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EECS 219C: 
Computer-Aided Verification

Introduction & Overview

Sanjit A. Seshia

EECS, UC Berkeley
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Guess what 
this is!
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What we’ll do today

• Introductions: to Sanjit and others

• Intro. to Model Checking

– 25 years since the first papers

– History, Opportunities, Challenges 

• Course Logistics & Survey
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About Me

B.Tech., Computer Sc. & Engg., 
IIT Bombay

M.S. & Ph.D., Computer Science, 
Carnegie Mellon University, Pittsburgh

Assistant Professor, 
EECS, UC Berkeley

Office: 568 Cory
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My Research

Theory Practice

+

Example: Fast automatic theorem proving 
used to build a better virus/worm detector

Computational Logic, 
Algorithms

CAD for VLSI, 
Computer Security, 
Program Analysis, 
Dependability
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Class Introductions

Please introduce yourselves
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Computer-Aided Verification
• Automatically verifying the correctness of 

computer systems 

• Is it relevant?

• Is it feasible?

• What will we study?
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Ariane disaster, 1996

$500 million software failure

FDIV error, 1994
$500 million

Estimated worst-case worm cost: 
> $50 billion
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Bugs cost Time and Money

• Cost of buggy software estimated to range  
$22 Billion - $ 60 B / year [NIST, 2002]

• Verification takes up 70% of hardware 
design cycle
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“Such a Pessimistic View of Life!”
No, not really.

• The theory underlying algorithmic verification 
is beautiful 

• It’s fun to work on

• It’s interdisciplinary

• The implementations are often non-trivial

– Scaling up takes a lot of hacking

• Analogy: coding theory is also about dealing 
with errors in data transmisson, storage, etc., 
but it’s really interesting theory!
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Is Verification Feasible?

• Easiest, non-trivial verification problem is 
NP-hard (SAT)

• But the outlook for practice is less gloomy 
than for theory…

– More hardware resources

– Better algorithms

S. A. Seshia 12

My Experience with SAT Solvers

766

147 118 81 46

3600

0

1,000

2,000

3,000

G
ra

sp (2
000)

zChaff 
(2

001)

Berk
M

in
 (2

002)

zChaff 
(2

003-0
4)

Sie
ge (2

004)

SatE
l it

eG
TI (

2005)

R
u

n
-t

im
e

 (
s

e
c

.)



7

S. A. Seshia 13

Experience with SPIN Model Checker
[G. Holzmann]

What we will study:

Model Checking &  
Computational Logic
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Computational Logic
• Mathematical logic for reasoning about 

computation
(& computer science for logic)

• Covers many areas, including model 
checking, and other topics:
– Constraint Solving 

– Functional Programming & Lambda Calculus

– Type Theory

– Logical Aspects of Computational Complexity 

• Sample journal: 

ACM Transactions on Computational Logic

S. A. Seshia 16

Model Checking

A collection of algorithmic methods

based on state space exploration

used for computer-aided verification.
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Visualizing Model Checking

[Moritz Hammer, Uni. Muenchen]
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Model Checking, (Over)Simplified

• Model checking “is” graph traversal

• What makes it interesting:

– The graph can be HUGE (possibly infinite)

– Nodes can represent many states (possibly 
infinitely many)

– How do we generate this graph from a system 
description (like source code)?

– Behaviors/Properties can be complicated

– …
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A Brief History of Model Checking

• 1977:  Pnueli introduces use of (linear) temporal 
logic for specifying program properties over time 
[1996 Turing Award]

• 1981: Model checking introduced by Clarke & 
Emerson and Quielle & Sifakis

– Based on explicitly traversing the graph 

– capacity limited by “state explosion”

• 1986: Vardi & Wolper introduce “automata-theoretic”
framework for model checking 

– Late 80s: Kurshan develops automata-theoretic verifier

• Early - mid 80s: Gerard Holzmann starts work on 

the SPIN model checker
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A Brief History of Model Checking

• 1986:  Bryant publishes paper on BDDs

• 1987:  McMillan comes up with idea for “Symbolic 
Model Checking” (using BDDs) – SMV system

– First step towards tackling state explosion

• 1987-1999: Flurry of activity on finite-state model 
checking with BDDs, lots of progress using: 
abstraction, compositional reasoning, …

– More techniques to tackle state explosion

• 1990-95: Timed Automata introduced by Alur & Dill, 
model checking algorithms introduced; generalized 
to Hybrid Automata by Henzinger and others
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A Brief History of Model Checking
• 1999:  Clarke et al. introduce “Bounded Model 

Checking” using SAT

– SAT solvers start getting much faster 

– BMC found very useful for debugging hardware systems

• 1999: Model checking hardware systems enters 
industrial use

– IBM RuleBase, Synopsys Magellan, 0-In FV, Jasper 
JasperGold

• 1999-2004: Software model checking comes of age

– Ball & Rajamani start SLAM project at MSR 

– Decision procedures (SMT solvers) get much faster

– Many projects to date: Blast, CMC,  Bandera, MOPS, …

– SLAM becomes a Microsoft product “Static Driver Verifier”
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Research Frontiers                           
in Model Checking

• Last year was the 25th anniversary of the 
original papers on finite-state model 
checking

• So there was a party! The 25MC 
symposium.

• Experts gave their opinion on what the 
grand challenges are…

• … And I interpreted them ☺

– These reflect opportunities for impact
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Challenge #1:                     
Coverage in Verification

• Suppose the model checker reports that 
the system is correct.

• Can we really believe it? Why or why not?
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Challenge #1:                     
Coverage in Verification

• Suppose the model checker reports that 
the system is correct.

• Can we really believe it? Why or why not?

Two Issues:

• Verification is only as good as the set of 
properties you verify

• Model checkers are being used as 
debuggers. When have we found all bugs? 
When do we stop model checking?

WE NEED COVERAGE METRICS
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Challenge #2:                  
Verification � Reliability

• Verification can only be applied to (small) 
components of an overall design

• How does that relate to overall system 
reliability?

– The real problem is to design reliable systems

– Can we get a “mean time between failures”
number from outputs of formal verification?
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Challenge #3:                  
Verification � Repair

• Suppose a model checker reports an error 
trace.

• Work doesn’t stop there! We need to 
perform

– Diagnosis: Where is the error?

– Repair: How to fix it?
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Challenge #4:                    
Scalability

• Problems underlying verification are 
intrinsically hard
– SAT, QBF, etc.

• How do we scale up?
– Leverage increasing parallelism in hardware

– Design “adaptive” algorithms that circumvent 
worst-case complexity

– Leverage automated abstraction

“A complex hybrid cocktail of AI techniques will 
come to bear on model checking” – K. McMillan
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Challenge #5:                       
Infinite-State Systems

• Model checking has been very effective for 
systems with Boolean state

– Finite-state systems, pushdown systems

• The next frontier:                                          
Real-time and Hybrid Systems

• Idea: Can we leverage all the work that’s 
been done for Boolean state?
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Challenge #6:                              
The Invisible Specification

• We typically assume that a formal 
specification is given.

• This doesn’t usually happen!

• We need techniques for:

– Making writing and re-using specifications 
easier for designers/programmers

– Automatically inferring specifications (from 
executions or otherwise)
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Challenge #7:                              
InterOperability

• There are a ton of verification tools 
available today

– Each finds bugs in its “niche”

– Each has its specification & modeling 
language

• How can we make them operate together, 
so that one can find bugs/finish where 
another runs out of gas?
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Challenge #8:                              
Structuring Code for Verification

• Code (C, Verilog, …) is often written in a 
way that makes verification difficult

– E.g., not modular, structure in the code that 
can help automated abstraction isn’t obvious

• How do we write code so that formal 
verification is easier?
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There are many other challenges as well.

We will look at some of these in the second 
half of the course, and I encourage your 
projects to address these.
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Topics in Verification 
that we won’t study in depth

• Equivalence checking of digital circuits  
[219B – Kuehlmann, 290A – Brayton]

• Software Testing [294 – Sen]

• Topics in Program Verification (e.g., Hoare 
logic) [263 – Necula]

• Simulation of circuits [219A – Brayton]
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Course Logistics

• Check out the webpage:

www.eecs.berkeley.edu/~sseshia/219c

• Detailed schedule is up
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Course Outline

• 3 parts

• Part I: Computational Engines for Model Checking

– Basics: SAT, BDDs, etc.

• Part II: Foundations of Model Checking – Systems 
with Boolean State

– “Classic” model checking (finite-state, also pushdown)

– More theoretical in content, applies broadly to many 
areas in EE and CS

• Part III: Research Frontiers

– The challenging problems that remain to be addressed 
– this is where the payoff is
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Reference Books
• Two recommended books:

– “Model Checking” by Clarke, Grumberg, Peled

• Good reference book if you intend to work in model 
checking or related area

– “Logic in Computer Science” by Huth & Ryan

• Useful especially if you lack some background

• Other reference books listed on website

• Copies of all are on reserve at Engg Liby

• Handouts for other material
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Grading
• 3 Homeworks (30%)

– On the first half of the course

• 1 Presentation of advanced topic (15%)

– Based on papers to be posted on the webpage

• Project (50%)

– Do original research, theoretical or applied

– Sample topics will be announced by month-end; good 
to pick something close to your research area

– Project proposal due mid-Feb.

– Culminates in final presentation + written paper

– Over half of last year’s projects turned into / 

contributed to conference papers!

[What’s missing on this slide? ☺ ]
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Misc.

• Office hours: M 2 - 3 pm, W 1 - 2 pm

• Pre-requisites: check webpage; come talk 
to me if unsure about taking the course

– Undergraduates need special permission to 
take this class

• Student background survey


