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Outline

 Question:
 How do we describe hybrid systems?

 One intuitive way to do describe HS
 Hybrid automata

 Is this a good idea?

 Other approaches…
 Lazy linear hybrid automata
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What is a Hybrid System

 Discrete program with an analog environment
 How do we formally verify hybrid systems?

 Modeled as a finite automaton with a set of variables.
 Vertices => continuous activities
 Edges => discrete transitions

 H = (Loc, Var, Lab, Edg, Act, Inv)
 State = (l,v), l є Loc, v є Valuations
 Stuttering label є Lab
 (l,a,µ,l’) є Edg

 An edge is enabled in state (l, v) if for some v’ є V, (v,v’) є µ
 (l’,v’) is the transition successor of (l,v)

Discrete 
Controller

Analog
System
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Hybrid System Example
 Leaky gas burner

 Loc: leak, no leak

 Var: x, y, z.

 Inv: x <= 1

 Transition relation specified by guard

 µ = {NULL, (x < 30, x >= 30)}

Loc1: Leak
Loc2: No leak

Inv

Act

Transition Relation
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Hybrid System Transitions

 A run [H] of a hybrid system:








 Properties:
 If all Act are smooth functions, then all runs are 

piecewise smooth

 A run diverges if it’s infinite and
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Run of Hybrid System

 Discrete and instantaneous transition 
of locations.

 Time delay that changes only the 
value of the variables, according to 
Act.

 Time-can-progress function to switch 
between transition-step and time-step
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Transition System

 Hybrid system as a transition system:


 Two types of step relations
 Transition-step relation

 Time-step relation

 Time can progress
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Linear Hybrid Systems

 Act, Inv, Transition relations are linear.

 Special cases:
 Act(l, x) = 0 for each location. x: discrete 

variable. 

 All variables discrete  discrete system

 µ(e,x) є {0,1} for each transition e є Edg. x: 
proposition.

 All variables are propositions  finite-state 
system

 Act(l, x) = 1 for each location l and µ(e,x) є {0,x} 
for each transition e. x: clock
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More About Special Cases

 Act(l, x) = k for each location l and µ(e,x) є
{0,x} for each transition e. x: skewed clock
 All variables are propositions are skewed clocks 
 Multirate timed system.

 N-rate timed system: skewed clocks proceed at 
n different rates.

 Act(l, x) є {0,1} for each l && µ(e,x) є {0,x}  
for each e. x: integrator. 
 All variables are integrators: integrator system

 µ(e,x) = x for each e. x: parameter (symbolic 
constant)
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Linear Hybrid System 
Example

 Leaky gas burner
 Multirate timed system

 X: clock that stores time in current location

 Y: global clock

 Z: integrator
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Parallel Composition of HS

 H1 = (Loc1, Var, Lab1, Edg1, Act1, Inv1)
 H2 = (Loc2, Var, Lab2, Edg2, Act2, Inv2)

 Common set of Var
 Two hybrid systems synchronized by Lab1 ∩ Lab2

 H1 x H2 = (Loc1 x Loc2, Var, Lab1 U Lab2, Edg, Act, Inv)
 ((l1, l2), a,µ, (l’1, l’2)) є Edg
 (l1,a1,µ1,l’1) є Edg1 and (l2,a2,µ2,l’2) є Edg2
 Either a1=a2=a, or a1 !є Lab2 and a2 = τ, 

or a2 !є Lab1 and a1 = τ
 µ = µ1 ∩ µ2

 Act(l1,l2) = Act1(l1) ∩ Act2(l2)
 Inv(l1,l2) = Inv1(l1) ∩ Inv2(l2)
 ][][ 121 1

HHH Loc  ][][ 221 2
HHH Loc 
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Reachability Problem for Liner 
Hybrid Systems (LHS)

 A LHS is simple if all local invariants and transition 
guards are in the form x<=k or k<=x.

 Reachability problem is 
 decidable for simple multirate timed systems.

 Our previous example

 Undecidable for 2-rate timed system
 Undecidable for simple integrator systems
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Forward Ananlysis Graphical 
Representation
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Verification of LHS

 Forward Analysis – P is set of valuation
 Forward time closure of P at l:

 Postcondition of P with respect to e:

 A set of states is called a region:
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More Forward Analysis

 Symbolic run of linear hybrid system H:

 The region (li+1, Pi+1) is reachable from (l0, P0) 
 Reachable region

 Reachable region of I is the least fixpoint of:

 Lemma:
 If P is a linear set of valuations, then for all l and e, both

and are linear sets of valuations – makes 
sure the system is verifiable
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Forward Reachability Example
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Backward Analysis

 Backward time closure of P at l:

 Precondition of P with respect to e:

 Extension to a region:

 Initial region I is the least fixpoint of:

 Lemma:
 If P is a linear set of valuations, then for all l and e, both

and are linear sets of valuations – makes sure the 
system is verifiable
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Description and Specification 
Languages

 Timed Automata = simple multirate
 Nondeterministic

 Does not make transition as long as the 
Inv are satisfied.

 PSPACE complexity
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Communicating Timed 
Automata

 Cooperations among 
processes to construct 
a state transition

 Channel concept 
introduced
 Improve modularity of 

model description
 Communicating real-

time state machines.

 Monitor + Controller
 No distinction between 

sender and receiver
 Model Bus Collisions
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Hybrid Automata

 Generalization of timed automata

 N-rate timed system

 Undecidable => not subject to 
algorithmic verification
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Logics

 Logic formulas used to describe system behavior
 System description and specifications put into the 

same language
 Descriptions as axioms
 Specification as theorems

 Soundness + completeness check
 Pro: 

 Small models that can prove/disprove theorems quickly
 Semi-decision procedures that prove first-order logics

 Con:
 Becomes impossible for large scale systems
 We can’t build a theorem proving machine in general
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Models Dealing With Real-
Time Systems

 Case: Train approaching, poles come down
 Linear-time Propositional Temporal Logic

 G(approach => F down)
 LTL with with clock time



 Timed Propositional Temporal Logic


 Different from LTL with clock

 Metric Temporal Logic


 Asynchronous PTL
 G[x,y]((x+2)<(y+1))

 CTL


 TCTL (most used)

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Timed Process Algebra

 Three grammar rules
 Wait t: wait for t time units

 P1 t> P2: P1, until time t, when no 
synchronization has happened, then P2

 P1 t↓ P2: P1 until time t, no matter what, 
P2.
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Others

 Timed Petri Nets
 Places, Tokens, 

Transitions

 Many extension to 
tackle its 
inexpressiveness

 Statecharts
 Describe behavioral 

hierarchies of 
untimed concurrent 
systems
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Lazy Linear Hybrid Automata

 Definition:
 A class of LHA where discrete time behavior can be 

computed and represented as finite state automata.

 Simplifying by sampling.

 Why does this abstraction makes sense?

 Undecidable => decidable?
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Lazy Linear Hybrid Automata

 Requirements:
 Periodic sampling
 Finite precision – bound on the value

 Formulation:
 On the control side:

 A = (Q, Act, qin, Vin, D, є, {pq}qєQ, B, =>)
 => : (Q x Act X Grd X Q)
 …D closely related to є?

 On the system side:
 Value
 Guard
 No states?
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Transition Relations

 Configurations:
 (q,V,q’), q, q’ are current and previous control 

states, V is set of actual values for Var
 Init: (qin, Vin, qin

’)

 a : action

 τ : silent action

 (q,V,q’) =(a)> (q1, V1, q1’)  iff q1’ = q, q=(a, g)>q1
 t1, t2 are delays. 2 delays to separate two rates

 Let for each i 

 vi’s satisfies the guards (different from V)

 for each i

 (q,V,q’) =(τ)> (q1, V1, q1’)  iff q1 = q1’ = q, only t1 delay

))(1)(2(*)()(1*)()( ' ititiitiiVv qqi  

))(11(*)()(1*)()()(1 ' itiitiiViV qq  



28

Transition Relation Graphic 
representation
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More Transition Relations

 With transition relation:
 Runs can be constructed.



 Initial condition:  


 State and act sequences:


 Languges (set of runs):


 Claim: The languages are REGULAR 
subsets of all possible state and act 
sequences.

)',,( 000 qVq

)',,...()',,()',,( 11110000 kkk qVqqVqqVq  

kmqVqqVq mmmmmm
m   0),',,()',,( 111



)}({)( stALst  )}({)( actALact 

km qqqqst ......)( 10 kmact  ......)( 10



30

Generalizations

 Guards
 Do not have to be rectangular (not 

simple)

 Rates of Evolution
 Does not have to be unique in each 

control location. Instead can be 
rectangular.
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Conclusion

 Many different approaches (models, 
languages, etc.) available to solve 
hybrid systems

 However, most hybrid systems are 
undecidable, except for some special 
cases.

 Abstractions may be able to reduce 
this problem


