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Today’s Lecture

• Abstraction

– Counter-example guided abstraction 
refinement (CEGAR)

• Symbolic Model Checking without BDDs

– Uses SAT instead of BDDs

– Started with Bounded Model Checking

– Extended to Unbounded Model Checking

• Abstraction + BMC

• Interpolation-based model checking (next class)
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Abstraction

• Extracting information from a system 

description that is relevant to proving a 

property 

• Goal: Reduce size of system model

• Terminology:

– Original model = Concrete system/model
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Formal Definition

• Abstraction is defined by an abstraction 

function

• Abstraction function α : S � Ŝ

– S – set of concrete states

– Ŝ – set of abstract states

• An abstraction induces an equivalence 

relation over the concrete states 

– Two concrete states are equivalent if they are 
mapped to the same abstract state 
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Formal Definition

• Suppose concrete system is (S, S0, R, L), 

and abstract system (Ŝ, Ŝ0, R, L)

• Abstraction function α : S � Ŝ

– S – set of concrete states

– Ŝ – set of abstract states

• Ŝ0 = { t | ∃ s . S0(s) ∧ α(s) = t }

• R = ?

– How do we algorithmically construct Ŝ0 and R ?

– How are labels assigned to abstract states?
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Example of Abstraction
• Our examples in this lecture will be 

abstractions that extract a subset of state 

variables

– State variables partitioned into: visible and 
invisible

– An abstract state is an evaluation of visible 
variables

– What is α ?

– Two concrete states that agree on values of 
visible variables are grouped together
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Example

• Abstractions exhibit more behaviors
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Abstraction and Properties

• If an LTL property is true on the abstract 

model, is it necessarily true on the 

concrete model?

• If an LTL property is false on the abstract 

model, is it necessarily false on the 

concrete model?
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Recap: Cone-of-influence

• Suppose the property φ mentions a subset of 
variables V’ of the total set V

– Track variables that V’ syntactically depend on, add 

them to V’, and iterate until no new variable 

dependencies generated

– Resulting V’ is the cone-of-influence and its elements 

are the visible variables

• Problem: Final V’ might be as big as V because 

it only tracks syntactic dependencies

– But resulting abstraction is precise � if φ is false in 
abstract model it is false in concrete model
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Example: Cone-of-influence can be 
conservative

a

b c

g

What are the expressions for next state variables c’ and g’ ?

Suppose we want to prove G(c � Xc) . What’s the 

cone of influence?

If we make g invisible, can we still prove the property? 

• what about a and b?

Let a, b, c, g be state variables
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Another approach to Abstraction

• Start with an arbitrary subset of variables 

as visible

– An option: the ones mentioned in the property

• Construct abstract model, model check it

– If property passes, we’re done

– If we get a counterexample, check whether it 
is a counterexample for the concrete model

• If yes, we’re done

• If not (spurious counterex.) we must make more 

variables visible and repeat (REFINEMENT)
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Counter-Example Guided 
Abstraction-Refinement (CEGAR)

[R. Kurshan, E. Clarke et al.]

• Start with a choice of α

• Construct abstract model, model check it

– If property passes, we’re done

– If we get a counterexample, check whether 
it’s is a counterexample for the concrete 
model (How do we do this?)

• If yes, we’re done

• If not (spurious counterex.), we must refine α and 
repeat
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Intuition about Refinement

• Remember that α partitions the concrete 
states into equivalence classes

– C1, C2, …, Ck

• A refinement α’ can further break up the 
Ci’s

– States that are equivalent under α’ should 
also be equivalent under α

S. A. Seshia 14

Formal Definition of Refinement

• α’ refines α if

– ∀ s, t  . α’(s) = α’(t) � α(s) = α(t)

– ∃ s, t  . α’(s) ≠ α’(t) ∧ α(s) = α(t)

• Given above definition, why will the 

CEGAR iteration terminate?
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Visible/Invisible Abstraction

• The set of variables is partitioned into 
visible V and invisible I

• Questions:

– How do we construct the abstract model?

• Given an arbitrary set of visible variables

– How do we refine the abstraction?

• i.e., how do we pick new variables to make visible?

• We want to pick those that will remove the current 

spurious counterexample 
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Constructing Abstract Model

• Simply make all invisible variables take 

arbitrary values

– Non-deterministically assigned 0 or 1 on each 
step

• How does this make model checking more 

efficient?
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Constructing Abstract Model

• Simply make all invisible variables take 

arbitrary values

– Non-deterministically assigned 0 or 1 on each 
step

• How does this make model checking more 

efficient?

– Avoids some existential quantification, 
simplifies transition relation
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Refining the Abstraction

• The CEGAR approach is most often used 

today in conjunction with a technique 

called Bounded Model Checking

• We will study abstraction-refinement in 

that context
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Bounded Model Checking (BMC)

• Given

– A FSM M described by S0, R 

– A property G p and a integer k ≥ 1

• Determine

– Does M generate a counterexample to     

G p of length k transitions or fewer?

This problem can be translated to a SAT problem. How?

[Biere, Clarke, Cimatti, Zhu, ‘99]
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Unfolding in BMC

• Unfold the model k times:

Uk = R0 ∧ R1 ∧ ... ∧ Rk-1

a
b

c

g a
b

c

g a
b

c

g

...S0 Ek = 
¬ p

• Use SAT solver to check satisfiability of

S0 ∧ Uk ∧ Ek

• A satisfying assignment is a counterexample 
of k steps
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Old view on BMC  

• Originally introduced as a debugging tool

– By finding counterexamples 

• Proving properties:

– Only possible if a bound on the diameter of 
the state graph is known

• The diameter is the maximum over shortest path 

lengths between any two states.

– Worst case is exponential in system 
description.
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New perspectives: BMC + CEGAR

• BMC + Abstraction can prove properties too!

• Here’s how it works:

Create 

abstraction A

Perform (unbounded) 

model checking on A

Prove that this abstract 

counterexample of length k 

is a concrete counterex. 
using k-step BMC on M

Extract information 

for refinement

from refutation

Property 

true

Counter-

example of 

length k
OK

Proof succeeds

Proof fails

Counterexample

Why does this terminate?
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Steps

1. Create abstraction A �

2. Model check A �

3. Prove that abstract counterexample is a 

concrete counterexample using BMC

4. Use refutation of abstract 

counterexample to do refinement
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Checking Abstract Counterex.

• Recall: BMC for length k 

– Use SAT solver to check satisfiability of

S0 ∧ Uk ∧ Ek

• How do we use this to prove the abstract 

counterexample of length k also holds for 

concrete model?
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Checking Abstract Counterex.

• Recall: we use BMC for the length k of the 
abstract counterexample
– Use SAT solver to check satisfiability of

S0 ∧ Uk ∧ Ek

under the partial assignment corresponding to 
values of the visible variables

– If SAT solver reports “SAT” we have a 
concrete counterexample

• What is a satisfying assignment?

– If not, we have a refutation  proof of 
unsatisfiability
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Refinement

• Given proof of unsatisfiability of

S0 ∧ Uk ∧ Ek

under the partial assignment corresponding to 
values of the visible variables

• Look at unsatisfiable core of proof 

– Invisible variables that appear in the core 
indicate why the abstract counterexample is 

spurious

– Make those variables visible
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Modifying the Abstraction-
Refinement Loop

• Insight: Why pick an abstraction to start 

with?

– Initial abstraction may not be the best start 
point

– Why not do BMC initially and use its results to 

generate abstractions?
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Proof-based Abstraction (PBA)

BMC on M
at depth k

Cex?

No Cex?

Use refutation to 
choose abstraction

MC on abstraction

Property 
true?

False, counterexample of 
length k’?

I
nc

re
as

e 
k

 t
o 

k
’

OK

Counter-

example

Other differences 

with earlier loop?

[McMillan, Amla, 2003]
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Termination of PBA

• Depth k increases at each iteration

• Eventually k > diameter d

• If k > d, no counterexample is possible
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CEGAR vs. PBA

• Refutation via k-step BMC 

– PBA refutes all concrete counterexamples of 
up to length k

– CEGAR refutes only the abstract 
counterexample of length k

• So PBA does more work in the refutation, 

but usually results in fewer iterations of the 

loop
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Next class

• Interpolation-based Model Checking

• Richer kinds of properties (than temporal 

logic) & verification

– Mu-calculus, simulation, bisimulation, etc.


