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Today’s Lecture

• Symmetry Reduction

– Group states into equivalence classes by 
exploiting symmetries in the model

• Compositional Reasoning

– Exploiting modularity by “assume-guarantee”
reasoning

• Mu-calculus & the “Property Hierarchy”
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Symmetry

• Many systems have inherent symmetry

– Overall system might be composed of k identical 
modules

– E.g., a multi-processor system with k processors

– E.g., a multi-threaded program with k threads 
executing the same code with same inputs

– Anything with replicated structure

• Question: How can we detect and exploit the 

symmetry in the underlying state space for 

model checking?
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Symmetry in Behavior

• Given a system with two identical modules

– Run: s0, s1, s2, …

– Trace: L(s0), L(s1), L(s2), …

– Each si = (si1, si2, rest) comprises values to 

variables of both modules 1 and 2

– If we can interchange these without changing 
the set of traces of the overall system, then 
there is symmetry in the system behavior
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Exploiting Symmetry

• If a state space is symmetric, we can 

group states into equivalence classes 

– Just as in abstraction

• Resulting state graph/space is called 

“quotient” graph/space

– Model check this quotient graph
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Quotient (first attempt)

M  =  (S, S0, R, L)

Let  ≅ be an equivalence relation on S

Assume:     s  ≅ t   iff L(s)  =  L(t)

& s ∈ S0 iff t ∈ S0

Quotient: M’ = ( S’, S0’, R’, L’ )

– S’ = S/≅ ,  S0’ = S0/≅ (states are equivalence 
classes with respect to ≅)

– R’([s], [t])  whenever  R(s,t)

– L’([s]) = L(s)
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Is that definition enough?

Suppose  we want to check an invariant:

Does M satisfy ϕ ?

Instead if we check:

Does quotient M’ satisfy ϕ ?

If M’ is constructed using the definition of ≅ on 
the previous slide, will the above check 

generate spurious counterexamples? 
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Stable Equivalences
Equivalence ≅ is called stable if:

R (x, y) ⇒

for every s in [x]

there exists some t in [y] such that R (s,t)

Claim:  Suppose ≅ is stable, then:

M satisfies ϕ iff M’ satisfies ϕ

(Why?)
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Detecting Symmetry

• Given symmetry expressed as an 

equivalence relation between states, we 

know how to exploit it

• How do we detect/compute this 

equivalence relation?

– Need to characterize it more formally
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Symmetry as Permutation

• Symmetry in the state space can be 
viewed as “equivalence under 
permutation”

• Permute the set of states so that the set of 
traces remains the same
– A subset of states that remains the same 

under permutation forms the needed 
equivalence class

• A representation of all possible such 
permutations represents symmetry in the 
system 
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Automorphisms

0,0

1,1

0,1 1,0

A permutation function 

f : S → S                 
is an automorphism if:

R(s, t) ⇔ R(f(s), f(t))

What is an example automorphism for this state space?
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Automorphisms

0,0

1,1

0,1 1,0

f:  f(0,0)  = 1,1  f(1,1)   = 0,0

f(0,1)  = 0,1  f(1,0)  = 1,0

g:  g(0,0) = 0,0   g(1,1)  = 1,1

g(0,1) = 1,0   g(1,0) = 0,1

A = { f,  g,  f ° g,  id}

The set of all automorphisms forms a group!
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Equivalence using Automorphisms

Let   s ≅ t 

if there is some automorphism f such that    

f(s) = t   (and L(s) = L(t) ∧∧∧∧ s ∈∈∈∈ S0 iff t ∈∈∈∈ S0)

The equivalence classes of an automorphism

(sets mapped to themselves) are called orbits

Claim 1: ≅ is an equivalence

Claim 2: ≅ is stable        (why?)
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Orbits

0,0

1,1

0,1 1,0

[ (0,0), (1,1) ]

[ (0,1), (1,0) ]
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Symmetry reduction

[ (0,0),(1,1) ]

[ (0,1), (1,0) ]

Map each state to its representative in the 

orbit
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How Symmetry Reduction works 
in practice

• A permutation (automorphism) group is manually 
constructed

– Syntactically specify which modules are identical 

• Orbit relation (equivalence relation) automatically 
generated from this

– Using fixpoint computation (MC, Sec. 14.3)

• An (lexicographically smallest) element of each 
equivalence class is picked as its representative

• S0’ and R’ generated from orbit relation

• Model checking explores only representative states
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Symmetry reduction

• Implemented in many model checkers
• E.g., SMV, Murϕ (finite-state systems), 
Brutus (security protocols)
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Compositional Reasoning
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Need for Compositional Reasoning

• Model checking “flat” designs/programs 

does not scale

– Can be applied locally, to small modules

– Globally to simplified models

• Model checking simplified, flat designs is 

mainly a “best-effort debugging” tool

How do we scale up the method so we can use 
it for “verification”, not just “debugging”?
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Compositional Reasoning:     
Divide-and-Conquer

• Idea: use proof techniques to reduce a 

property to easier, localized properties.

property

decomposition

verification

proof assistant

model checker/
decision procedure

abstraction
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Notation

Proof rule specified as:

A1 A2 A3  … An

C

assumptions

conclusion
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Assume/Guarantee Reasoning

• System and its Environment

• Each makes an assumption about the other’s 
behavior

• In return, each guarantees something about its 
own behavior

• Come up with a proof rule
– Assumptions are what we verify

– Conclusion is the desired property
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Simple assume/guarantee proof

• Thus, we localize the verification process

• Note abstraction is needed to benefit from 

decomposition (why?)

p
p ⇒ q
q

A B
p q

verify using A

verify using B
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Mutual property dependence

• What about the case of mutual 

dependence?

• Note, this doesn’t work (why?)

A B
p q

q ⇒ p
p ⇒ q
p ∧ q
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q → p
p → q

Gp ∧ Gq

“Circular” compositional proofs

• Let p → q stand for 

“if p up to time t-1, then q at t”

• Equivalent in LTL of

¬(p U ¬q)

• Now we can reason as follows:

That is, A only has to “behave” as long as B does, 
and vice-versa.

verify using A

verify using B
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Temporal case splitting

p1 p2 p3 p4 p5

v1

...

Idea:
Split cases on most
recent writer w at
time t.

φφφφ: v1 correct at
time t.

Rule can be used to focus within large process arrays
… but still need to deal with interdependencies 

φ ∧∧∧∧ ∀i: G((w=i) ⇒ φ)

Gφ
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Combine with circular reasoning

p1 p2 p3 p4 p5

v1

...

To prove case w =i at time t, assume general case up to t-1:

still have many cases to prove...

φ ∧∧∧∧ ∀i: G(φ ⇒ ((w=i) ⇒ Xφ)

Gφ

φφφφ: v1 correct at
time t.
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Reduction by symmetry

p1 p2 p3 p4 p5

v1

...

By symmetry, suffices to prove that writes by p1 are O.K.:

verify using p1
φ ∧∧∧∧ G(φ ⇒ ((w=1) ⇒ Xφ)

Gφ

φφφφ: v1 correct at
time t.
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The Mu-Calculus
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Property Hierarchy

Mu Calculus

CTL*

CTL

Buchi automata

LTL

LTL without X
⊆⊆⊆⊆Legend:
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A recursive language for writing              
symbolic model-checking algorithms

EF a  =  µ Z (a ∨ EX Z)

AG a =  ν Z (a ∧ AX Z)

The Mu-Calculus
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ϕ ::=   a  |  ¬a  |   Z |                     
ϕ ∧ ψ |  ϕ ∨ ψ | 

EX ϕ |  AX ϕ | 

µZ ϕ |  νZ ϕ |
Z : region variable

Mu-Calculus Syntax

Any predicate transformer thus expressed is 

monotonic, hence all fixed points exist
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[[ a ]]Env :=   <a>

[[ ¬a ]]Env :=   Σ \ <a> 

[[ ϕ ∧ ψ ]]Env :=   [[ ϕ ]]Env ∩ [[ ψ ]]Env

[[ ϕ ∨ ψ ]]Env :=   [[ ϕ ]]Env ∪ [[ ψ ]]Env

[[ EX ϕ ]]Env :=   pre( [[ ϕ ]]Env )

[[ AX ϕ ]]Env :=   ∀pre( [[ ϕ ]]Env )

Env maps each region variable to a region

Σ is the universe

pre and ∀∀∀∀pre compute set of previous states

Mu-Calculus Semantics
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[[ µZ ϕ ]]E :=   S’ := ∅; 
repeat S := S’; S’ := [[ϕ]]E(Z→S) until S’=S;
return S

[[ νZ ϕ ]]E :=   S’ := Σ; 
repeat S := S’; S’ := [[ϕ]]E(Z→S) until S’=S;
return S

Operational Semantics of Mu-
Calculus

Model checking works as above
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- Every µ/ν alternation adds expressiveness

- Buchi automata in alternation depth of 2

- Model checking complexity:                                   
O( (|ϕ| ⋅ N)d )

for formulas of alternation depth d

- N is size of model

- most common implementation (SMV, Mocha): 
use BDDs to represent Boolean regions

Complexity
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Next class

• Model checking pushdown systems

– Finite state control with a stack


