences
Equivalence ≅ is called stable if:

R (x, y) ⇒

for every s in [x]

there exists some t in [y] such that R (s,t)

Claim: Suppose ≅ is stable, then:

M satisfies ϕ iff M’ satisfies ϕ

(Why?)

5

S. A. Seshia 9

Detecting Symmetry

• Given symmetry expressed as an

equivalence relation between states, we

know how to exploit it

• How do we detect/compute this

equivalence relation?

– Need to characterize it more formally

S. A. Seshia 10

Symmetry as Permutation

• Symmetry in the state space can be
viewed as “equivalence under
permutation”

• Permute the set of states so that the set of
traces remains the same
– A subset of states that remains the same

under permutation forms the needed
equivalence class

• A representation of all possible such
permutations represents symmetry in the
system

6

S. A. Seshia 11

Automorphisms

0,0

1,1

0,1 1,0

A permutation function

f : S → S
is an automorphism if:

R(s, t) ⇔ R(f(s), f(t))

What is an example automorphism for this state space?

S. A. Seshia 12

Automorphisms

0,0

1,1

0,1 1,0

f: f(0,0) = 1,1 f(1,1) = 0,0

f(0,1) = 0,1 f(1,0) = 1,0

g: g(0,0) = 0,0 g(1,1) = 1,1

g(0,1) = 1,0 g(1,0) = 0,1

A = { f, g, f ° g, id}

The set of all automorphisms forms a group!

7

S. A. Seshia 13

Equivalence using Automorphisms

Let s ≅ t

if there is some automorphism f such that

f(s) = t (and L(s) = L(t) ∧∧∧∧ s ∈∈∈∈ S0 iff t ∈∈∈∈ S0)

The equivalence classes of an automorphism

(sets mapped to themselves) are called orbits

Claim 1: ≅ is an equivalence

Claim 2: ≅ is stable (why?)

S. A. Seshia 14

Orbits

0,0

1,1

0,1 1,0

[(0,0), (1,1)]

[(0,1), (1,0)]

8

S. A. Seshia 15

Symmetry reduction

[(0,0),(1,1)]

[(0,1), (1,0)]

Map each state to its representative in the

orbit

S. A. Seshia 16

How Symmetry Reduction works
in practice

• A permutation (automorphism) group is manually
constructed

– Syntactically specify which modules are identical

• Orbit relation (equivalence relation) automatically
generated from this

– Using fixpoint computation (MC, Sec. 14.3)

• An (lexicographically smallest) element of each
equivalence class is picked as its representative

• S0’ and R’ generated from orbit relation

• Model checking explores only representative states

9

S. A. Seshia 17

Symmetry reduction

• Implemented in many model checkers
• E.g., SMV, Murϕ (finite-state systems),
Brutus (security protocols)

S. A. Seshia 18

Compositional Reasoning

10

S. A. Seshia 19

Need for Compositional Reasoning

• Model checking “flat” designs/programs

does not scale

– Can be applied locally, to small modules

– Globally to simplified models

• Model checking simplified, flat designs is

mainly a “best-effort debugging” tool

How do we scale up the method so we can use
it for “verification”, not just “debugging”?

S. A. Seshia 20

Compositional Reasoning:
Divide-and-Conquer

• Idea: use proof techniques to reduce a

property to easier, localized properties.

property

decomposition

verification

proof assistant

model checker/
decision procedure

abstraction

11

S. A. Seshia 21

Notation

Proof rule specified as:

A1 A2 A3 … An

C

assumptions

conclusion

S. A. Seshia 22

Assume/Guarantee Reasoning

• System and its Environment

• Each makes an assumption about the other’s
behavior

• In return, each guarantees something about its
own behavior

• Come up with a proof rule
– Assumptions are what we verify

– Conclusion is the desired property

12

S. A. Seshia 23

Simple assume/guarantee proof

• Thus, we localize the verification process

• Note abstraction is needed to benefit from

decomposition (why?)

p
p ⇒ q
q

A B
p q

verify using A

verify using B

S. A. Seshia 24

Mutual property dependence

• What about the case of mutual

dependence?

• Note, this doesn’t work (why?)

A B
p q

q ⇒ p
p ⇒ q
p ∧ q

13

S. A. Seshia 25

q → p
p → q

Gp ∧ Gq

“Circular” compositional proofs

• Let p → q stand for

“if p up to time t-1, then q at t”

• Equivalent in LTL of

¬(p U ¬q)

• Now we can reason as follows:

That is, A only has to “behave” as long as B does,
and vice-versa.

verify using A

verify using B

S. A. Seshia 26

Temporal case splitting

p1 p2 p3 p4 p5

v1

...

Idea:
Split cases on most
recent writer w at
time t.

φφφφ: v1 correct at
time t.

Rule can be used to focus within large process arrays
… but still need to deal with interdependencies

φ ∧∧∧∧ ∀i: G((w=i) ⇒ φ)

Gφ

14

S. A. Seshia 27

Combine with circular reasoning

p1 p2 p3 p4 p5

v1

...

To prove case w =i at time t, assume general case up to t-1:

still have many cases to prove...

φ ∧∧∧∧ ∀i: G(φ ⇒ ((w=i) ⇒ Xφ)

Gφ

φφφφ: v1 correct at
time t.

S. A. Seshia 28

Reduction by symmetry

p1 p2 p3 p4 p5

v1

...

By symmetry, suffices to prove that writes by p1 are O.K.:

verify using p1
φ ∧∧∧∧ G(φ ⇒ ((w=1) ⇒ Xφ)

Gφ

φφφφ: v1 correct at
time t.

15

S. A. Seshia 29

The Mu-Calculus

S. A. Seshia 30

Property Hierarchy

Mu Calculus

CTL*

CTL

Buchi automata

LTL

LTL without X
⊆⊆⊆⊆Legend:

16

S. A. Seshia 31

A recursive language for writing
symbolic model-checking algorithms

EF a = µ Z (a ∨ EX Z)

AG a = ν Z (a ∧ AX Z)

The Mu-Calculus

S. A. Seshia 32

ϕ ::= a | ¬a | Z |
ϕ ∧ ψ | ϕ ∨ ψ |

EX ϕ | AX ϕ |

µZ ϕ | νZ ϕ |
Z : region variable

Mu-Calculus Syntax

Any predicate transformer thus expressed is

monotonic, hence all fixed points exist

17

S. A. Seshia 33

[[a]]Env := <a>

[[¬a]]Env := Σ \ <a>

[[ϕ ∧ ψ]]Env := [[ϕ]]Env ∩ [[ψ]]Env

[[ϕ ∨ ψ]]Env := [[ϕ]]Env ∪ [[ψ]]Env

[[EX ϕ]]Env := pre([[ϕ]]Env)

[[AX ϕ]]Env := ∀pre([[ϕ]]Env)

Env maps each region variable to a region

Σ is the universe

pre and ∀∀∀∀pre compute set of previous states

Mu-Calculus Semantics

S. A. Seshia 34

[[µZ ϕ]]E := S’ := ∅;
repeat S := S’; S’ := [[ϕ]]E(Z→S) until S’=S;
return S

[[νZ ϕ]]E := S’ := Σ;
repeat S := S’; S’ := [[ϕ]]E(Z→S) until S’=S;
return S

Operational Semantics of Mu-
Calculus

Model checking works as above

18

S. A. Seshia 35

- Every µ/ν alternation adds expressiveness

- Buchi automata in alternation depth of 2

- Model checking complexity:
O((|ϕ| ⋅ N)d)

for formulas of alternation depth d

- N is size of model

- most common implementation (SMV, Mocha):
use BDDs to represent Boolean regions

Complexity

S. A. Seshia 36

Next class

• Model checking pushdown systems

– Finite state control with a stack

