# Error Localization And System Repair

Shyam Rajagopalan

**EECS 219c** 

#### Motivation

- Close to 70% of project time for chip-design is spent on verification [1]
- Industrial verification centers around assertionbased debugging [1]
  - E.g. LTL Property: G (request -> F ack)
  - E.g. C-style assert: assert(x == y);
- If Model Checker verifies the property
  - Assertion is true for design
- If Model Checker fails to verify the property
  - Tool returns an error-trace
  - Then, what?

#### Two Approaches

- Error traces tend to be long and complex. Reducing the amount of information a designer/verifier has to process reduces the time spent on debugging (Localization)
  - Source: Groce et al: Error Explanation with Distance Metrics
- Automate the repairing process itself. Rather than displaying what went wrong with the program, display suggestions for how the program could be fixed
  - Source: Grismayer et al, Repair of Boolean Programs with an application to C

# Outline of Error Explanation

- SSA form and Distance Metrics
- Notions of Causality
- Which parts of the error-trace were relevant to the error?
- Which parts of the error-trace should be presented to the user?

# Guiding Example

```
1 Void MiniMax (int input1, int input2, int input3)
2 {
3
        int least = input1;
4
        int most = input1;
5
        if (most < input2)
6
             most = input2;
        if (most < input3)
8
             most = input3;
9
        if (least > input2)
10
             most = input2; (ERROR!)
11
        if (least > input3)
12
             least = input3;
        assert (least <= most);</pre>
13
14 }
```

# Static Single Assignment (SSA) Form

```
1 Void MiniMax (int input1, int input2, int input3)
                                                                           {-14} least#0 == input1#0
2 {
                                                                           \{-13\} most#0 == input1#0
3
            int least = input1;
                                                                           \{-12\} \quard#1 == (most#0 < input2#0)
            int most = input1;
                                                                           \{-11\} most#1 == input2#0
5
            if (most < input2)
                                                                           \{-10\} most#2 == (\quad \text{quard}#1 ? most#1 : most#0)
                    most = input2;
                                                                           \{-9\} \setminus = (most\#2 < input3\#0)
            if (most < input3)
                                                                           \{-8\} most#3 == input3#0
8
                                                                           \{-7\} most#4 == (\quard#2 ? most#4 : most#3)
                    most = input3;
                                                                           \{-6\} \setminus 3 == (least #0 > input 2 #0)
9
            if (least > input2)
                                                                           \{-5\} most#5 == input2#0
10
                    most = input2:
                                                                           \{-4\} most#6 == (\guard#3 ? most#5 : most#4)
11
            if (least > input3)
                                                                           \{-3\} \setminus = (least\#0 > input3\#0)
12
                    least = input3:
                                                                           {-2} least#1 == input3#0
13
            assert (least <= most):
                                                                           {-1} least#2 == (\guard#4 ? least#1 : least#0)
14 }
                                                                          {1} least#2 <= most#6
```

- CBMC uses loop unrolling (with known finite depths) and SSA form to convert every c-program into a series of single assignments
- CBMC plugs in CNF equivalent of clauses:

$$(\{-14\} \land \{-13\} \land \dots \land \{-1\} \land \neg \{1\})$$

#### **CBMC** continued

```
input1#0 = 1
{-14} least#0 == input1#0
                                                                                                                                                                                                                      input2#0 = 0
\{-13\} most#0 == input1#0
                                                                                                                                                                                                                      input3#0 = 1
\{-12\} \setminus = (most\#0 < input2\#0)
                                                                                                                                                                                                                      least#0 = 1
\{-11\} most#1 == input2#0
                                                                                                                                                                                                                      most\#0 = 0
\{-10\} most#2 == (\guard#1 ? most#1 : most#0)
                                                                                                                                                                                                                      \guard#1 = FALSE
\{-9\} \setminus = (most#2 < input3#0)
                                                                                                                                                Counterexample most#1 = 0
\{-8\} most#3 == input3#0
                                                                                                                                                                                                                      most#2 = 1
\{-7\} most#4 == (\guard#2 ? most#4 : most#3)
                                                                                                                                                                                                                      \guard#2 = FALSE
\{-6\} \setminus 3 == (least #0 > input 2 # 0)
                                                                                                                                                                                                                      most#3 = 1
\{-5\} most#5 == input2#0
                                                                                                                                                                                                                      most#4 = 1
\{-4\} most#6 == (\quad \quad \quad
                                                                                                                                                                                                                      \quard#3 = TRUE
\{-3\} \setminus = (least#0 > input3#0)
                                                                                                                                                                                                                      most#5 = 0
{-2} least#1 == input3#0
                                                                                                                                                                                                                      most\#6 = 0
{-1} least#2 == (\guard#4 ? least#1 : least#0)
                                                                                                                                                                                                                      \quard#4 = FALSE
                                                                                                                                                                                                                      least#1 = 1
{1} least#2 <= most#6
                                                                                                                                                                                                                      least#2 = 1
```

#### **Distance Metrics**

- How close/far away are two error traces?
- Apply the concept of a distance metric
  - 1. Nonnegative property:  $\forall a : \forall b : d(a,b) \geq 0$
  - 2. Zero property:  $\forall a : \forall b : d(a,b) = 0 \Leftrightarrow a = b$
  - 3. Symmetry:  $\forall a : \forall b : d(a,b) = d(b,a)$
  - 4. Triangle inequality:  $\forall a : \forall b : \forall c : d(a,b) + d(b,c) \ge d(a,c)$

#### Distance Metric in CMBC

- Represent executions of program P as a set of assignments using SSA form
- Execution a : {v0 = val\_0; v1 = val\_1 ..}
- Execution b : {v0 = val\_0'; v1 = val\_1'...}
- Because of SSA form, executions a and b perform assignment to the same sequence of assignments
- d(a,b) = ∑ ∆(i) where ∆(i) = (val\_i' == val\_i) ? 0 : 1
- Distance Metric is the number of differing assignments in the execution path.

#### Sample Distance Metric Calculation

```
Execution trace a:
                             Execution trace b:
input1#0 = 1
                             input1#0 = 1
input2#0 = 0
                             input2#0 = 0
input3#0 = 1
                             input3#0 = 0
least#0 = 1
                             least#0 = 1
most\#0 = 0
                             most\#0 = 0
\quard#1 = FALSE
                             \quard#1 = FALSE
most#1 = 0
                             most#1 = 0
most#2 = 1
                             most#2 = 1
\guard#2 = FALSE
                             \guard#2 = FALSE
                             most#3 = 1
most#3 = 1
most#4 = 1
                             most#4 = 1
\guard#3 = TRUE
                             \guard#3 = TRUE
most#5 = 0
                             most#5 = 0
                             most\#6 = 0
most\#6 = 0
\guard#4 = FALSE
                             \q \quard#4 = FALSE
least#1 = 1
                             least#1 = 1
least#2 = 1
                             least#2 = 1
```

$$=> d(a,b) = 1$$

### Error Explanation Procedure

- Use SAT Solver to solve: Prog. AND (NOT Spec)
  - ( generates counterexample )
- Use explain tool to generate closest valid execution of P
- Compute Δ's between valid and invalid executions
- Perform Slicing Step to reduce number of Δ's that must be presented to the user

#### Finding the valid closest execution

#### First Method:

- Solve SAT instance of (Program and Spec)
- Encode required distance, i.e the sum of the  $\Delta$ (i)'s into the SAT problem. For a fixed error trace a, encode d(a,b) = n directly into the SAT problem by requiring exactly n of the  $\Delta$ 's to be 1.
- Then iteratively solve for various values of n
- In practice this is not very efficient
  - Encoding that exactly n of the Δ's should be 1 results in large problems and state space explosion for long error traces.

# Finding the closest execution

- Second Method:
  - Use a Pseudo-Boolean solver (PBS)
  - A PBS solver can accept a SAT problem in CNF and maximizes a pseudo-boolean expression objective function
  - A pseudo-boolean formula is of the form:

$$\sum_{i=1} c_i * d_i$$

where di is a boolean variable, and ci is a rational constant

 Use ci = 1 and di as each of the ∆i variables and minimize d(a,b)

# Example of finding a close valid execution

```
Closest Successful Trace a':
Error trace a:
input1#0 = 1
                                      input1#0 = 1
input2#0 = 0
                                      input2#0 = 1
input3#0 = 1
                                      input3#0 = 1
least#0 = 1
                                      least#0 = 1
most\#0 = 1
                                      most\#0 = 1
\quard#1 = FALSE
                                      \quard#1 = FALSE
most#1 = 0
                                      most#1 = 1
most#2 = 1
                                      most#2 = 1
\guard#2 = FALSE
                                      \quard#2 = FALSE
most#3 = 1
                                      most#3 = 1
most#4 = 1
                                      most#4 = 1
\guard#3 = TRUE
                                      \guard#3 = FALSE
most#5 = 0
                                      most#5 = 1
most\#6 = 0
                                      most\#6 = 1
\guard#4 = FALSE
                                      \guard#4 = FALSE
least#1 = 1
                                      least#1 = 1
least#2 = 1
                                      least#2 = 1
```

# **Definition of Causality**

 A predicate e is <u>causally dependent</u> on a predicate c in an execution trace a iff:

$$c(a) \wedge e(a)$$

$$\exists b \neg c(b) \wedge \neg e(b)$$

$$(\forall b', \neg c(b') \wedge e(b') \implies d(a,b) < d(a,b'))$$

What does this mean?

#### Illustration





# Inspiration for Algorithm

Theorem: let a be the counterexample trace and b be any closest successful execution to a. Let D be the set of  $\Delta s$  for which the values in a and b differ. If c is a predicate stating that an execution disagrees with b for at least one of these values, and e is the proposition that an error occurs, e is causally dependent on c in a.

### Inspiration for algorithm

 David Lewis's theory [2] is that explanation is the analysis of causal relationships.

 Presenting the set of differences between the erroar trace and the closest successful trace satisfies the definition of explaining the error.

# Example of finding a close valid execution

```
Error trace a:
                                    Closest Successful Trace a':
input1#0 = 1
                                    input1#0 = 1
input2#0 = 0
                                    input2#0 = 1
input3#0 = 1
                                    input3#0 = 1
least#0 = 1
                                    least#0 = 1
most\#0 = 1
                                    most\#0 = 1
\guard#1 = FALSE
                                    \guard#1 = FALSE
most#1 = 0
                                    most#1 = 1
most#2 = 1
                                    most#2 = 1
                                    \guard#2 = FALSE
\quard#2 = FALSE
most#3 = 1
                                    most#3 = 1
most#4 = 1
                                    most#4 = 1
\quard#3 = TRUE
                                    \quard#3 = FALSE
most#5 = 0
                                    most#5 = 1
most\#6 = 0
                                    most\#6 = 1
\guard#4 = FALSE
                                    \guard#4 = FALSE
least#1 = 1
                                    least#1 = 1
least#2 = 1
                                    least#2 = 1
```

#### Presenting traces to a user

```
1 Void MiniMax (int input1, int input2, int input3)
2 {
3
        int least = input1;
        int most = input1;
5
        if (most < input2)
6
             most = input2;
        if (most < input3)
8
             most = input3;
9
        if (least > input2)
10
             most = input2; (ERROR!)
11
        if (least > input3)
             least = input3;
12
13
        assert (least <= most);</pre>
14 }
```

# ∆-Slicing

•  $\Delta$ 's might contain assignments to some variable z that is not relevant to failed assertion

Guiding Example: Let input1 = 1, input2 = 1; and then let input1 = 1, input2 = 0; line 7 would be part of  $\Delta$ , but is irrelevant to failed assertion

```
Int main () {
2 int input1, input2;
3 int x = 1, y = 1, z = 1;
4 if (input1 > 0) {
5 x += 5:
6 	 y += 6;
7 z += 4:
8
  }
9 if (input2 > 0) {
10 x += 6:
11 y += 5;
12 z += 4:
13 }
14 assert ((x < 10) || (y < 10));
15 }
```

### ∆-Slicing

- Attempts to answer the question: "What is the smallest subset of changes in values between these two executions that results in a change in the value of the predicate"
- Further reduce the number of lines that a designer has to examine

# $\Delta$ -Slicing (2)

- Let a be the error trace and b be the closest successful trace
- Construct a new PBS problem:
  - For every variable Vi such that ∆(i) = 0, i.e Vi{a} == Vi{b}, construct a clause: (Vi = Vi{a})
- For every variable Vi such that ∆(i) = 1, i.e
   (Vi{a} != Vi{b}) introduce a new clause:

$$(Vi = Vi\{a\}) \lor ((Vi = Vi\{b\}) \land f(Vi))$$

 F(Vi) is an expression indicating that changing Vi from Vi{b} to Vi{a} at that point in the execution changes the value of the predicate (wether error occurs)

# $\Delta$ -Slicing (3)

- Minimizing over the same PBS formula, i.e. d(a,b), we remove all the  $\Delta$ 's that were irrelevant to the change in value of the predicate
- If all the  $\Delta$ 's were important to the change in success, we can't remove any slices
- However, variables that were simply changed, because of execution branch taken will be identified.
- However, the result is generally not a valid execution sequence of the program
  - This doesn't matter, since all we are interested in is localizing error

# Example of finding a close valid execution

```
Error trace a:
                                    Closest Successful Trace a':
input1#0 = 1
                                    input1#0 = 1
input2#0 = 0
                                    input2#0 = 1
input3#0 = 1
                                    input3#0 = 1
least#0 = 1
                                    least#0 = 1
most\#0 = 1
                                    most\#0 = 1
\guard#1 = FALSE
                                    \guard#1 = FALSE
most#1 = 0
                                    most#1 = 1
most#2 = 1
                                    most#2 = 1
                                    \guard#2 = FALSE
\quard#2 = FALSE
most#3 = 1
                                    most#3 = 1
most#4 = 1
                                    most#4 = 1
\quard#3 = TRUE
                                    \quard#3 = FALSE
most#5 = 0
                                    most#5 = 1
most\#6 = 0
                                    most\#6 = 1
\guard#4 = FALSE
                                    \guard#4 = FALSE
least#1 = 1
                                    least#1 = 1
least#2 = 1
                                    least#2 = 1
```

#### Presenting traces to a user

```
1 Void MiniMax (int input1, int input2, int input3)
2 {
3
        int least = input1;
        int most = input1;
5
        if (most < input2)
6
             most = input2;
        if (most < input3)
8
             most = input3;
        if (least > input2)
9
10
             most = input2; (ERROR!)
11
        if (least > input3)
             least = input3;
12
        assert (least <= most);</pre>
13
14 }
```

The number of lines presented to the user can be reduced by one

#### Evaluating Fault Localization

- Renieris and Reiss[3] proposed the following algorithm:
  - Consider a graph, G, where nodes represent lines of code, and edges represent dependencies
  - A node in this graph is faulty if it is incorrect
  - An error report R presents a set of lines of code, i.e a set of nodes in this graph
  - Perform BFS starting from R, and let R\* be the smallest layer that contains at least one faulty node – Error metric is:  $1-\frac{|R^*|}{|C|}$

#### Intuition behind benchmark

- Benchmark Measure:  $1 \frac{|R^*|}{|G|}$
- Lowest scores are achieved when |R\*| is big:
  - Many nodes are presented to the user
  - Nodes are far away from faulty nodes
- Highest scores are achieved when |R\*| is small:
  - Few nodes are presented to the user
  - Presented Nodes are closest to the user
- This benchmark has become accepted widely in the fault localization research community

#### Benchmark results

|                               | explain |       | assume |      |       | JPF  |      | R & R        |      | CBMC |      |      |
|-------------------------------|---------|-------|--------|------|-------|------|------|--------------|------|------|------|------|
| Var.                          | exp     | slice | time   | assm | slice | time | JPF  | $_{ m time}$ | n-c  | n-s  | CBMC | time |
| #1                            | 0.51    | 0.00  | 4      | 0.90 | 0.91  | 4    | 0.87 | 1,521        | 0.00 | 0.58 | 0.41 | 1    |
| #11                           | 0.36    | 0.00  | 5      | 0.88 | 0.93  | 7    | 0.93 | 5,673        | 0.13 | 0.13 | 0.51 | 1    |
| #31                           | 0.76    | 0.00  | 4      | 0.89 | 0.93  | 7    | FAIL | -            | 0.00 | 0.00 | 0.46 | 1    |
| #40                           | 0.75    | 0.88  | 6      | -    | -     | -    | 0.87 | 30,482       | 0.83 | 0.77 | 0.35 | 1    |
| #41                           | 0.68    | 0.00  | 8      | 0.84 | 0.88  | 5    | 0.30 | 34           | 0.58 | 0.92 | 0.38 | 1    |
| Average                       | 0.61    | 0.18  | 5.4    | 0.88 | 0.91  | 5.8  | 0.59 | 7,542        | 0.31 | 0.48 | 0.42 | 1    |
| $\mu \mathrm{C/OS\text{-}II}$ | 0.99    | 0.99  | 62     | -    | -     | -    | N/A  | N/A          | N/A  | N/A  | 0.97 | 44   |
| $\mu C/OS-II*$                | 0.81    | 0.81  | 62     | -    | -     | -    | N/A  | N/A          | N/A  | N/A  | 0.00 | 44   |

# Summary of Error Localization

- Model Checker produces error trace
- Explain tool generates close counter example using a PBS
- Slicing removes the number of differences between the error trace and valid trace that are presented
- Slicing and Solving for the correct trace are both solved using PBS. Is there some way to combine them?

#### Repair of Errors

- Even with error localization techniques, the counterexample is simply a hint to the root cause of the error: some faulty piece of code
- To fix the bug, the counterexample must be analysed by a human who must identify the root cause
- It would be even more useful to automatically suggest repairs to the programmer

### Repair of Errors

- Intuition: Model checker internally computes an abstraction of the c-program:
  - A boolean program
- Come up with a strategy to repair the boolean program
- Map repairs of boolean programs to repairs of c-programs to suggest a repair
- Source: Grismayer et al, Repair of Boolean Programs with an application to C

#### Boolean Programs

- Global Variables; Local Variables; Recursion, Assignments, Parallel assignments and Nondeterminism.
- Formalization:
  - (R, main, Vg)
  - R is a set of routines
  - Each R is (Sr, Vr)
  - Sr = (Sr,0...Sr,f) is a set of statements
  - Vr is set of local variables
  - Vr' = Vg U Vr set of visible variables
  - Let E be the subset of Vr' that is set (called Valuation)
    - Each E is in Xr = 2<sup>Vr'</sup>
  - Control flow is given by: next(E, s, s') if s' is a possible next statement of s under valuation E

### **Boolean Programs Continued**

- The set of states of a routine is in Qr = Sr \* Xr'
- For a call statement from src to dest, define a relation Us: Xsrc \* Xdest
- For a return statement define Ps: Xsrc \* Xdest -> Xsrc

#### Model-Checking Boolean Programs

- For each routine, associate an execution graph Er
- Compute Set of reachable states
- If the set ever contains an error state, i.e
  the set of visible variables that are on
  violate some assertion, then boolean
  program is faulty.

### Requirements

- Repair should change program as little as possible
- Repairs have to depend only on local variables and global variables, i.e. only the visible variables
  - So strategy does not introduce new memory

#### **Game Formulation**

- System is protagonist
- Environment is antagonist
- Winning Strategy is one that ensures that specification is adhered to by fixing system decisions.
- If a winning strategy exists, we can fix the boolean program.

#### The Game

- Extend model checking algorithm
- On one iteration of the model checker, there is a transition from a good state to a bad state via a boolean expression
- This is the expression that needs to be repaired

# Computing the strategy

- A possible expression is of the form Xr->Xr or is in 2<sup>Xr</sup>
- Iterating over all possible expressions is computationally infeasible
- Use BDDs to share computation and examine all possible repairs simultaneously

# Mapping repairs to C

- Boolean repair comes up with a list of predicates
- Each line of the boolean program corresponds to some line of the c program after abstraction
- Use meaning of these predicates to suggest repairs for c program.

# **Experimental Results**

| Driver      | LoC   | # Expr. | # Total | # in Driver | Time(s) | # vars | Results | Property          |
|-------------|-------|---------|---------|-------------|---------|--------|---------|-------------------|
| 1394 diag   | 7223  | 273     | 57      | 8           | 1345    | 2/10   | ✓       | MarkIrpPending    |
| bulltlp3.1  | 4751  | 860     | 30      | 3           | 16482   | 13/15  | $X^1$   | IrpProcComplete   |
| daytona     | 14364 | 305     | 2       | 0           | 379     | 2/0    | $X^1$   | StartIoRecursion  |
| gameenum    | 4001  | 217     | 29      | 1           | 577     | 2/9    | ✓       | MarkIrpPending    |
| hidgame     | 3611  | 335     | 27      | 4           | 7132    | 9/17   | $X^2$   | LowerDriverReturn |
| mousefilter | 1755  | 165     | 21      | 3           | 4035    | 7/33   | ✓       | PendCompleteReq   |
| parport     | 24379 | 1055    | 3       | 1           | 8334    | 2/0    | ✓       | DoubleCompletion  |
| pscr        | 4842  | 374     | 5       | 0           | 2797    | 6/7    | $X^1$   | IrqlReturn        |
| sfloppy     | 2216  | 19      | 6       | 4           | 4       | 2/0    | ✓       | AddDevice         |

#### Conclusion

- Using the concept of a distance metric, we can reduce the amount of information that a user has to look at to identify a system error
- We can also use the model checker to identify the transition on which the error occurs.
  - Using this, we can determine whether there is an automatic strategy to fix the expression so that the error state is not reached
- Using the concept of a distance metric, we can reduce the amount of information that a user has to look at to identify a system error

#### Outside References

- [1] Dave, Sailesh: "Assertion-Based Verification Shortens Project Design Time", Chip Design Magazine, Issue 16, Article ID 437
- [2] Lewis, Davis: "Causation", Journal of Philosophy 70:556-557
- [3] Reiter, R: "Fault localization with nearest neighbor queries", Automated Software Engineer, pages 30-39