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Today’s Lecture

• Abstraction in Model Checking

– Interpolation-based model checking

• Automata-based Property Specification

– Properties as (Buchi) automata

– Notions of Trace Containment, Simulation, 
Bisimulation, Refinement
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Abstract/Concrete Error Trace

Abstract trace OK

Abstract trace spurious
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Counterexample Guided 
Abstraction-Refinement (CEGAR)

Create 

abstraction A

Perform (unbounded) 

model checking on A

Prove that this abstract 

counterexample of length k 

is a concrete counterex. 
using k-step BMC on M

Extract information 

for refinement

from refutation

Property 

true

Counter-

example of 

length k
OK

Proof succeeds

Proof fails

Counterexample
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Proof-based Abstraction (PBA)

BMC on M
at depth k

Cex?

No Cex?

Use refutation to 
choose abstraction

MC on abstraction

Property 
true?

False, counterexample of 
length k’?

In
cr

ea
se

 k
 t

o 
k’

OK

Counter-

example

[McMillan, Amla, 2003]
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Abstraction and Reachability
• An abstraction expands the set of states 

reachable from the initial state
– OVER-APPROXIMATION

• Instead of starting by abstracting states, 
one can directly abstract the transition 
relation
– Each time you compute the set of next states, 

you get an over-approximation of the actual 
set of next states

– Gives a way of computing an over-
approximation of the set of reachable states
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Abstraction using Interpolation

• Abstraction is extracting sufficient/relevant 

information from a system to prove a given 

property.

• This notion is in some sense closely related 

to a notion of “interpolant” and a lemma 

called “Craig's interpolation lemma”
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Interpolation Lemma

• If A ∧∧∧∧ B = false, there exists an interpolant A' 
for (A,B) such that:

A ⇒ A'

A' ∧ B = false

A' refers only to common variables of A,B

• Example: 

– A = p ∧∧∧∧ q,   B = ¬¬¬¬q ∧∧∧∧ r,    A' = q

(Craig, 57)



5

S. A. Seshia 9

Interpolants from Proofs

• Interpolant A’ for A ∧∧∧∧ B:

A ⇒ A'

A' ∧ B = false

A' refers only to common variables of A,B

• Interpolants can be obtained from proofs

– given a resolution-based refutation (proof of 

unsatisfiability) of A ∧∧∧∧ B, 

A' can be derived in time linear in the proof

(Pudlak,Krajicek,97)

S. A. Seshia 10

Interpolation based Model 
Checking

• Main Idea: Pose the problem of over-

approximating the set of next states as 

finding an interpolant

(McMillan, 2003)

S0
Ek

R R R R R R R

A B

k0

S0(v0) ∧∧∧∧ R(v0, v1) ∧∧∧∧ R(v1, v2) ∧∧∧∧ … ∧∧∧∧ R(vk-1, vk) ∧∧∧∧ Ek(vk)
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Interpolation based Model Checking

S0
Ek

R R R R R R R

A B

k0

S0(v0) ∧∧∧∧ R(v0, v1) ∧∧∧∧ R(v1, v2) ∧∧∧∧ … ∧∧∧∧ R(vk-1, vk) ∧∧∧∧ Ek(vk)

A = S0(v0) ∧∧∧∧ R(v0, v1) 

B = R(v1, v2) ∧∧∧∧ … ∧∧∧∧ R(vk-1, vk) ∧∧∧∧ Ek(vk)

A’ is a function of v1 s.t.

1. A � A’
2. A’ ∧∧∧∧ B is unsat

What set of states 

does A’ represent?
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Interpolation based MC
For a fixed k:

1. Set Z initially to S0

2. Do BMC starting from Z for k steps
• If SAT: have we found a counterexample?

• If UNSAT, continue

3. Use interpolation to compute over-
approximation of next states of Z and add 
them back into Z
– Can newly added states lead to error states in   

k-1 steps? In k steps?

4. If Z does not increase
– We’ve reached a fixed point. Is the property true?

5. Otherwise, back to step 2
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Intuition

• A' tells us everything the prover deduced 
about the image of S0 in proving it can't 
reach an error in k steps. 

• Hence, A' is in some sense an abstraction 
of the image relative to the property and
the bound k 

A'

S0
Ek

R R R R R R R

A B

k0
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Refinement

• Model checking may fail for a fixed k

– May add a state that reaches error in k steps 
(getting SAT in step 2 with Z != S0)

• Refinement is just increasing k

– How big can k get?
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Proof-based Abstract. vs Interpolation

time, interpolation method
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Source: Nina Amla
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Properties as Automata

• Often properties themselves are finite-

state machines

– E.g. two versions of the same system, an 
optimized “implementation”, and a simple-
and-correct “specification”

• How do we formalize the notion of 

“implementation satisfies specification”?
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Properties as Automata

• Often your properties themselves are 

finite-state machines

– E.g. two versions of the same system, an 
optimized “implementation”, and a simple-
and-correct “specification”

• How do we formalize the notion of 

“implementation satisfies specification”?

– All behaviors (traces) of the implementation 
are also traces of the specification

TRACE CONTAINMENT
(traces are projected over a common set of atomic propositions)
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Abstraction A and                  
Original System M

• All traces of M are also traces of A

• If A satisfies an LTL property, does M also 

satisfy that property?

• How about for CTL*?
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Abstraction A and                  
Original System M

• All traces of M are also traces of A

• So any LTL property that A satisfies will 

also be satisfied by M

• Holds good for any CTL* property that 

– Has all negations appearing only over atomic 

propositions

– Has only the “A” quantifier, not the “E”
quantifier

– ACTL*
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Simulation --- Intuition 

• Two finite state machines M and M’

• M’ simulates M if 

– M’ can start in a similarly labeled state as M

– For every step that M takes from s to t, M’ can 
mimic it by stepping to a state with similar 
label as t
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Simulation
• M = (S, S0, R, L) and M’ = (S’, S0’, R’, L’)

• A relation H ⊆⊆⊆⊆ S x S’ is a simulation relation 

between M and M’ means that:                         
For all (s, s’), if H(s, s’) then:

– L’(s’) = L(s) ∩∩∩∩ AP’

– For every state t s.t. R(s, t) there is a state t’ such that 

R’(s’, t’) and H(t, t’)

• M’ simulates M if 

– there exists a simulation relation H between them, 

and 

– For each s0 ∈∈∈∈ S0, there exists s0’ ∈∈∈∈ S0’ s.t. H(s0, s0’)
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Simulation and Trace Containment

Are they the same? If not, which implies which?
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Bisimulation

• M and M’ are bisimulation equivalent 

(bisimilar) if

– M simulates M’ and vice-versa

– Note: atomic proposition sets must be 
identical

• Are bisimulation and trace equivalence the 

same thing?
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(Bi)Simulation and (A)CTL*

• If M’ simulates M, then any ACTL* 

property satisfied by M’ is satisfied by M

• If M’ and M are bisimilar, any CTL* 

property satisfied by one is also satisfied 

by the other
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Verification

• How do we check for:
– Trace containment?

– Simulation?

– Bisimulation?

• Assume that your machines are given as 
Kripke structures/Buchi automata
– For the latter, all accepting paths correspond 

to runs
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Verification

• How do we check for:

– Trace containment?

• Can be done using LTL model checking (see MC Sec. 

9.6)

– Simulation?

• Iterative computation � next slide

– Bisimulation?

• Effectively same as simulation check (just done in 

two directions) [see Ch. 11 of MC]
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Simulation Checking

• We attempt to compute the largest relation 

H such that

For all (s, s’), if H(s, s’) then:

– L’(s’) = L(s) ∩∩∩∩ AP’

– For every state t s.t. R(s, t) there is a state t’
such that R’(s’, t’) and H(t, t’)

• Then, check whether every initial state of 

M is related by H to an initial state of M’
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Simulation Checking
• We attempt to compute the largest relation H such that

For all (s, s’), if H(s, s’) then:

– L’(s’) = L(s) ∩∩∩∩ AP’

– For every state t s.t. R(s, t) there is a state t’ such that 
R’(s’, t’) and H(t, t’)

• Compute sequence H0, H1, …, Hk where: 

– H0(s, s’) iff L’(s’) = L(s) ∩∩∩∩ AP

– Hn+1(s, s’) iff

• Hn(s, s’) , and

• ∀∀∀∀ t { R(s, t) � ∃∃∃∃ t’ ( R(s’, t’) ∧∧∧∧ Hn(t, t’) )

( How to implement this? Why will it terminate? )
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Simulation vs. Trace Containment

• Why would we want to use one over the 

other?
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Next class

• Other optimizations in model checking:

– Compositional reasoning

– Symmetry reduction

• Mu-calculus


