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Symbolic Model Checking   
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Announcements

• Meet with me in early March to discuss 

your paper presentation

• Slots assigned in the order in which you 
will present (will be sent by e-mail)

• Default meeting time is my Mon/Wed 

office hour
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Today’s Lecture

• Symbolic model checking with BDDs

– Checking CTL properties: quick recap

– Fairness

– Counterexample/witness generation for 
general CTL

– Optimizations

• Abstraction
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Least and Greatest Fixpoints

• Let 

– S = {s0, s1}

– τ(Z) = Z ∪ {s0}, Z ⊆ S

• What’s the least fixpoint of τ? The greatest 
fixpoint? Are they the same?

• Notation: “fixpoint” and “fixed point”

sometimes used interchangeably
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Model Checking CTL Properties
• We define a general recursive procedure 

called “Check” to do the fixpoint

computations

• Definition of Check:

– Input: A CTL property Π (and implicitly, R)

– Output: A Boolean formula B representing the 

set of states satisfying Π

• If  S0(v) � B(v), then Π is true
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The “Check” procedure
Cases:

• If Π is a Boolean formula, then Check(Π) = Π

• Else:

– ΠΠΠΠ = EX ψ, then Check(Π) = CheckEX(Check(ψ))

– ΠΠΠΠ = E(ψ1 U ψ2), then

Check(Π) = CheckEU(Check(ψ1), Check(ψ2))

– ΠΠΠΠ = E G ψ, then Check(Π) = CheckEG(Check(ψ))

• Note: What are the arguments to CheckEX, CheckEU, 
CheckEG? CTL properties or Boolean formulas?
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CheckEU
• CheckEU(p, q) returns a set of states, each of 

which is such that
– Either q is true in that state

– Or p is true in that state and you can get from it to a state 
in which p U q is true

• Let Z0 be our initial approximation to the answer to 
CheckEU(p, q)

• Zk(v) = { q(v)  + [ p(v) .  ∃ v’ { R(v, v’) . Zk-1(v
’) }  ] }

• What’s Z0? Why will this terminate?
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Counterexample/Witness 
Generation for CTL

• Counterexample = run showing how the 

property is violated

– Formulas with universal path quantifier A

• Witness = run showing how the property is 

satisfied

– Formulas with existential path quantifier E

– Can also view as counterexample for the 
negated property

• E.g. E G p and A F ¬ p
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Witness Generation for EG p
• Fixpoint formulation for E G p:

– ν Z . p ∧ EX Z  

– τ(Z) = p ∧ EX Z

• Fixpoint computation yields sequence               
Z0, Z1, …, Zk

– Z0 = True (universal set)

– Z1 = τ(True) = ?

– each Zi is a BDD representing a set of states

– How would you describe an element of Zi ?

• We need to generate the counterexample from 
S0, R, Z0, Z1, …, Zk
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Witness Generation for EG p

• Fixpoint computation yields sequence    

Z0, Z1, …, Zk

– A state in Zi (i > 0) satisfies p and there is a 
path of length i-1 from that state comprising 
states satisfying p 

– How would you describe an element of Zk ?

• Remember: it’s the fixpoint
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Witness Generation for EG p

• Fixpoint computation yields sequence    

Z0, Z1, …, Zk

– A state in Zi satisfies p and there is a path of 
length i-1 from that state comprising states 
satisfying p 

– How would you describe an element of Zk ?

• State in Zk has path from it of length k-1 or more 

(including a cycle) with all states satisfying p 

• If S0 is contained in Zk, any initial state has such a 

path
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Witness Generation for EG p

• Let s0 be an initial state with a desired 

witness path

– We need to reproduce one such witness

– How can we do this?
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Witness Generation for EG p

• Let s0 be an initial state with a desired 

witness path

– We need to reproduce one such witness

– How can we do this?

• Main insight: desired successor of s0 also satisfies 

EG p, and so on 

• Look for a cycle in such a computed chain

– Why should there be a cycle?
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Fairness

• A computation path is defined as fair if a 

fairness constraint p is true infinitely often 

along that path

– Fairness constraint is a state predicate

– Generalized to set of fairness constraints    
{p1, p2, …, pk} by requiring each element of 
the subset to be true infinitely often

• Example: Every process in an 

asynchronous composition must be 

scheduled infinitely often
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Why does Fairness matter?
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Why does Fairness matter?

• We need to model policies that enforce 

fairness in the model

– Otherwise, we will get spurious 
counterexamples

– Example: A scheduler might use round-robin 

scheduling amongst processes 

• Instead of verifying the system for a particular fixed 

fair scheduling strategy, we can verify it for all fair 

schedulers
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Fairness in Symbolic Model 
Checking of CTL

• Suppose Fairness means that each 

element of {p1, p2, …, pk} must be true 

infinitely often

• Fair formulation of EG f is: The largest set 

of states Z such that

– All of the states in Z satisfy f

– For all fairness constraints pi, and all states      
s ∈ Z, there is a path of length 1 or greater from 

s to a state in Z satisfying pi such that all states 
along that path satisfy f
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Fairness in Symbolic Model 
Checking of CTL

• Fair formulation of EG f is: The largest set 
of states Z such that
– All of the states in Z satisfy f

– For all fairness constraints pi, and all states      
s ∈ Z, 

• there is a path of length 1 or greater from s to a state 
in Z satisfying pi such that all states along that path 
satisfy f

• i.e., there is a next state of s satisfying f U (Z ∧ pi)

– What’s the fixpoint formulation of EG f with 
fairness?
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Fairness in Symbolic Model 
Checking of CTL

• Fair formulation of EG f is: The largest set 

of states Z such that

– All of the states in Z satisfy f

– For all fairness constraints pi, and all states      
s ∈ Z, 

• there is a path of length 1 or greater from s to a state 

in Z satisfying pi such that all states along that path 

satisfy f

• i.e., there is a next state of s satisfying f U (Z ∧ pi)

– ν Z. f ∧ ( ∧i EX E[ f U (Z ∧ pi)] )
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Counterexample Generation under 
Fairness

• Algorithm needs to be adjusted 

accordingly

– Need to find a cycle that visits each fairness 
constraint pi at least once 

– See Clarke et al. textbook for details
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BDD-related Optimizations – Key 
Ideas

• Choose a good BDD variable ordering to 

start with

• Keep the support of computed BDDs as 
small as possible
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What do we need to represent?

• Set of transitions: R(v, v’)

• Sets of states: S0(v), intermediate results 

of fixpoint computations
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Representing R(v, v’)

• How should the v and v’ variables be 

ordered in the BDD relative to each other?

• Keep vi close to vi’ (interleave)
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Relational Product
• Recall that reachability analysis involved 

computing

Si+1(v) = Si(v) ∨ (∃ v { Si(v) ∧ R(v,v’) }) [v/v’]

• Relational Product operation is 

∃ v { Si(v) ∧ R(v,v’) }

• This is done as one primitive BDD 
operation
– Rather than an AND followed by EXISTS 

(why?)
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Disjunctive Partitioning

• Suppose we have an asynchronous 

system composed of k processes

• Then, R(v, v’) can be decomposed as

∨i Ri(v, v’)

– Plug into expression for relational product

– Does ∃ distribute over ∨? What use is that?
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Conjunctive Partitioning

• Suppose we have an synchronous system 

composed of k processes

• Then, R(v, v’) can be decomposed as

∧i Ri(v, v’)

– Can we do the same optimization as on the 
previous slide? If not, is a similar optimization 
possible?
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Conjunctive Partitioning
• Suppose we have an synchronous system 

composed of k processes

• Then, R(v, v’) can be decomposed as

∧i Ri(v, v’)

– Can we do the same optimization as on the 
previous slide? If not, is a similar optimization 
possible?

• We can choose an order in which to quantify out 
variables and push the quantifiers as far in as 
possible

• What order do we pick?
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Abstraction

• Reduce the size of the system model by 

throwing out information

– If this information is irrelevant to the property 
of interest (i.e., the property is true on the 
original model iff it is true on the abstract 
model) then it is a precise abstraction

– If the property is true on the original model if it 
is true on the abstract model, it is a safe
abstraction 
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A Simple Form of Abstraction

• Suppose the temporal logic property 

mentions only a subset of variable V’ of 

the entire set V

• Can I use this information to construct a 

precise abstraction of the original model?
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A Simple Form of Abstraction

• Suppose the temporal logic property 

mentions only a subset of variable V’ of 

the entire set V

• Can I use this information to construct a 

precise abstraction of the original model?

– YES. One such method is the “cone of 
influence” reduction.

• Transitively propagate syntactic dependences on 

variables and “delete” all variables not in the 

transitive closure
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Cone-of-Influence Reduction

• A staple part of all model checkers

• However: often most of the variables 

remain in the cone-of-influence

– Need further abstraction
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Next class

• More on abstraction

• Symbolic model checking without BDDs


