Abstraction & Symbolic Model Checking without BDDs

Sanjit A. Seshia EECS, UC Berkeley

Acknowledgments: Kenneth McMillan

Today's Lecture

- Abstraction
 - Counter-example guided abstraction refinement (CEGAR)
- Symbolic Model Checking without BDDs
 - Uses SAT instead of BDDs
 - Started with Bounded Model Checking
 - Extended to Unbounded Model Checking
 - Abstraction + BMC
 - Interpolation-based model checking (next class)

Abstraction

- Extracting information from a system description that is relevant to proving a property
- Goal: Reduce size of system model
- Terminology:
 - Original model = Concrete system/model

S. A. Seshia

3

Formal Definition

- Abstraction is defined by an abstraction function
- Abstraction function $\alpha : S \rightarrow \hat{S}$
 - S set of concrete states
 - \hat{S} set of abstract states
- An abstraction induces an equivalence relation over the concrete states
 - Two concrete states are equivalent if they are mapped to the same abstract state

S. A. Seshia

Formal Definition

- Suppose concrete system is (S, S₀, R, L), and abstract system (Ŝ, Ŝ₀, R, L)
- Abstraction function $\alpha: S \rightarrow \hat{S}$
 - S set of concrete states
 - Ŝ set of abstract states
- $\hat{S}_0 = \{ t \mid \exists s . S_0(s) \land \alpha(s) = t \}$
- $\hat{R} = ?$
 - How do we algorithmically construct \hat{S}_0 and \hat{R} ?
 - How are labels assigned to abstract states?

S. A. Seshia

Example of Abstraction

- Our examples in this lecture will be abstractions that extract a subset of state variables
 - State variables partitioned into: visible and invisible
 - An abstract state is an evaluation of visible variables
 - What is α ?
 - Two concrete states that agree on values of visible variables are grouped together

S. A. Seshia

Abstractions exhibit more behaviors

S. A. Seshia

Abstraction and Properties

- If an LTL property is true on the abstract model, is it necessarily true on the concrete model?
- If an LTL property is false on the abstract model, is it necessarily false on the concrete model?

Recap: Cone-of-influence

- Suppose the property φ mentions a subset of variables V' of the total set V
 - Track variables that V' syntactically depend on, add them to V', and iterate until no new variable dependencies generated
 - Resulting V' is the cone-of-influence and its elements are the visible variables
- Problem: Final V' might be as big as V because it only tracks syntactic dependencies
 - But resulting abstraction is precise → if φ is false in abstract model it is false in concrete model

S. A. Seshia

9

Example: Cone-of-influence can be conservative

What are the expressions for next state variables c' and g'?

Suppose we want to prove $G(c \rightarrow Xc)$. What's the cone of influence?

If we make g invisible, can we still prove the property?

S. A. Seshia • what about a and b?

Another approach to Abstraction

- Start with an arbitrary subset of variables as visible
 - An option: the ones mentioned in the property
- Construct abstract model, model check it
 - If property passes, we're done
 - If we get a counterexample, check whether it is a counterexample for the concrete model
 - If yes, we're done
 - If not (spurious counterex.) we must make more variables visible and repeat (REFINEMENT)

S. A. Seshia

1:

Counter-Example Guided Abstraction-Refinement (CEGAR)

[R. Kurshan, E. Clarke et al.]

- Start with a choice of α
- Construct abstract model, model check it
 - If property passes, we're done
 - If we get a counterexample, check whether it's is a counterexample for the concrete model (How do we do this?)
 - · If yes, we're done
 - If not (spurious counterex.), we must refine $\boldsymbol{\alpha}$ and repeat

S. A. Seshia

Intuition about Refinement

- Remember that α partitions the concrete states into equivalence classes
 - $-C_1, C_2, ..., C_k$
- A refinement α' can further break up the $C_i\mbox{'s}$
 - States that are equivalent under α ' should also be equivalent under α

S. A. Seshia

13

Formal Definition of Refinement

• α ' refines α if

$$- \forall s, t . \alpha'(s) = \alpha'(t) \rightarrow \alpha(s) = \alpha(t)$$

 $-\exists s, t . \alpha'(s) \neq \alpha'(t) \land \alpha(s) = \alpha(t)$

 Given above definition, why will the CEGAR iteration terminate?

S. A. Seshia

Visible/Invisible Abstraction

- The set of variables is partitioned into visible V and invisible I
- · Questions:
 - How do we construct the abstract model?
 - · Given an arbitrary set of visible variables
 - How do we refine the abstraction?
 - i.e., how do we pick new variables to make visible?
 - We want to pick those that will remove the current spurious counterexample

S. A. Seshia

Constructing Abstract Model

- Simply make all invisible variables take arbitrary values
 - Non-deterministically assigned 0 or 1 on each step
- How does this make model checking more efficient?

Constructing Abstract Model

- Simply make all invisible variables take arbitrary values
 - Non-deterministically assigned 0 or 1 on each step
- How does this make model checking more efficient?
 - Avoids some existential quantification, simplifies transition relation

S. A. Seshia

Refining the Abstraction

- The CEGAR approach is most often used today in conjunction with a technique called Bounded Model Checking
- We will study abstraction-refinement in that context

Bounded Model Checking (BMC)

• Given [Biere, Clarke, Cimatti, Zhu, '99]

- -A FSM M described by S₀, R
- -A property G p and a integer $k \ge 1$
- Determine
 - Does M generate a counterexample to G p of length *k transitions or fewer*?

This problem can be translated to a SAT problem. How?

S. A. Seshia

Unfolding in BMC

Unfold the model k times:

$$U_k = R_0 \wedge R_1 \wedge ... \wedge R_{k-1}$$

• Use SAT solver to check satisfiability of $S_0 \ \wedge \ U_k \ \wedge \ E_k$

Old view on BMC

- Originally introduced as a debugging tool
 - By finding counterexamples
- Proving properties:
 - Only possible if a bound on the diameter of the state graph is known
 - The diameter is the maximum over shortest path lengths between any two states.
 - Worst case is exponential in system description.

Steps

- Create abstraction A ✓
- 2. Model check A ✓
- 3. Prove that abstract counterexample is a concrete counterexample using BMC
- 4. Use refutation of abstract counterexample to do refinement

S. A. Seshia

23

Checking Abstract Counterex.

- Recall: BMC for length k
 - Use SAT solver to check satisfiability of $S_0 \wedge U_k \wedge E_k$
- How do we use this to prove the abstract counterexample of length k also holds for concrete model?

S. A. Seshia

Checking Abstract Counterex.

- Recall: we use BMC for the length k of the abstract counterexample
 - Use SAT solver to check satisfiability of $S_0 \wedge U_k \wedge E_k$

under the partial assignment corresponding to values of the visible variables

- If SAT solver reports "SAT" we have a concrete counterexample
 - · What is a satisfying assignment?
- If not, we have a refutation ← proof of unsatisfiability

S. A. Seshia

25

26

Refinement

Given proof of unsatisfiability of

$$S_0 \wedge U_k \wedge E_k$$

under the partial assignment corresponding to values of the visible variables

- Look at unsatisfiable core of proof
 - Invisible variables that appear in the core indicate why the abstract counterexample is spurious
 - Make those variables visible

Modifying the Abstraction-Refinement Loop

- Insight: Why pick an abstraction to start with?
 - Initial abstraction may not be the best start point
 - Why not do BMC initially and use its results to generate abstractions?

Termination of PBA

- · Depth k increases at each iteration
- Eventually k > diameter d
- If k > d, no counterexample is possible

S. A. Seshia

29

CEGAR vs. PBA

- Refutation via k-step BMC
 - PBA refutes all concrete counterexamples of up to length k
 - CEGAR refutes only the abstract counterexample of length k
- So PBA does more work in the refutation, but usually results in fewer iterations of the loop

S. A. Seshia

Next class

- Interpolation-based Model Checking
- Richer kinds of properties (than temporal logic) & verification
 - Mu-calculus, simulation, bisimulation, etc.