
1

EECS 219C: Computer-Aided Verification

Abstraction & Symbolic Model

Checking without BDDs

Sanjit A. Seshia

EECS, UC Berkeley

Acknowledgments: Kenneth McMillan

S. A. Seshia 2

Today’s Lecture

• Abstraction

– Counter-example guided abstraction
refinement (CEGAR)

• Symbolic Model Checking without BDDs

– Uses SAT instead of BDDs

– Started with Bounded Model Checking

– Extended to Unbounded Model Checking

• Abstraction + BMC

• Interpolation-based model checking (next class)

2

S. A. Seshia 3

Abstraction

• Extracting information from a system

description that is relevant to proving a

property

• Goal: Reduce size of system model

• Terminology:

– Original model = Concrete system/model

S. A. Seshia 4

Formal Definition

• Abstraction is defined by an abstraction

function

• Abstraction function α : S � Ŝ

– S – set of concrete states

– Ŝ – set of abstract states

• An abstraction induces an equivalence

relation over the concrete states

– Two concrete states are equivalent if they are
mapped to the same abstract state

3

S. A. Seshia 5

Formal Definition

• Suppose concrete system is (S, S0, R, L),

and abstract system (Ŝ, Ŝ0, R, L)

• Abstraction function α : S � Ŝ

– S – set of concrete states

– Ŝ – set of abstract states

• Ŝ0 = { t | ∃ s . S0(s) ∧ α(s) = t }

• R = ?

– How do we algorithmically construct Ŝ0 and R ?

– How are labels assigned to abstract states?

S. A. Seshia 6

Example of Abstraction
• Our examples in this lecture will be

abstractions that extract a subset of state

variables

– State variables partitioned into: visible and
invisible

– An abstract state is an evaluation of visible
variables

– What is α ?

– Two concrete states that agree on values of
visible variables are grouped together

4

S. A. Seshia 7

Example

• Abstractions exhibit more behaviors

S. A. Seshia 8

Abstraction and Properties

• If an LTL property is true on the abstract

model, is it necessarily true on the

concrete model?

• If an LTL property is false on the abstract

model, is it necessarily false on the

concrete model?

5

S. A. Seshia 9

Recap: Cone-of-influence

• Suppose the property φ mentions a subset of
variables V’ of the total set V

– Track variables that V’ syntactically depend on, add

them to V’, and iterate until no new variable

dependencies generated

– Resulting V’ is the cone-of-influence and its elements

are the visible variables

• Problem: Final V’ might be as big as V because

it only tracks syntactic dependencies

– But resulting abstraction is precise � if φ is false in
abstract model it is false in concrete model

S. A. Seshia 10

Example: Cone-of-influence can be
conservative

a

b c

g

What are the expressions for next state variables c’ and g’ ?

Suppose we want to prove G(c � Xc) . What’s the

cone of influence?

If we make g invisible, can we still prove the property?

• what about a and b?

Let a, b, c, g be state variables

6

S. A. Seshia 11

Another approach to Abstraction

• Start with an arbitrary subset of variables

as visible

– An option: the ones mentioned in the property

• Construct abstract model, model check it

– If property passes, we’re done

– If we get a counterexample, check whether it
is a counterexample for the concrete model

• If yes, we’re done

• If not (spurious counterex.) we must make more

variables visible and repeat (REFINEMENT)

S. A. Seshia 12

Counter-Example Guided
Abstraction-Refinement (CEGAR)

[R. Kurshan, E. Clarke et al.]

• Start with a choice of α

• Construct abstract model, model check it

– If property passes, we’re done

– If we get a counterexample, check whether
it’s is a counterexample for the concrete
model (How do we do this?)

• If yes, we’re done

• If not (spurious counterex.), we must refine α and
repeat

7

S. A. Seshia 13

Intuition about Refinement

• Remember that α partitions the concrete
states into equivalence classes

– C1, C2, …, Ck

• A refinement α’ can further break up the
Ci’s

– States that are equivalent under α’ should
also be equivalent under α

S. A. Seshia 14

Formal Definition of Refinement

• α’ refines α if

– ∀ s, t . α’(s) = α’(t) � α(s) = α(t)

– ∃ s, t . α’(s) ≠ α’(t) ∧ α(s) = α(t)

• Given above definition, why will the

CEGAR iteration terminate?

8

S. A. Seshia 15

Visible/Invisible Abstraction

• The set of variables is partitioned into
visible V and invisible I

• Questions:

– How do we construct the abstract model?

• Given an arbitrary set of visible variables

– How do we refine the abstraction?

• i.e., how do we pick new variables to make visible?

• We want to pick those that will remove the current

spurious counterexample

S. A. Seshia 16

Constructing Abstract Model

• Simply make all invisible variables take

arbitrary values

– Non-deterministically assigned 0 or 1 on each
step

• How does this make model checking more

efficient?

9

S. A. Seshia 17

Constructing Abstract Model

• Simply make all invisible variables take

arbitrary values

– Non-deterministically assigned 0 or 1 on each
step

• How does this make model checking more

efficient?

– Avoids some existential quantification,
simplifies transition relation

S. A. Seshia 18

Refining the Abstraction

• The CEGAR approach is most often used

today in conjunction with a technique

called Bounded Model Checking

• We will study abstraction-refinement in

that context

10

S. A. Seshia 19

Bounded Model Checking (BMC)

• Given

– A FSM M described by S0, R

– A property G p and a integer k ≥ 1

• Determine

– Does M generate a counterexample to

G p of length k transitions or fewer?

This problem can be translated to a SAT problem. How?

[Biere, Clarke, Cimatti, Zhu, ‘99]

S. A. Seshia 20

Unfolding in BMC

• Unfold the model k times:

Uk = R0 ∧ R1 ∧ ... ∧ Rk-1

a
b

c

g a
b

c

g a
b

c

g

...S0 Ek =
¬ p

• Use SAT solver to check satisfiability of

S0 ∧ Uk ∧ Ek

• A satisfying assignment is a counterexample
of k steps

11

S. A. Seshia 21

Old view on BMC

• Originally introduced as a debugging tool

– By finding counterexamples

• Proving properties:

– Only possible if a bound on the diameter of
the state graph is known

• The diameter is the maximum over shortest path

lengths between any two states.

– Worst case is exponential in system
description.

S. A. Seshia 22

New perspectives: BMC + CEGAR

• BMC + Abstraction can prove properties too!

• Here’s how it works:

Create

abstraction A

Perform (unbounded)

model checking on A

Prove that this abstract

counterexample of length k

is a concrete counterex.
using k-step BMC on M

Extract information

for refinement

from refutation

Property

true

Counter-

example of

length k
OK

Proof succeeds

Proof fails

Counterexample

Why does this terminate?

12

S. A. Seshia 23

Steps

1. Create abstraction A �

2. Model check A �

3. Prove that abstract counterexample is a

concrete counterexample using BMC

4. Use refutation of abstract

counterexample to do refinement

S. A. Seshia 24

Checking Abstract Counterex.

• Recall: BMC for length k

– Use SAT solver to check satisfiability of

S0 ∧ Uk ∧ Ek

• How do we use this to prove the abstract

counterexample of length k also holds for

concrete model?

13

S. A. Seshia 25

Checking Abstract Counterex.

• Recall: we use BMC for the length k of the
abstract counterexample
– Use SAT solver to check satisfiability of

S0 ∧ Uk ∧ Ek

under the partial assignment corresponding to
values of the visible variables

– If SAT solver reports “SAT” we have a
concrete counterexample

• What is a satisfying assignment?

– If not, we have a refutation  proof of
unsatisfiability

S. A. Seshia 26

Refinement

• Given proof of unsatisfiability of

S0 ∧ Uk ∧ Ek

under the partial assignment corresponding to
values of the visible variables

• Look at unsatisfiable core of proof

– Invisible variables that appear in the core
indicate why the abstract counterexample is

spurious

– Make those variables visible

14

S. A. Seshia 27

Modifying the Abstraction-
Refinement Loop

• Insight: Why pick an abstraction to start

with?

– Initial abstraction may not be the best start
point

– Why not do BMC initially and use its results to

generate abstractions?

S. A. Seshia 28

Proof-based Abstraction (PBA)

BMC on M
at depth k

Cex?

No Cex?

Use refutation to
choose abstraction

MC on abstraction

Property
true?

False, counterexample of
length k’?

I
nc

re
as

e
k

 t
o

k
’

OK

Counter-

example

Other differences

with earlier loop?

[McMillan, Amla, 2003]

15

S. A. Seshia 29

Termination of PBA

• Depth k increases at each iteration

• Eventually k > diameter d

• If k > d, no counterexample is possible

S. A. Seshia 30

CEGAR vs. PBA

• Refutation via k-step BMC

– PBA refutes all concrete counterexamples of
up to length k

– CEGAR refutes only the abstract
counterexample of length k

• So PBA does more work in the refutation,

but usually results in fewer iterations of the

loop

16

S. A. Seshia 31

Next class

• Interpolation-based Model Checking

• Richer kinds of properties (than temporal

logic) & verification

– Mu-calculus, simulation, bisimulation, etc.

