
1

EECS 219C:
Computer-Aided Verification

Introduction & Overview

Sanjit A. Seshia

EECS, UC Berkeley

S. A. Seshia 2

Guess what
this is!

2

S. A. Seshia 3

What we’ll do today

• Introductions: to Sanjit and others

• Intro. to Model Checking

– 25 years since the first papers

– History, Opportunities, Challenges

• Course Logistics & Survey

S. A. Seshia 4

About Me

B.Tech., Computer Sc. & Engg.,
IIT Bombay

M.S. & Ph.D., Computer Science,
Carnegie Mellon University, Pittsburgh

Assistant Professor,
EECS, UC Berkeley

Office: 568 Cory

3

S. A. Seshia 5

My Research

Theory Practice

+

Example: Fast automatic theorem proving
used to build a better virus/worm detector

Computational Logic,
Algorithms

CAD for VLSI,
Computer Security,
Program Analysis,
Dependability

S. A. Seshia 6

Class Introductions

Please introduce yourselves

4

S. A. Seshia 7

Computer-Aided Verification
• Automatically verifying the correctness of

computer systems

• Is it relevant?

• Is it feasible?

• What will we study?

S. A. Seshia 8

Ariane disaster, 1996

$500 million software failure

FDIV error, 1994
$500 million

Estimated worst-case worm cost:
> $50 billion

5

S. A. Seshia 9

Bugs cost Time and Money

• Cost of buggy software estimated to range
$22 Billion - $ 60 B / year [NIST, 2002]

• Verification takes up 70% of hardware
design cycle

S. A. Seshia 10

“Such a Pessimistic View of Life!”
No, not really.

• The theory underlying algorithmic verification
is beautiful

• It’s fun to work on

• It’s interdisciplinary

• The implementations are often non-trivial

– Scaling up takes a lot of hacking

• Analogy: coding theory is also about dealing
with errors in data transmisson, storage, etc.,
but it’s really interesting theory!

6

S. A. Seshia 11

Is Verification Feasible?

• Easiest, non-trivial verification problem is
NP-hard (SAT)

• But the outlook for practice is less gloomy
than for theory…

– More hardware resources

– Better algorithms

S. A. Seshia 12

My Experience with SAT Solvers

766

147 118 81 46

3600

0

1,000

2,000

3,000

G
ra

sp (2
000)

zChaff
(2

001)

Berk
M

in
 (2

002)

zChaff
(2

003-0
4)

Sie
ge (2

004)

SatE
l it

eG
TI (

2005)

R
u

n
-t

im
e

 (
s

e
c

.)

7

S. A. Seshia 13

Experience with SPIN Model Checker
[G. Holzmann]

What we will study:

Model Checking &
Computational Logic

8

S. A. Seshia 15

Computational Logic
• Mathematical logic for reasoning about

computation
(& computer science for logic)

• Covers many areas, including model
checking, and other topics:
– Constraint Solving

– Functional Programming & Lambda Calculus

– Type Theory

– Logical Aspects of Computational Complexity

• Sample journal:

ACM Transactions on Computational Logic

S. A. Seshia 16

Model Checking

A collection of algorithmic methods

based on state space exploration

used for computer-aided verification.

9

S. A. Seshia 17

Visualizing Model Checking

[Moritz Hammer, Uni. Muenchen]

S. A. Seshia 18

Model Checking, (Over)Simplified

• Model checking “is” graph traversal

• What makes it interesting:

– The graph can be HUGE (possibly infinite)

– Nodes can represent many states (possibly
infinitely many)

– How do we generate this graph from a system
description (like source code)?

– Behaviors/Properties can be complicated

– …

10

S. A. Seshia 19

A Brief History of Model Checking

• 1977: Pnueli introduces use of (linear) temporal
logic for specifying program properties over time
[1996 Turing Award]

• 1981: Model checking introduced by Clarke &
Emerson and Quielle & Sifakis

– Based on explicitly traversing the graph

– capacity limited by “state explosion”

• 1986: Vardi & Wolper introduce “automata-theoretic”
framework for model checking

– Late 80s: Kurshan develops automata-theoretic verifier

• Early - mid 80s: Gerard Holzmann starts work on

the SPIN model checker

S. A. Seshia 20

A Brief History of Model Checking

• 1986: Bryant publishes paper on BDDs

• 1987: McMillan comes up with idea for “Symbolic
Model Checking” (using BDDs) – SMV system

– First step towards tackling state explosion

• 1987-1999: Flurry of activity on finite-state model
checking with BDDs, lots of progress using:
abstraction, compositional reasoning, …

– More techniques to tackle state explosion

• 1990-95: Timed Automata introduced by Alur & Dill,
model checking algorithms introduced; generalized
to Hybrid Automata by Henzinger and others

11

S. A. Seshia 21

A Brief History of Model Checking
• 1999: Clarke et al. introduce “Bounded Model

Checking” using SAT

– SAT solvers start getting much faster

– BMC found very useful for debugging hardware systems

• 1999: Model checking hardware systems enters
industrial use

– IBM RuleBase, Synopsys Magellan, 0-In FV, Jasper
JasperGold

• 1999-2004: Software model checking comes of age

– Ball & Rajamani start SLAM project at MSR

– Decision procedures (SMT solvers) get much faster

– Many projects to date: Blast, CMC, Bandera, MOPS, …

– SLAM becomes a Microsoft product “Static Driver Verifier”

S. A. Seshia 22

Research Frontiers
in Model Checking

• Last year was the 25th anniversary of the
original papers on finite-state model
checking

• So there was a party! The 25MC
symposium.

• Experts gave their opinion on what the
grand challenges are…

• … And I interpreted them ☺

– These reflect opportunities for impact

12

S. A. Seshia 23

Challenge #1:
Coverage in Verification

• Suppose the model checker reports that
the system is correct.

• Can we really believe it? Why or why not?

S. A. Seshia 24

Challenge #1:
Coverage in Verification

• Suppose the model checker reports that
the system is correct.

• Can we really believe it? Why or why not?

Two Issues:

• Verification is only as good as the set of
properties you verify

• Model checkers are being used as
debuggers. When have we found all bugs?
When do we stop model checking?

WE NEED COVERAGE METRICS

13

S. A. Seshia 25

Challenge #2:
Verification � Reliability

• Verification can only be applied to (small)
components of an overall design

• How does that relate to overall system
reliability?

– The real problem is to design reliable systems

– Can we get a “mean time between failures”
number from outputs of formal verification?

S. A. Seshia 26

Challenge #3:
Verification � Repair

• Suppose a model checker reports an error
trace.

• Work doesn’t stop there! We need to
perform

– Diagnosis: Where is the error?

– Repair: How to fix it?

14

S. A. Seshia 27

Challenge #4:
Scalability

• Problems underlying verification are
intrinsically hard
– SAT, QBF, etc.

• How do we scale up?
– Leverage increasing parallelism in hardware

– Design “adaptive” algorithms that circumvent
worst-case complexity

– Leverage automated abstraction

“A complex hybrid cocktail of AI techniques will
come to bear on model checking” – K. McMillan

S. A. Seshia 28

Challenge #5:
Infinite-State Systems

• Model checking has been very effective for
systems with Boolean state

– Finite-state systems, pushdown systems

• The next frontier:
Real-time and Hybrid Systems

• Idea: Can we leverage all the work that’s
been done for Boolean state?

15

S. A. Seshia 29

Challenge #6:
The Invisible Specification

• We typically assume that a formal
specification is given.

• This doesn’t usually happen!

• We need techniques for:

– Making writing and re-using specifications
easier for designers/programmers

– Automatically inferring specifications (from
executions or otherwise)

S. A. Seshia 30

Challenge #7:
InterOperability

• There are a ton of verification tools
available today

– Each finds bugs in its “niche”

– Each has its specification & modeling
language

• How can we make them operate together,
so that one can find bugs/finish where
another runs out of gas?

16

S. A. Seshia 31

Challenge #8:
Structuring Code for Verification

• Code (C, Verilog, …) is often written in a
way that makes verification difficult

– E.g., not modular, structure in the code that
can help automated abstraction isn’t obvious

• How do we write code so that formal
verification is easier?

S. A. Seshia 32

There are many other challenges as well.

We will look at some of these in the second
half of the course, and I encourage your
projects to address these.

17

S. A. Seshia 33

Topics in Verification
that we won’t study in depth

• Equivalence checking of digital circuits
[219B – Kuehlmann, 290A – Brayton]

• Software Testing [294 – Sen]

• Topics in Program Verification (e.g., Hoare
logic) [263 – Necula]

• Simulation of circuits [219A – Brayton]

S. A. Seshia 34

Course Logistics

• Check out the webpage:

www.eecs.berkeley.edu/~sseshia/219c

• Detailed schedule is up

18

S. A. Seshia 35

Course Outline

• 3 parts

• Part I: Computational Engines for Model Checking

– Basics: SAT, BDDs, etc.

• Part II: Foundations of Model Checking – Systems
with Boolean State

– “Classic” model checking (finite-state, also pushdown)

– More theoretical in content, applies broadly to many
areas in EE and CS

• Part III: Research Frontiers

– The challenging problems that remain to be addressed
– this is where the payoff is

S. A. Seshia 36

Reference Books
• Two recommended books:

– “Model Checking” by Clarke, Grumberg, Peled

• Good reference book if you intend to work in model
checking or related area

– “Logic in Computer Science” by Huth & Ryan

• Useful especially if you lack some background

• Other reference books listed on website

• Copies of all are on reserve at Engg Liby

• Handouts for other material

19

S. A. Seshia 37

Grading
• 3 Homeworks (30%)

– On the first half of the course

• 1 Presentation of advanced topic (15%)

– Based on papers to be posted on the webpage

• Project (50%)

– Do original research, theoretical or applied

– Sample topics will be announced by month-end; good
to pick something close to your research area

– Project proposal due mid-Feb.

– Culminates in final presentation + written paper

– Over half of last year’s projects turned into /

contributed to conference papers!

[What’s missing on this slide? ☺]

S. A. Seshia 38

Misc.

• Office hours: M 2 - 3 pm, W 1 - 2 pm

• Pre-requisites: check webpage; come talk
to me if unsure about taking the course

– Undergraduates need special permission to
take this class

• Student background survey

