Symbolic Model Checking Part II & Abstraction

Sanjit A. Seshia EECS, UC Berkeley

Announcements

- Meet with me in early March to discuss your paper presentation
- Slots assigned in the order in which you will present (will be sent by e-mail)
- Default meeting time is my Mon/Wed office hour

Today's Lecture

- Symbolic model checking with BDDs
 - Checking CTL properties: quick recap
 - Fairness
 - Counterexample/witness generation for general CTL
 - Optimizations
- Abstraction

S. A. Seshia

3

Least and Greatest Fixpoints

- Let
 - $S = \{s_0, s_1\}$ - $\tau(Z) = Z \cup \{s_0\}, Z \subseteq S$
- What's the least fixpoint of τ ? The greatest fixpoint? Are they the same?
- Notation: "fixpoint" and "fixed point" sometimes used interchangeably

S. A. Seshia

Model Checking CTL Properties

- We define a general recursive procedure called "Check" to do the fixpoint computations
- Definition of Check:
 - Input: A CTL property Π (and implicitly, R)
 - Output: A Boolean formula B representing the set of states satisfying Π
- If $S_0(v) \rightarrow B(v)$, then Π is true

S. A. Seshia

5

The "Check" procedure

Cases:

- If Π is a Boolean formula, then $Check(\Pi) = \Pi$
- Else:
 - $-\Pi = EX \psi$, then $Check(\Pi) = CheckEX(Check(\psi))$
 - Π = E(ψ_1 U ψ_2), then Check(Π) = CheckEU(Check(ψ_1), Check(ψ_2))
 - $-\Pi = E G \psi$, then $Check(\Pi) = CheckEG(Check(\psi))$
- Note: What are the arguments to CheckEX, CheckEU, CheckEG? CTL properties or Boolean formulas?

CheckEU

- CheckEU(p, q) returns a set of states, each of which is such that
 - Either q is true in that state
 - Or p is true in that state and you can get from it to a state in which p U q is true
- Let Z₀ be our initial approximation to the answer to CheckEU(p, q)
- $Z_k(v) = \{ q(v) + [p(v) . \exists v' \{ R(v, v') . Z_{k-1}(v') \}] \}$
- What's Z₀? Why will this terminate?

S. A. Seshia

Counterexample/Witness Generation for CTL

- Counterexample = run showing how the property is violated
 - Formulas with universal path quantifier A
- Witness = run showing how the property is satisfied
 - Formulas with existential path quantifier E
 - Can also view as counterexample for the negated property
 - E.g. E G p and A F \neg p

Witness Generation for EG p

- Fixpoint formulation for E G p:
 - $\nu Z.p \wedge EXZ$
 - $\tau(Z) = p \wedge EX Z$
- · Fixpoint computation yields sequence

$$Z_0, Z_1, ..., Z_k$$

- $Z_0 = True (universal set)$
- $Z_1 = \tau(True) = ?$
- each Z_i is a BDD representing a set of states
- How would you describe an element of Z_i?
- We need to generate the counterexample from $S_0, R, Z_0, Z_1, ..., Z_k$

S. A. Seshia

9

Witness Generation for EG p

- Fixpoint computation yields sequence $Z_0, Z_1, ..., Z_k$
 - A state in Z_i (i > 0) satisfies p and there is a path of length i-1 from that state comprising states satisfying p
 - How would you describe an element of Z_k ?
 - Remember: it's the fixpoint

S. A. Seshia

Witness Generation for EG p

- Fixpoint computation yields sequence $Z_0, Z_1, ..., Z_k$
 - A state in Z_i satisfies p and there is a path of length i-1 from that state comprising states satisfying p
 - How would you describe an element of Z_k ?
 - State in Z_k has path from it of length k-1 or more (including a cycle) with all states satisfying p
 - If S_0 is contained in Z_k , any initial state has such a path

S. A. Seshia

Witness Generation for EG p

- Let s₀ be an initial state with a desired witness path
 - We need to reproduce one such witness
 - How can we do this?

Witness Generation for EG p

- Let s₀ be an initial state with a desired witness path
 - We need to reproduce one such witness
 - How can we do this?
 - Main insight: desired successor of s₀ also satisfies EG p, and so on
 - Look for a cycle in such a computed chain
 - Why should there be a cycle?

S. A. Seshia

Fairness

- A computation path is defined as fair if a fairness constraint p is true infinitely often along that path
 - Fairness constraint is a state predicate
 - Generalized to set of fairness constraints $\{p_1,\,p_2,\,...,\,p_k\}$ by requiring each element of the subset to be true infinitely often
- Example: Every process in an asynchronous composition must be scheduled infinitely often

S. A. Seshia

Why does Fairness matter?

S. A. Seshia

15

16

Why does Fairness matter?

- We need to model policies that enforce fairness in the model
 - Otherwise, we will get spurious counterexamples
 - Example: A scheduler might use round-robin scheduling amongst processes
 - Instead of verifying the system for a particular fixed fair scheduling strategy, we can verify it for all fair schedulers

Fairness in Symbolic Model Checking of CTL

- Suppose Fairness means that each element of {p₁, p₂, ..., p_k} must be true infinitely often
- Fair formulation of EG f is: The largest set of states Z such that
 - All of the states in Z satisfy f
 - For all fairness constraints p_i , and all states $s \in Z$, there is a path of length 1 or greater from s to a state in Z satisfying p_i such that all states along that path satisfy f

S. A. Seshia

17

18

Fairness in Symbolic Model Checking of CTL

- Fair formulation of EG f is: The largest set of states Z such that
 - All of the states in Z satisfy f
 - For all fairness constraints p_i , and all states $s \in Z$,
 - there is a path of length 1 or greater from s to a state in Z satisfying p_i such that all states along that path satisfy f
 - i.e., there is a next state of s satisfying $f U (Z \wedge p_i)$
 - What's the fixpoint formulation of EG f with fairness?

Fairness in Symbolic Model Checking of CTL

- Fair formulation of EG f is: The largest set of states Z such that
 - All of the states in Z satisfy f
 - For all fairness constraints p_i , and all states $s \in Z$,
 - there is a path of length 1 or greater from s to a state in Z satisfying p_i such that all states along that path satisfy f
 - i.e., there is a next state of s satisfying $f U (Z \wedge p_i)$
 - $v Z. f \wedge (\wedge_i EX E[f U (Z \wedge p_i)])$

S. A. Seshia

19

Counterexample Generation under Fairness

- Algorithm needs to be adjusted accordingly
 - Need to find a cycle that visits each fairness constraint p_i at least once
 - See Clarke et al. textbook for details

BDD-related Optimizations – Key Ideas

- Choose a good BDD variable ordering to start with
- Keep the support of computed BDDs as small as possible

S. A. Seshia

21

What do we need to represent?

- Set of transitions: R(v, v')
- Sets of states: S₀(v), intermediate results of fixpoint computations

S. A. Seshia

Representing R(v, v')

- How should the v and v' variables be ordered in the BDD relative to each other?
- Keep v_i close to v_i (interleave)

S. A. Seshia

23

Relational Product

Recall that reachability analysis involved computing

$$S_{i+1}(v) = S_i(v) \lor (\exists v \{ S_i(v) \land R(v,v') \}) [v/v']$$

- Relational Product operation is
 ∃ v { S_i(v) ∧ R(v,v') }
- This is done as one primitive BDD operation
 - Rather than an AND followed by EXISTS (why?)

S. A. Seshia

Disjunctive Partitioning

- Suppose we have an asynchronous system composed of k processes
- Then, R(v, v') can be decomposed as

$$\bigvee_i R_i(v, v')$$

- Plug into expression for relational product
- Does ∃ distribute over ∨? What use is that?

S. A. Seshia

25

Conjunctive Partitioning

- Suppose we have an synchronous system composed of k processes
- Then, R(v, v') can be decomposed as
 - $\wedge_i R_i(v, v')$

– Can we do the same optimization as on the previous slide? If not, is a similar optimization possible?

S. A. Seshia

Conjunctive Partitioning

- Suppose we have an synchronous system composed of k processes
- Then, R(v, v') can be decomposed as
 ∧_i R_i(v, v')
 - Can we do the same optimization as on the previous slide? If not, is a similar optimization possible?
 - We can choose an order in which to quantify out variables and push the quantifiers as far in as possible
 - · What order do we pick?

S. A. Seshia 27

Abstraction

- Reduce the size of the system model by throwing out information
 - If this information is irrelevant to the property of interest (i.e., the property is true on the original model iff it is true on the abstract model) then it is a precise abstraction
 - If the property is true on the original model if it is true on the abstract model, it is a safe abstraction

S. A. Seshia 28

A Simple Form of Abstraction

- Suppose the temporal logic property mentions only a subset of variable V' of the entire set V
- Can I use this information to construct a precise abstraction of the original model?

S. A. Seshia

A Simple Form of Abstraction

- Suppose the temporal logic property mentions only a subset of variable V' of the entire set V
- Can I use this information to construct a precise abstraction of the original model?
 - YES. One such method is the "cone of influence" reduction.
 - Transitively propagate syntactic dependences on variables and "delete" all variables not in the transitive closure

Cone-of-Influence Reduction

- · A staple part of all model checkers
- However: often most of the variables remain in the cone-of-influence
 - Need further abstraction

S. A. Seshia

31

Next class

- More on abstraction
- Symbolic model checking without BDDs

S. A. Seshia