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Motivation

• Close to 70% of project time for chip-design is 
spent on verification [1]

• Industrial verification centers around assertion-
based debugging [1]
– E.g. LTL Property: G (request -> F ack)

– E.g. C-style assert: assert(x == y);

• If Model Checker verifies the property
– Assertion is true for design

• If Model Checker fails to verify the property
– Tool returns an error-trace

– Then, what?



  

Two Approaches

• Error traces tend to be long and complex. Reducing the 
amount of information a designer/verifier has to process 
reduces the time spent on debugging (Localization) 
– Source: Groce et al: Error Explanation with Distance Metrics

• Automate the repairing process itself. Rather than 
displaying what went wrong with the program, display 
suggestions for how the program could be fixed
– Source: Grismayer et al, Repair of Boolean Programs with an 

application to C



  

Outline of Error Explanation

• SSA form and Distance Metrics

• Notions of Causality

• Which parts of the error-trace were 
relevant to the error?

• Which parts of the error-trace should be 
presented to the user?



  

Guiding Example
1 Void MiniMax (int input1, int input2, int input3)
2 {
3 int least = input1; 
4 int most = input1; 
5 if (most < input2)
6 most = input2; 
7 if (most < input3) 
8 most =  input3; 
9 if (least > input2) 
10 most = input2;  (ERROR!)
11 if (least > input3) 
12 least = input3; 
13 assert (least <= most); 
14 }



  

Static Single Assignment (SSA) 
Form

{-14} least#0 == input1#0
{-13} most#0 == input1#0
{-12} \guard#1 == (most#0 < input2#0)
{-11} most#1 == input2#0
{-10} most#2 == (\guard#1 ? most#1 : most#0)
{-9} \guard#2 == (most#2 < input3#0)
{-8} most#3 == input3#0
{-7} most#4 == (\guard#2 ? most#4 : most#3)
{-6} \guard#3 == (least#0 > input2#0)
{-5} most#5 == input2#0
{-4} most#6 == (\guard#3 ? most#5 : most#4)
{-3} \guard#4 == (least#0 > input3#0)
{-2} least#1 == input3#0
{-1} least#2 == (\guard#4 ? least#1 : least#0)
--------------------------
{1} least#2 <= most#6

1 Void MiniMax (int input1, int input2, int input3)
2 {
3 int least = input1; 
4 int most = input1; 
5 if (most < input2)
6 most = input2; 
7 if (most < input3) 
8 most =  input3; 
9 if (least > input2) 
10 most = input2; 
11 if (least > input3) 
12 least = input3; 
13 assert (least <= most); 
14 }

CBMC 

• CBMC uses loop unrolling (with known finite depths) and 
SSA form to convert every c-program into a series of single 
assignments

• CBMC plugs in CNF equivalent of clauses:



  

CBMC continued
{-14} least#0 == input1#0
{-13} most#0 == input1#0
{-12} \guard#1 == (most#0 < input2#0)
{-11} most#1 == input2#0
{-10} most#2 == (\guard#1 ? most#1 : most#0)
{-9} \guard#2 == (most#2 < input3#0)
{-8} most#3 == input3#0
{-7} most#4 == (\guard#2 ? most#4 : most#3)
{-6} \guard#3 == (least#0 > input2#0)
{-5} most#5 == input2#0
{-4} most#6 == (\guard#3 ? most#5 : most#4)
{-3} \guard#4 == (least#0 > input3#0)
{-2} least#1 == input3#0
{-1} least#2 == (\guard#4 ? least#1 : least#0)
--------------------------
{1} least#2 <= most#6

input1#0 = 1
input2#0 = 0
input3#0 = 1
least#0 = 1
most#0 = 0
\guard#1 = FALSE
most#1 = 0
most#2 = 1
\guard#2 = FALSE
most#3 = 1
most#4 = 1
\guard#3 = TRUE
most#5 = 0
most#6 = 0
\guard#4 = FALSE
least#1 = 1
least#2 = 1

Counterexample



  

Distance Metrics

• How close/far away are two error traces?

• Apply the concept of a distance metric



  

Distance Metric in CMBC

• Represent executions of program P as a set of 
assignments using SSA form

• Execution a : {v0 = val_0; v1 = val_1 ..} 

• Execution b : {v0 = val_0’; v1 = val_1’.. }

• Because of SSA form, executions a and b perform 
assignment to the same sequence of assignments

• d(a,b) = ∑ ∆(i) where ∆(i) = (val_i’ == val_i) ? 0 : 1

• Distance Metric is the number of differing assignments in 
the execution path.



  

Sample Distance Metric Calculation

Execution trace a:
input1#0 = 1
input2#0 = 0
input3#0 = 1
least#0 = 1
most#0 = 0
\guard#1 = FALSE
most#1 = 0
most#2 = 1
\guard#2 = FALSE
most#3 = 1
most#4 = 1
\guard#3 = TRUE
most#5 = 0
most#6 = 0
\guard#4 = FALSE
least#1 = 1
least#2 = 1

Execution trace b:
input1#0 = 1
input2#0 = 0
input3#0 = 0
least#0 = 1
most#0 = 0
\guard#1 = FALSE
most#1 = 0
most#2 = 1
\guard#2 = FALSE
most#3 = 1
most#4 = 1
\guard#3 = TRUE
most#5 = 0
most#6 = 0
\guard#4 = FALSE
least#1 = 1
least#2 = 1

 => d(a,b) = 1



  

Error Explanation Procedure

• Use SAT Solver to solve: Prog. AND (NOT Spec)
– ( generates counterexample )

• Use explain tool to generate closest valid 
execution of P

• Compute ∆’s between valid and invalid executions

• Perform Slicing Step to reduce number of ∆’s that 
must be presented to the user



  

Finding the valid closest execution

• First Method:
– Solve SAT instance of (Program and Spec)

– Encode required distance, i.e the sum of the ∆(i)’s into 
the SAT problem. For a fixed error trace a, encode 
d(a,b) = n directly into the SAT problem by requiring 
exactly n of the ∆’s  to be 1.

– Then iteratively solve for various values of n

– In practice this is not very efficient
• Encoding  that exactly n of the ∆’s should be 1 results in 

large problems and state space explosion for long error 
traces.



  

Finding the closest execution

• Second Method:
– Use a Pseudo-Boolean solver (PBS)
– A PBS solver can accept a SAT problem in CNF and 

maximizes a pseudo-boolean expression objective 
function

– A pseudo-boolean formula is of the form:

                            

where di is a boolean variable, and ci is a rational 
constant

– Use ci = 1 and di as each of the ∆i variables and 
minimize d(a,b)



  

Example of finding a close valid 
execution

Error trace a:
input1#0 = 1
input2#0 = 0
input3#0 = 1
least#0 = 1
most#0 = 1
\guard#1 = FALSE
most#1 = 0
most#2 = 1
\guard#2 = FALSE
most#3 = 1
most#4 = 1
\guard#3 = TRUE
most#5 = 0
most#6 = 0
\guard#4 = FALSE
least#1 = 1
least#2 = 1

Closest Successful Trace a’:
input1#0 = 1
input2#0 = 1
input3#0 = 1
least#0 = 1
most#0 = 1
\guard#1 = FALSE
most#1 = 1
most#2 = 1
\guard#2 = FALSE
most#3 = 1
most#4 = 1
\guard#3 = FALSE
most#5 = 1
most#6 = 1
\guard#4 = FALSE
least#1 = 1
least#2 = 1



  

Definition of Causality

• A predicate e is causally dependent on a 
predicate c in an execution trace a iff:

• What does this mean?



  

Illustration



  

Inspiration for Algorithm

Theorem: let a be the counterexample trace and b 
be any closest successful execution to a. Let D be 
the set of ∆s for which the values in a and b differ. 
If c is a predicate stating that an execution 
disagrees with b for at least one of these values, 
and e is the proposition that an error occurs, e is 
causally dependent on c in a.



  

Inspiration for algorithm

• David Lewis’s theory [2] is that explanation 
is the analysis of causal relationships.

• Presenting the set of differences between 
the erroar trace and the closest successful 
trace satisfies the definition of explaining 
the error.



  

Example of finding a close valid 
execution

Closest Successful Trace a’:
input1#0 = 1
input2#0 = 1
input3#0 = 1
least#0 = 1
most#0 = 1
\guard#1 = FALSE
most#1 = 1
most#2 = 1
\guard#2 = FALSE
most#3 = 1
most#4 = 1
\guard#3 = FALSE
most#5 = 1
most#6 = 1
\guard#4 = FALSE
least#1 = 1
least#2 = 1

Error trace a:
input1#0 = 1
input2#0 = 0
input3#0 = 1
least#0 = 1
most#0 = 1
\guard#1 = FALSE
most#1 = 0
most#2 = 1
\guard#2 = FALSE
most#3 = 1
most#4 = 1
\guard#3 = TRUE
most#5 = 0
most#6 = 0
\guard#4 = FALSE
least#1 = 1
least#2 = 1



  

Presenting traces to a user

1 Void MiniMax (int input1, int input2, int input3)
2 {
3 int least = input1; 
4 int most = input1; 
5 if (most < input2)
6 most = input2; 
7 if (most < input3) 
8 most =  input3; 
9 if (least > input2) 
10 most = input2;  (ERROR!)
11 if (least > input3) 
12 least = input3; 
13 assert (least <= most); 
14 }



  

∆-Slicing
• ∆’s might contain assignments to some variable z that is not relevant to failed 

assertion

Guiding Example: Let input1 = 1, input2 = 1; and then let input1 = 1, input2 = 0; line 7 
would be part of ∆, but is irrelevant to failed assertion

1 Int main () {
2 int input1, input2;
3 int x = 1, y = 1, z = 1;
4 if (input1 > 0) { 
5  x += 5;
6 y += 6;
7 z += 4;
8 } 
9 if (input2 > 0) { 
10 x += 6;
11 y += 5;
12 z += 4;
13 } 
14 assert ((x < 10) || (y < 10));
15 }



  

∆-Slicing

• Attempts to answer the question: “What is 
the smallest subset of changes in values 
between these two executions that results 
in a change in the value of the predicate”

• Further reduce the number of lines that a 
designer has to examine



  

∆-Slicing (2)
• Let a be the error trace and b be the 

closest successful trace
• Construct a new PBS problem:

– For every variable Vi such that ∆(i) = 0, i.e Vi{a} 
== Vi{b}, construct a clause: (Vi = Vi{a})  

• For every variable Vi such that ∆(i) = 1, i.e 
(Vi{a} !=  Vi{b}) introduce a new clause:

• F(Vi) is an expression indicating that 
changing Vi from Vi{b} to Vi{a} at that point 
in the execution changes the value of the 
predicate ( wether error occurs)



  

∆-Slicing (3)
• Minimizing over the same PBS formula, i.e. 

d(a,b), we remove all the ∆'s that were irrelevant 
to the change in value of the predicate

• If all the ∆'s were important to the change in 
success, we can't remove any slices

• However, variables that were simply changed, 
because of execution branch taken will be 
identified.

• However, the result is generally not a valid 
execution sequence of the program
– This doesn't matter, since all we are interested 

in is localizing error



  

Example of finding a close valid 
execution

Closest Successful Trace a’:
input1#0 = 1
input2#0 = 1
input3#0 = 1
least#0 = 1
most#0 = 1
\guard#1 = FALSE
most#1 = 1
most#2 = 1
\guard#2 = FALSE
most#3 = 1
most#4 = 1
\guard#3 = FALSE
most#5 = 1
most#6 = 1
\guard#4 = FALSE
least#1 = 1
least#2 = 1

Error trace a:
input1#0 = 1
input2#0 = 0
input3#0 = 1
least#0 = 1
most#0 = 1
\guard#1 = FALSE
most#1 = 0
most#2 = 1
\guard#2 = FALSE
most#3 = 1
most#4 = 1
\guard#3 = TRUE
most#5 = 0
most#6 = 0
\guard#4 = FALSE
least#1 = 1
least#2 = 1



  

Presenting traces to a user

1 Void MiniMax (int input1, int input2, int input3)
2 {
3 int least = input1; 
4 int most = input1; 
5 if (most < input2)
6 most = input2; 
7 if (most < input3) 
8 most =  input3; 
9 if (least > input2) 
10 most = input2;  (ERROR!)
11 if (least > input3) 
12 least = input3; 
13 assert (least <= most); 
14 }

The number of lines presented to the user can be 
reduced by one



  

Evaluating Fault Localization

• Renieris and Reiss[3] proposed the following 
algorithm:
– Consider a graph, G, where nodes represent lines of code, 

and edges represent dependencies
– A node in this graph is faulty if it is incorrect
– An error report R presents a set of lines of code, i.e a set 

of nodes in this graph
– Perform BFS starting from R, and let R* be the smallest 

layer that contains at least one faulty node
– Error metric is: 



  

Intuition behind benchmark

• Benchmark Measure:
• Lowest scores are achieved when |R*| is big:
– Many nodes are presented to the user
– Nodes are far away from faulty nodes

• Highest scores are achieved when |R*| is small:
– Few nodes are presented to the user
– Presented Nodes are closest to the user

• This benchmark has become accepted widely in 
the fault localization research community



  

Benchmark results



  

Summary of Error Localization

• Model Checker produces error trace
• Explain tool generates close counter 

example using a PBS
• Slicing removes the number of differences 

between the error trace and valid trace that 
are presented

• Slicing and Solving for the correct trace are 
both solved using PBS. Is there some way 
to combine them?



  

Repair of Errors

• Even with error localization techniques, the 
counterexample is simply a hint to the root 
cause of the error: some faulty piece of 
code

• To fix the bug, the counterexample must be 
analysed by a human who must identify the 
root cause

• It would be even more useful to 
automatically suggest repairs to the 
programmer



  

Repair of Errors

• Intuition: Model checker internally 
computes an abstraction of the c-program:
– A boolean program 

• Come up with a strategy to repair the 
boolean program

• Map repairs of boolean programs to 
repairs of c-programs to suggest a repair

• Source: Grismayer et al, Repair of 
Boolean Programs with an application to C



  

Boolean Programs
• Global Variables; Local Variables; Recursion, Assignments, Parallel 

assignments and Nondeterminism.

• Formalization:

– (R, main, Vg)

– R is a set of routines

– Each R is (Sr, Vr)

– Sr = (Sr,0...Sr,f) is a set of statements

– Vr is set of local variables

– Vr’ = Vg U Vr set of visible variables

– Let E be the subset of Vr’ that is set (called Valuation)
• Each E is in Xr = 2Vr'

– Control flow is given by: next(E, s, s’) if s’ is a possible next 
statement of s under valuation E



  

Boolean Programs Continued

• The set of states of a routine is in Qr = Sr * 
Xr'

• For a call statement from src to dest, define 
a relation Us: Xsrc * Xdest

• For a return statement define Ps: Xsrc * 
Xdest -> Xsrc 



  

Model-Checking Boolean Programs

• For each routine, associate an execution 
graph Er

• Compute Set of reachable states 
• If the set ever contains an error state, i.e 

the set of visible variables that are on 
violate some assertion, then boolean 
program is faulty.



  

Requirements

• Repair should change program as little as 
possible

• Repairs have to depend only on local 
variables and global variables, i.e. only the 
visible variables
– So strategy does not introduce new memory



  

Game Formulation

• System is protagonist

• Environment is antagonist

• Winning Strategy is one that ensures that 
specification is adhered to by fixing 
system decisions. 

• If a winning strategy exists, we can fix the 
boolean program.



  

The Game

• Extend model checking algorithm 

• On one iteration of the model checker, 
there is a transition from a good state to a 
bad state via a boolean expression

• This is the expression that needs to be 
repaired



  

Computing the strategy

• A possible expression is of the form Xr->Xr 
or is in 2Xr

• Iterating over all possible expressions is 
computationally infeasible

• Use BDDs to share computation and 
examine all possible repairs simultaneously 



  

Mapping repairs to C

• Boolean repair comes up with a list of 
predicates 

• Each line of the boolean program 
corresponds to some line of the c program 
after abstraction

• Use meaning of these predicates to 
suggest repairs for c program.



  

Experimental Results



  

Conclusion

• Using the concept of a distance metric, we can reduce 
the amount of information that a user has to look at to 
identify a system error

• We can also use the model checker to identify the 
transition on which the error occurs.
– Using this, we can determine whether there is an 

automatic strategy to fix the expression so that the 
error state is not reached

• Using the concept of a distance metric, we can reduce 
the amount of information that a user has to look at to 
identify a system error
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