
1

EECS 219C: Computer-Aided Verification

Symbolic Model Checking

Part II & Abstraction

Sanjit A. Seshia

EECS, UC Berkeley

S. A. Seshia 2

Announcements

• Meet with me in early March to discuss

your paper presentation

• Slots assigned in the order in which you
will present (will be sent by e-mail)

• Default meeting time is my Mon/Wed

office hour

2

S. A. Seshia 3

Today’s Lecture

• Symbolic model checking with BDDs

– Checking CTL properties: quick recap

– Fairness

– Counterexample/witness generation for
general CTL

– Optimizations

• Abstraction

S. A. Seshia 4

Least and Greatest Fixpoints

• Let

– S = {s0, s1}

– τ(Z) = Z ∪ {s0}, Z ⊆ S

• What’s the least fixpoint of τ? The greatest
fixpoint? Are they the same?

• Notation: “fixpoint” and “fixed point”

sometimes used interchangeably

3

S. A. Seshia 5

Model Checking CTL Properties
• We define a general recursive procedure

called “Check” to do the fixpoint

computations

• Definition of Check:

– Input: A CTL property Π (and implicitly, R)

– Output: A Boolean formula B representing the

set of states satisfying Π

• If S0(v) � B(v), then Π is true

S. A. Seshia 6

The “Check” procedure
Cases:

• If Π is a Boolean formula, then Check(Π) = Π

• Else:

– ΠΠΠΠ = EX ψ, then Check(Π) = CheckEX(Check(ψ))

– ΠΠΠΠ = E(ψ1 U ψ2), then

Check(Π) = CheckEU(Check(ψ1), Check(ψ2))

– ΠΠΠΠ = E G ψ, then Check(Π) = CheckEG(Check(ψ))

• Note: What are the arguments to CheckEX, CheckEU,
CheckEG? CTL properties or Boolean formulas?

4

S. A. Seshia 7

CheckEU
• CheckEU(p, q) returns a set of states, each of

which is such that
– Either q is true in that state

– Or p is true in that state and you can get from it to a state
in which p U q is true

• Let Z0 be our initial approximation to the answer to
CheckEU(p, q)

• Zk(v) = { q(v) + [p(v) . ∃ v’ { R(v, v’) . Zk-1(v
’) }] }

• What’s Z0? Why will this terminate?

S. A. Seshia 8

Counterexample/Witness
Generation for CTL

• Counterexample = run showing how the

property is violated

– Formulas with universal path quantifier A

• Witness = run showing how the property is

satisfied

– Formulas with existential path quantifier E

– Can also view as counterexample for the
negated property

• E.g. E G p and A F ¬ p

5

S. A. Seshia 9

Witness Generation for EG p
• Fixpoint formulation for E G p:

– ν Z . p ∧ EX Z

– τ(Z) = p ∧ EX Z

• Fixpoint computation yields sequence
Z0, Z1, …, Zk

– Z0 = True (universal set)

– Z1 = τ(True) = ?

– each Zi is a BDD representing a set of states

– How would you describe an element of Zi ?

• We need to generate the counterexample from
S0, R, Z0, Z1, …, Zk

S. A. Seshia 10

Witness Generation for EG p

• Fixpoint computation yields sequence

Z0, Z1, …, Zk

– A state in Zi (i > 0) satisfies p and there is a
path of length i-1 from that state comprising
states satisfying p

– How would you describe an element of Zk ?

• Remember: it’s the fixpoint

6

S. A. Seshia 11

Witness Generation for EG p

• Fixpoint computation yields sequence

Z0, Z1, …, Zk

– A state in Zi satisfies p and there is a path of
length i-1 from that state comprising states
satisfying p

– How would you describe an element of Zk ?

• State in Zk has path from it of length k-1 or more

(including a cycle) with all states satisfying p

• If S0 is contained in Zk, any initial state has such a

path

S. A. Seshia 12

Witness Generation for EG p

• Let s0 be an initial state with a desired

witness path

– We need to reproduce one such witness

– How can we do this?

7

S. A. Seshia 13

Witness Generation for EG p

• Let s0 be an initial state with a desired

witness path

– We need to reproduce one such witness

– How can we do this?

• Main insight: desired successor of s0 also satisfies

EG p, and so on

• Look for a cycle in such a computed chain

– Why should there be a cycle?

S. A. Seshia 14

Fairness

• A computation path is defined as fair if a

fairness constraint p is true infinitely often

along that path

– Fairness constraint is a state predicate

– Generalized to set of fairness constraints
{p1, p2, …, pk} by requiring each element of
the subset to be true infinitely often

• Example: Every process in an

asynchronous composition must be

scheduled infinitely often

8

S. A. Seshia 15

Why does Fairness matter?

S. A. Seshia 16

Why does Fairness matter?

• We need to model policies that enforce

fairness in the model

– Otherwise, we will get spurious
counterexamples

– Example: A scheduler might use round-robin

scheduling amongst processes

• Instead of verifying the system for a particular fixed

fair scheduling strategy, we can verify it for all fair

schedulers

9

S. A. Seshia 17

Fairness in Symbolic Model
Checking of CTL

• Suppose Fairness means that each

element of {p1, p2, …, pk} must be true

infinitely often

• Fair formulation of EG f is: The largest set

of states Z such that

– All of the states in Z satisfy f

– For all fairness constraints pi, and all states
s ∈ Z, there is a path of length 1 or greater from

s to a state in Z satisfying pi such that all states
along that path satisfy f

S. A. Seshia 18

Fairness in Symbolic Model
Checking of CTL

• Fair formulation of EG f is: The largest set
of states Z such that
– All of the states in Z satisfy f

– For all fairness constraints pi, and all states
s ∈ Z,

• there is a path of length 1 or greater from s to a state
in Z satisfying pi such that all states along that path
satisfy f

• i.e., there is a next state of s satisfying f U (Z ∧ pi)

– What’s the fixpoint formulation of EG f with
fairness?

10

S. A. Seshia 19

Fairness in Symbolic Model
Checking of CTL

• Fair formulation of EG f is: The largest set

of states Z such that

– All of the states in Z satisfy f

– For all fairness constraints pi, and all states
s ∈ Z,

• there is a path of length 1 or greater from s to a state

in Z satisfying pi such that all states along that path

satisfy f

• i.e., there is a next state of s satisfying f U (Z ∧ pi)

– ν Z. f ∧ (∧i EX E[f U (Z ∧ pi)])

S. A. Seshia 20

Counterexample Generation under
Fairness

• Algorithm needs to be adjusted

accordingly

– Need to find a cycle that visits each fairness
constraint pi at least once

– See Clarke et al. textbook for details

11

S. A. Seshia 21

BDD-related Optimizations – Key
Ideas

• Choose a good BDD variable ordering to

start with

• Keep the support of computed BDDs as
small as possible

S. A. Seshia 22

What do we need to represent?

• Set of transitions: R(v, v’)

• Sets of states: S0(v), intermediate results

of fixpoint computations

12

S. A. Seshia 23

Representing R(v, v’)

• How should the v and v’ variables be

ordered in the BDD relative to each other?

• Keep vi close to vi’ (interleave)

S. A. Seshia 24

Relational Product
• Recall that reachability analysis involved

computing

Si+1(v) = Si(v) ∨ (∃ v { Si(v) ∧ R(v,v’) }) [v/v’]

• Relational Product operation is

∃ v { Si(v) ∧ R(v,v’) }

• This is done as one primitive BDD
operation
– Rather than an AND followed by EXISTS

(why?)

13

S. A. Seshia 25

Disjunctive Partitioning

• Suppose we have an asynchronous

system composed of k processes

• Then, R(v, v’) can be decomposed as

∨i Ri(v, v’)

– Plug into expression for relational product

– Does ∃ distribute over ∨? What use is that?

S. A. Seshia 26

Conjunctive Partitioning

• Suppose we have an synchronous system

composed of k processes

• Then, R(v, v’) can be decomposed as

∧i Ri(v, v’)

– Can we do the same optimization as on the
previous slide? If not, is a similar optimization
possible?

14

S. A. Seshia 27

Conjunctive Partitioning
• Suppose we have an synchronous system

composed of k processes

• Then, R(v, v’) can be decomposed as

∧i Ri(v, v’)

– Can we do the same optimization as on the
previous slide? If not, is a similar optimization
possible?

• We can choose an order in which to quantify out
variables and push the quantifiers as far in as
possible

• What order do we pick?

S. A. Seshia 28

Abstraction

• Reduce the size of the system model by

throwing out information

– If this information is irrelevant to the property
of interest (i.e., the property is true on the
original model iff it is true on the abstract
model) then it is a precise abstraction

– If the property is true on the original model if it
is true on the abstract model, it is a safe
abstraction

15

S. A. Seshia 29

A Simple Form of Abstraction

• Suppose the temporal logic property

mentions only a subset of variable V’ of

the entire set V

• Can I use this information to construct a

precise abstraction of the original model?

S. A. Seshia 30

A Simple Form of Abstraction

• Suppose the temporal logic property

mentions only a subset of variable V’ of

the entire set V

• Can I use this information to construct a

precise abstraction of the original model?

– YES. One such method is the “cone of
influence” reduction.

• Transitively propagate syntactic dependences on

variables and “delete” all variables not in the

transitive closure

16

S. A. Seshia 31

Cone-of-Influence Reduction

• A staple part of all model checkers

• However: often most of the variables

remain in the cone-of-influence

– Need further abstraction

S. A. Seshia 32

Next class

• More on abstraction

• Symbolic model checking without BDDs

