EECS 219C: Computer-Aided Verification
Abstraction & Symbolic Model
Checking without BDDs

Sanijit A. Seshia
EECS, UC Berkeley

Acknowledgments: Kenneth McMillan

Today’s Lecture

» Abstraction

— Counter-example guided abstraction
refinement (CEGAR)

« Symbolic Model Checking without BDDs
— Uses SAT instead of BDDs
— Started with Bounded Model Checking

— Extended to Unbounded Model Checking
* Abstraction + BMC
* Interpolation-based model checking (next class)

S. A. Seshia

Abstraction

 Extracting information from a system
description that is relevant to proving a

property
» Goal: Reduce size of system model

« Terminology:
— Original model = Concrete system/model

S. A. Seshia

Formal Definition

» Abstraction is defined by an abstraction
function

« Abstraction function o : S > S
— S — set of concrete states
— 8 — set of abstract states

» An abstraction induces an equivalence
relation over the concrete states

— Two concrete states are equivalent if they are
mapped to the same abstract state

S. A. Seshia

Formal Definition

* Suppose concrete system is (S, Sy, R, L),
and abstract system (S, S,, R, L)

« Abstraction function o : S > S
— S — set of concrete states
— 8 — set of abstract states

e Sp={t]3s.Sy(s) Aa(s)=t}

- R=7
— How do we algorithmically construct S, and R?
— How are labels assigned to abstract states?

S. A. Seshia

Example of Abstraction

» Our examples in this lecture will be
abstractions that extract a subset of state
variables
— State variables partitioned into: visible and
invisible

— An abstract state is an evaluation of visible
variables

—Whatis a ?

— Two concrete states that agree on values of
visible variables are grouped together

S. A. Seshia

Example
% >
SN = @5
(e 5
« Abstractions exhibit more behaviors

S. A. Seshia

Abstraction and Properties

 If an LTL property is true on the abstract
model, is it necessarily true on the
concrete model?

 If an LTL property is false on the abstract
model, is it necessarily false on the
concrete model?

S. A. Seshia

Recap: Cone-of-influence

» Suppose the property ¢ mentions a subset of
variables V’ of the total set V

— Track variables that V' syntactically depend on, add
them to V’, and iterate until no new variable
dependencies generated

— Resulting V' is the cone-of-influence and its elements
are the visible variables
» Problem: Final V' might be as big as V because
it only tracks syntactic dependencies

— But resulting abstraction is precise - if ¢ is false in
abstract model it is false in concrete model

S. A. Seshia

Example: Cone-of-influence can be
conservative

Let a, b, ¢, g be state variables

el

What are the expressions for next state variables ¢’ and g’ ?

Suppose we want to prove G(c = Xc) . What's the
cone of influence?

If we make g invisible, can we still prove the property?
s A seshia ® What about a and b?

Another approach to Abstraction

 Start with an arbitrary subset of variables
as visible
— An option: the ones mentioned in the property

e Construct abstract model, model check it
— If property passes, we're done

— If we get a counterexample, check whether it
is a counterexample for the concrete model
* If yes, we're done

* If not (spurious counterex.) we must make more
variables visible and repeat (REFINEMENT)

S. A. Seshia

Counter-Example Guided
Abstraction-Refinement (CEGAR)

[R. Kurshan, E. Clarke et al.]
« Start with a choice of o

» Construct abstract model, model check it
— If property passes, we're done
— If we get a counterexample, check whether
it's is a counterexample for the concrete
model (How do we do this?)
« If yes, we're done

« If not (spurious counterex.), we must refine o and

repeat
S. A. Seshia

Intuition about Refinement

+ Remember that o partitions the concrete
states into equivalence classes
-C,4, C,, ..., Cy
» A refinement o’ can further break up the
C/'s
— States that are equivalent under o’ should
also be equivalent under o

S. A. Seshia

Formal Definition of Refinement
e o refines o if
— Vs, t.o(s) (1) = o(s) = at)

=0
— ds,t .a'(s) = a'(t) A os) = aft)

« Given above definition, why will the
CEGAR iteration terminate?

S. A. Seshia

Visible/Invisible Abstraction

» The set of variables is partitioned into
visible V and invisible 1

e Questions:
— How do we construct the abstract model?
» Given an arbitrary set of visible variables

— How do we refine the abstraction?
* i.e., how do we pick new variables to make visible?

» We want to pick those that will remove the current
spurious counterexample

S. A. Seshia

Constructing Abstract Model

« Simply make all invisible variables take
arbitrary values

— Non-deterministically assigned 0 or 1 on each
step

» How does this make model checking more
efficient?

S. A. Seshia

Constructing Abstract Model

« Simply make all invisible variables take
arbitrary values

— Non-deterministically assigned 0 or 1 on each
step

» How does this make model checking more
efficient?

— Avoids some existential quantification,
simplifies transition relation

S. A. Seshia

Refining the Abstraction

« The CEGAR approach is most often used
today in conjunction with a technique
called Bounded Model Checking

» We will study abstraction-refinement in
that context

S. A. Seshia

Bounded Model Checking (BMC)

» Given
—A FSM M described by S, R
—A property G p and a integer k > 1
« Determine

—Does M generate a counterexample to
G p of length k transitions or fewer?

This problem can be translated to a SAT problem. How?

S. A. Seshia

[Biere, Clarke, Cimatti, Zhu, '99]

Unfolding in BMC

« Unfold the model k times:

s % A . T 1 G-
- P
» Use SAT solver to check satisfiability of

So/\Uk/\Ek

- A satisfying assignment is a counterexample
of k steps

S. A. Seshia

20

10

Old view on BMC

* Originally introduced as a debugging tool
— By finding counterexamples

* Proving properties:
— Only possible if a bound on the diameter of
the state graph is known

» The diameter is the maximum over shortest path
lengths between any two states.

— Worst case is exponential in system
description.

S. A. Seshia

21

New perspectives: BMC + CEGAR

» BMC + Abstraction can prove properties too!

» Here’s how it works: Why does this terminate?

Extract information
Create for refinement
abstraction A from refutation
Proof fails
Perform (unbounded) Prove that this abstract
model checking on A counterexample of length k
| !—' is a concrete counterex.
Property Counter- using k-step BMC on M
true example of '
oK length k l Proof succeeds

nterexampl
S. A. Seshia Counterexample

22

11

Steps

1. Create abstraction A v/
2. Model check A v

3. Prove that abstract counterexample is a
concrete counterexample using BMC

4. Use refutation of abstract
counterexample to do refinement

S. A. Seshia

23

Checking Abstract Counterex.

 Recall: BMC for length k
— Use SAT solver to check satisfiability of
So AU, A Ey
* How do we use this to prove the abstract
counterexample of length k also holds for
concrete model?

S. A. Seshia

24

12

Checking Abstract Counterex.

» Recall: we use BMC for the length k of the
abstract counterexample
— Use SAT solver to check satisfiability of
So AU A Ey
under the partial assignment corresponding to
values of the visible variables
— If SAT solver reports “SAT” we have a
concrete counterexample
* What is a satisfying assignment?

— If not, we have a refutation < proof of
unsatisfiability

S. A. Seshia

25

Refinement

 Given proof of unsatisfiability of
under the partial assignment corresponding to
values of the visible variables

» Look at unsatisfiable core of proof

— Invisible variables that appear in the core
indicate why the abstract counterexample is
spurious

— Make those variables visible

S. A. Seshia

26

13

Modifying the Abstraction-
Refinement Loop

* Insight: Why pick an abstraction to start

S. A. Seshia

— Initial abstraction may not be the best start

— Why not do BMC initially and use its results to
generate abstractions?

27

Proof-based Abstraction (PBA)

Increase k to k'

S. A. Seshia

[McMillan, Amla, 2003]

Cex? -
BMCon M [Sounter
at depth k
l No Cex?

Use refutation to
choose abstraction

Other differences

with earlier loop?

A 4

Property
true?

MC on abstraction

length k'?

> OK

False, counterexample of

28

14

Termination of PBA

» Depth k increases at each iteration
« Eventually k > diameter d
* If K > d, no counterexample is possible

S. A. Seshia

29

CEGAR vs. PBA

 Refutation via k-step BMC

— PBA refutes all concrete counterexamples of
up to length k

— CEGAR refutes only the abstract
counterexample of length k

« So PBA does more work in the refutation,
but usually results in fewer iterations of the
loop

S. A. Seshia

30

15

Next class

* Interpolation-based Model Checking

* Richer kinds of properties (than temporal
logic) & verification
— Mu-calculus, simulation, bisimulation, etc.

S. A. Seshia

31

16

