# Descriptions of Hybrid Systems

EE219C Jia Zou 4/25/2007

### Outline

- Question:
  - O How do we describe hybrid systems?
- One intuitive way to do describe HS
  - Hybrid automata
  - Is this a good idea?
- Other approaches...
  - Lazy linear hybrid automata

## What is a Hybrid System

- Discrete program with an analog environment
  - How do we formally verify hybrid systems?
- Modeled as a finite automaton with a set of variables.
  - Vertices => continuous activities
  - Edges => discrete transitions
- H = (Loc, Var, Lab, Edg, Act, Inv)
  - State = (I,v),  $I \in Loc$ ,  $v \in Valuations$
  - Stuttering label ε Lab
  - o (l,a,µ,l') € Edg
    - An edge is enabled in state (I, v) if for some v' ε V, (v,v') ε μ
    - (l',v') is the transition successor of (l,v)



### Hybrid System Example

- Leaky gas burner
  - Loc: leak, no leak
  - Var: x, y, z.
  - Inv: x <= 1</p>
  - Transition relation specified by guard
    - $\mu = \{NULL, (x < 30, x >= 30)\}$



## Hybrid System Transitions

- A run [H] of a hybrid system:
  - - $\sigma_i = (l_i, v_i)$
    - $t_i \in \mathbf{R}^{\geq 0}$
    - $f_i \in Act(l_i) \qquad f_i \in Inv(l_i)$
    - Properties:
      - If all Act are smooth functions, then all runs are piecewise smooth
      - O A run diverges if it's infinite and  $\sum_{i>0} t_i \to \infty$

## Run of Hybrid System

- Discrete and instantaneous transition of locations.
- Time delay that changes only the value of the variables, according to Act.
- Time-can-progress function to switch between transition-step and time-step

## Transition System

- Hybrid system as a transition system:
- Two types of step relations →
  - Transition-step relation →<sup>a</sup>

$$\frac{(l,a,\mu,l') \in Edg \quad (v,v') \in \mu \quad v \in Inv(l), v' \in Inv(l')}{(l,v) \rightarrow^a (l',v')}$$

o Time-step relation →<sup>t</sup>

$$\frac{f \in Act(l) \quad f(0) = v \quad \forall 0 \le t' \le t. f(t') \in Inv(l)}{(l, v) \to^{t} (l, v')}$$

Time can progress

$$tcp_{l}[v](t) \Leftrightarrow \forall 0 \le t' \le t.\varphi_{l}[v](t') \in Inv(l)$$

## Linear Hybrid Systems

- Act, Inv, Transition relations are linear.
- Special cases:
  - Act(I, x) = 0 for each location. x: discrete variable.
    - All variables discrete ⇔ discrete system
  - μ(e,x) ε {0,1} for each transition e ε Edg. x: proposition.
    - All variables are propositions ⇔ finite-state system
  - Act(I, x) = 1 for each location I and  $\mu(e,x) \in \{0,x\}$  for each transition e. x: clock

## More About Special Cases

- Act(I, x) = k for each location I and  $\mu(e,x) \in \{0,x\}$  for each transition e. x: skewed clock
  - All variables are propositions are skewed clocks
     Multirate timed system.
  - N-rate timed system: skewed clocks proceed at n different rates.
- Act(I, x) ε {0,1} for each I && μ(e,x) ε {0,x} for each e. x: integrator.
  - All variables are integrators: integrator system
- μ(e,x) = x for each e. x: parameter (symbolic constant)

# Linear Hybrid System Example

- Leaky gas burner
  - Multirate timed system
    - X: clock that stores time in current location
    - Y: global clock
    - Z: integrator



## Parallel Composition of HS

- $= H_1 = (Loc_1, Var, Lab_1, Edg_1, Act_1, Inv_1)$
- = H<sub>2</sub> = (Loc<sub>2</sub>, Var, Lab<sub>2</sub>, Edg<sub>2</sub>, Act<sub>2</sub>, Inv<sub>2</sub>)
  - Common set of Var
  - Two hybrid systems synchronized by Lab<sub>1</sub> ∩ Lab<sub>2</sub>
- $H_1 \times H_2 = (Loc_1 \times Loc_2, Var, Lab_1 \cup Lab_2, Edg, Act, Inv)$ 
  - $\circ$  (( $I_1$ ,  $I_2$ ),  $a,\mu$ , ( $I'_1$ ,  $I'_2$ ))  $\in$  Edg
  - $\circ$   $(l_1,a_1,\mu_1,l'_1) \in Edg_1$  and  $(l_2,a_2,\mu_2,l'_2) \in Edg_2$
  - Either  $a_1=a_2=a$ , or  $a_1$ !ε Lab<sub>2</sub> and  $a_2=\tau$ , or  $a_2$ !ε Lab<sub>1</sub> and  $a_1=\tau$
  - $\rho = \mu_1 \cap \mu_2$
- $Act(I_1,I_2) = Act_1(I_1) \cap Act_2(I_2)$
- $Inv(I_1,I_2) = Inv_1(I_1) \cap Inv_2(I_2)$
- $[H_1 \times H_2]_{Loc_1} \subseteq [H_1] \qquad [H_1 \times H_2]_{Loc_2} \subseteq [H_2]$

# Reachability Problem for Liner Hybrid Systems (LHS)

- A LHS is <u>simple</u> if all local invariants and transition guards are in the form x<=k or k<=x.</li>
- Reachability problem is
  - decidable for simple multirate timed systems.
    - Our previous example
  - Undecidable for 2-rate timed system
  - Undecidable for simple integrator systems



# Forward Ananlysis Graphical Representation



## Verification of LHS

- Forward Analysis P is set of valuation
  - Forward time closure of P at I:

$$v' \in \langle P \rangle_l \iff \exists v \in V, t \in \mathbf{R}^{\geq 0}. v \in P \land tcp[v](t) \land v' = \varphi_l[v](t)$$

Postcondition of P with respect to e:

$$v' \in \mathbf{post}_{e}[P] \Leftrightarrow \exists v \in V, v \in P \land (v, v') \in \mu$$

A set of states is called a region:

$$\langle R \rangle = \bigcup_{l \in Loc} (l, \langle R_l \rangle_l)$$

$$\mathbf{post}[R] = \bigcup_{e = (l, l') \in Edg} (l', \mathbf{post}_e[R_l])$$

### More Forward Analysis

Symbolic run of linear hybrid system H:

$$\rho = (l_0, P_0)(l_1, P_1)...(l_i, P_i)... \qquad P_{i+1} = \mathbf{post}_{e_i} [\langle P_i \rangle_{l_i}];$$

- The region  $(I_{i+1}, P_{i+1})$  is reachable from  $(I_0, P_0)$
- Reachable region  $I \mapsto *$

$$\sigma \in (I \mapsto *) \Leftrightarrow \exists \sigma' \in I.\sigma' \mapsto *\sigma.$$

Reachable region of I is the least fixpoint of:

$$X = \left\langle I \bigcup \mathbf{post}[X] \right\rangle \qquad X_l = \left\langle I_l \cup \bigcup_{e=(l',l) \in Edg} \mathbf{post}_e[X_{l'}] \right\rangle_l$$

- Lemma:
  - If P is a linear set of valuations, then for all I and e, both  $\langle P \rangle_{\iota}$  and  $\mathbf{post}_{\varrho}[P]$  are linear sets of valuations makes sure the system is verifiable

### Forward Reachability Example

$$\begin{split} \varphi_{1,0} = & \left\langle x = y = z = 0 \right\rangle_1 = (x \leq 1 \land y = x = z) \\ \varphi_{2,0} = false \\ \varphi_1 = & \left\langle x = y = z = 0 \lor \mathbf{post}_{(2,1)} [\varphi_2] \right\rangle_1 \\ \varphi_2 = & \left\langle false \lor \mathbf{post}_{(1,2)} [\varphi_1] \right\rangle_2 \\ \varphi_{1,i} = & \varphi_{1,i-1} \lor \left\langle \mathbf{post}_{(2,1)} [\varphi_2, i-1] \right\rangle_1 \\ \varphi_{2,i} = & \varphi_{2,i-1} \lor \left\langle \mathbf{post}_{(2,1)} [\varphi_1, i-1] \right\rangle_2 \\ \varphi_{1,1} = & \varphi_{1,0} \lor \left\langle \mathbf{post}_{(2,1)} [\varphi_{2,0}] \right\rangle_1 = \varphi_{1,0} \\ \varphi_{2,1} = & \varphi_{2,0} \lor \left\langle \mathbf{post}_{(1,2)} [\varphi_{1,1}] \right\rangle_2 = \left\langle \mathbf{post}_{(1,2)} [x \leq 1 \land y = x = z = 0] \right\rangle_2 \\ = & \left\langle (x = 0 \land y \leq 1 \land z = y) \right\rangle_2 = (z \leq 1 \land y = z + x) \\ \vdots \end{split}$$

Prove: y>=60 -> 20z <= y

Loc2: No leak

Transition guard

x := 0

Figure 4: Leaking gas burner

 $\dot{y} = 1$ 

### **Backward Analysis**

Backward time closure of P at I:

$$v' \in \langle P \rangle_l \iff \exists v \in V, t \in \mathbf{R}^{\geq 0}. v = \varphi_l[v](t) \land v \in P \land tcp[v'](t)$$

Precondition of P with respect to e:

$$v' \in \mathbf{pre}_e[P] \Leftrightarrow \exists v \in V, v \in P \land (v', v) \in \mu$$

Extension to a region:

$$\langle R \rangle = \bigcup_{l \in Loc} (l, \langle R_l \rangle_l)$$

$$\mathbf{pre}[R] = \bigcup_{e = (l', l) \in Edg} (l', \mathbf{pre}_e[R_l])$$

Initial region I is the least fixpoint of:

$$X = \left\langle R \bigcup \mathbf{pre}[X] \right\rangle \qquad X_l = \left\langle R_l \cup \bigcup_{e=(l,l') \in Edg} \mathbf{pre}_e[X_{l'}] \right\rangle_l$$

- Lemma:
  - o If P is a linear set of valuations, then for all I and e, both  $\langle P \rangle_{\iota}$  and  $\mathbf{pre}_{e}[P]$  are linear sets of valuations makes sure the system is verifiable

# Description and Specification Languages

- Timed Automata = simple multirate
  - Nondeterministic
  - Does not make transition as long as the Inv are satisfied.
  - PSPACE complexity

## Communicating Timed Automata

- Cooperations among processes to construct a state transition
- Channel concept introduced
  - Improve modularity of model description
  - Communicating realtime state machines.
- Monitor + Controller
- No distinction between sender and receiver
  - Model Bus Collisions



The model of gate-monitor-controller.

## Hybrid Automata

- Generalization of timed automata
- N-rate timed system
- Undecidable => not subject to algorithmic verification

### Logics

- Logic formulas used to describe system behavior
- System description and specifications put into the same language
  - Descriptions as axioms
  - Specification as theorems
- Soundness + completeness check
- Pro:
  - Small models that can prove/disprove theorems quickly
  - Semi-decision procedures that prove first-order logics
- Con:
  - Becomes impossible for large scale systems
  - We can't build a theorem proving machine in general

### Models Dealing With Real-Time Systems

- Case: Train approaching, poles come down
  - Linear-time Propositional Temporal Logic
    - G(approach => F down)
  - LTL with with clock time
    - $\forall x \exists y G((T = x \land apprach) \Rightarrow F(T = y \land (y x \le 300) \land down))$
  - Timed Propositional Temporal Logic
    - $Gx.(apprach \Rightarrow Fy.(y-x \le 300) \land down))$ 
      - Different from LTL with clock
  - Metric Temporal Logic
    - $G(apprach \Rightarrow F_{\leq 300} down)$
  - Asynchronous PTL
    - G[x,y]((x+2)<(y+1))
  - CTL
    - $\qquad \forall G(approach \Rightarrow \forall F(down))$
  - TCTL (most used)
    - $\forall G(apprach \Rightarrow \forall F_{\leq 300}(down))$

## Timed Process Algebra

- Three grammar rules
  - Wait t: wait for t time units
  - P<sub>1</sub> t> P<sub>2</sub>: P<sub>1</sub>, until time t, when no synchronization has happened, then P<sub>2</sub>
  - P₁ t↓ P₂: P₁ until time t, no matter what,
     P₂.

### **Others**

- Timed Petri Nets
  - Places, Tokens, Transitions
  - Many extension to tackle its inexpressiveness



#### Statecharts

 Describe behavioral hierarchies of untimed concurrent systems



## Lazy Linear Hybrid Automata

- Definition:
  - A class of LHA where discrete time behavior can be computed and represented as finite state automata.
- Simplifying by sampling.



- Why does this abstraction makes sense?
- Undecidable => decidable?

## Lazy Linear Hybrid Automata

- Requirements:
  - Periodic sampling
  - Finite precision bound on the value
- Formulation:
  - On the control side:
    - $= A = (Q, Act, q_{in}, V_{in}, D, \varepsilon, \{p_q\}_{q \in Q}, B, =>)$ 
      - => : (Q x Act X Grd X Q)
      - ...D closely related to ε?
  - On the system side:
    - Value
    - Guard
    - No states?

### Transition Relations

#### Configurations:

- (q,V,q'), q, q' are current and previous control states, V is set of actual values for Var
  - Init:  $(q_{in}, V_{in}, q_{in})$
  - a : action
  - т: silent action
  - (q,V,q') = (a) > (q1, V1, q1') iff q1' = q, q=(a, g) > q1
    - o t1, t2 are delays. 2 delays to separate two rates
    - O Let  $v_i = V(i) + \rho_{q'}(i) * t1(i) + \rho_q(i) * (t2(i) t1(i))$  for each i
      - v<sub>i</sub>'s satisfies the guards (different from V)
    - $V1(i) = V(i) + \rho_{q'}(i) * t1(i) + \rho_{q}(i) * (1-t1(i))$  for each i
  - $(q,V,q') = (\tau) > (q1, V1, q1')$  iff q1 = q1' = q, only t1 delay <sub>27</sub>

# Transition Relation Graphic representation



## More Transition Relations

- With transition relation:
  - Runs can be constructed.
    - $\sigma = (q_0, V_0, q'_0) \alpha_0(q_1, V_1, q'_1) \alpha_1 ... (q_k, V_k, q'_k)$
    - Initial condition:  $(q_0, V_0, q'_0)$
  - State and act sequences:
    - $st(\sigma) = q_0 q_1 ... q_m ... q_k \qquad act(\sigma) = \alpha_0 \alpha_1 ... \alpha_m ... \alpha_k$
  - Languges (set of runs):
    - $L_{st}(A) = \{st(\sigma)\} \qquad L_{act}(A) = \{act(\sigma)\}$
- Claim: The languages are REGULAR subsets of all possible state and act sequences.

## Generalizations

#### Guards

- Do not have to be rectangular (not simple)
- Rates of Evolution
  - Does not have to be unique in each control location. Instead can be rectangular.

## Conclusion

- Many different approaches (models, languages, etc.) available to solve hybrid systems
- However, most hybrid systems are undecidable, except for some special cases.
- Abstractions may be able to reduce this problem