

Error Localization And System
Repair

Shyam Rajagopalan

EECS 219c

Motivation

• Close to 70% of project time for chip-design is
spent on verification [1]

• Industrial verification centers around assertion-
based debugging [1]
– E.g. LTL Property: G (request -> F ack)

– E.g. C-style assert: assert(x == y);

• If Model Checker verifies the property
– Assertion is true for design

• If Model Checker fails to verify the property
– Tool returns an error-trace

– Then, what?

Two Approaches

• Error traces tend to be long and complex. Reducing the
amount of information a designer/verifier has to process
reduces the time spent on debugging (Localization)
– Source: Groce et al: Error Explanation with Distance Metrics

• Automate the repairing process itself. Rather than
displaying what went wrong with the program, display
suggestions for how the program could be fixed
– Source: Grismayer et al, Repair of Boolean Programs with an

application to C

Outline of Error Explanation

• SSA form and Distance Metrics

• Notions of Causality

• Which parts of the error-trace were
relevant to the error?

• Which parts of the error-trace should be
presented to the user?

Guiding Example
1 Void MiniMax (int input1, int input2, int input3)
2 {
3 int least = input1;
4 int most = input1;
5 if (most < input2)
6 most = input2;
7 if (most < input3)
8 most = input3;
9 if (least > input2)
10 most = input2; (ERROR!)
11 if (least > input3)
12 least = input3;
13 assert (least <= most);
14 }

Static Single Assignment (SSA)
Form

{-14} least#0 == input1#0
{-13} most#0 == input1#0
{-12} \guard#1 == (most#0 < input2#0)
{-11} most#1 == input2#0
{-10} most#2 == (\guard#1 ? most#1 : most#0)
{-9} \guard#2 == (most#2 < input3#0)
{-8} most#3 == input3#0
{-7} most#4 == (\guard#2 ? most#4 : most#3)
{-6} \guard#3 == (least#0 > input2#0)
{-5} most#5 == input2#0
{-4} most#6 == (\guard#3 ? most#5 : most#4)
{-3} \guard#4 == (least#0 > input3#0)
{-2} least#1 == input3#0
{-1} least#2 == (\guard#4 ? least#1 : least#0)

{1} least#2 <= most#6

1 Void MiniMax (int input1, int input2, int input3)
2 {
3 int least = input1;
4 int most = input1;
5 if (most < input2)
6 most = input2;
7 if (most < input3)
8 most = input3;
9 if (least > input2)
10 most = input2;
11 if (least > input3)
12 least = input3;
13 assert (least <= most);
14 }

CBMC

• CBMC uses loop unrolling (with known finite depths) and
SSA form to convert every c-program into a series of single
assignments

• CBMC plugs in CNF equivalent of clauses:

CBMC continued
{-14} least#0 == input1#0
{-13} most#0 == input1#0
{-12} \guard#1 == (most#0 < input2#0)
{-11} most#1 == input2#0
{-10} most#2 == (\guard#1 ? most#1 : most#0)
{-9} \guard#2 == (most#2 < input3#0)
{-8} most#3 == input3#0
{-7} most#4 == (\guard#2 ? most#4 : most#3)
{-6} \guard#3 == (least#0 > input2#0)
{-5} most#5 == input2#0
{-4} most#6 == (\guard#3 ? most#5 : most#4)
{-3} \guard#4 == (least#0 > input3#0)
{-2} least#1 == input3#0
{-1} least#2 == (\guard#4 ? least#1 : least#0)

{1} least#2 <= most#6

input1#0 = 1
input2#0 = 0
input3#0 = 1
least#0 = 1
most#0 = 0
\guard#1 = FALSE
most#1 = 0
most#2 = 1
\guard#2 = FALSE
most#3 = 1
most#4 = 1
\guard#3 = TRUE
most#5 = 0
most#6 = 0
\guard#4 = FALSE
least#1 = 1
least#2 = 1

Counterexample

Distance Metrics

• How close/far away are two error traces?

• Apply the concept of a distance metric

Distance Metric in CMBC

• Represent executions of program P as a set of
assignments using SSA form

• Execution a : {v0 = val_0; v1 = val_1 ..}

• Execution b : {v0 = val_0’; v1 = val_1’.. }

• Because of SSA form, executions a and b perform
assignment to the same sequence of assignments

• d(a,b) = ∑ ∆(i) where ∆(i) = (val_i’ == val_i) ? 0 : 1

• Distance Metric is the number of differing assignments in
the execution path.

Sample Distance Metric Calculation

Execution trace a:
input1#0 = 1
input2#0 = 0
input3#0 = 1
least#0 = 1
most#0 = 0
\guard#1 = FALSE
most#1 = 0
most#2 = 1
\guard#2 = FALSE
most#3 = 1
most#4 = 1
\guard#3 = TRUE
most#5 = 0
most#6 = 0
\guard#4 = FALSE
least#1 = 1
least#2 = 1

Execution trace b:
input1#0 = 1
input2#0 = 0
input3#0 = 0
least#0 = 1
most#0 = 0
\guard#1 = FALSE
most#1 = 0
most#2 = 1
\guard#2 = FALSE
most#3 = 1
most#4 = 1
\guard#3 = TRUE
most#5 = 0
most#6 = 0
\guard#4 = FALSE
least#1 = 1
least#2 = 1

 => d(a,b) = 1

Error Explanation Procedure

• Use SAT Solver to solve: Prog. AND (NOT Spec)
– (generates counterexample)

• Use explain tool to generate closest valid
execution of P

• Compute ∆’s between valid and invalid executions

• Perform Slicing Step to reduce number of ∆’s that
must be presented to the user

Finding the valid closest execution

• First Method:
– Solve SAT instance of (Program and Spec)

– Encode required distance, i.e the sum of the ∆(i)’s into
the SAT problem. For a fixed error trace a, encode
d(a,b) = n directly into the SAT problem by requiring
exactly n of the ∆’s to be 1.

– Then iteratively solve for various values of n

– In practice this is not very efficient
• Encoding that exactly n of the ∆’s should be 1 results in

large problems and state space explosion for long error
traces.

Finding the closest execution

• Second Method:
– Use a Pseudo-Boolean solver (PBS)
– A PBS solver can accept a SAT problem in CNF and

maximizes a pseudo-boolean expression objective
function

– A pseudo-boolean formula is of the form:

where di is a boolean variable, and ci is a rational
constant

– Use ci = 1 and di as each of the ∆i variables and
minimize d(a,b)

Example of finding a close valid
execution

Error trace a:
input1#0 = 1
input2#0 = 0
input3#0 = 1
least#0 = 1
most#0 = 1
\guard#1 = FALSE
most#1 = 0
most#2 = 1
\guard#2 = FALSE
most#3 = 1
most#4 = 1
\guard#3 = TRUE
most#5 = 0
most#6 = 0
\guard#4 = FALSE
least#1 = 1
least#2 = 1

Closest Successful Trace a’:
input1#0 = 1
input2#0 = 1
input3#0 = 1
least#0 = 1
most#0 = 1
\guard#1 = FALSE
most#1 = 1
most#2 = 1
\guard#2 = FALSE
most#3 = 1
most#4 = 1
\guard#3 = FALSE
most#5 = 1
most#6 = 1
\guard#4 = FALSE
least#1 = 1
least#2 = 1

Definition of Causality

• A predicate e is causally dependent on a
predicate c in an execution trace a iff:

• What does this mean?

Illustration

Inspiration for Algorithm

Theorem: let a be the counterexample trace and b
be any closest successful execution to a. Let D be
the set of ∆s for which the values in a and b differ.
If c is a predicate stating that an execution
disagrees with b for at least one of these values,
and e is the proposition that an error occurs, e is
causally dependent on c in a.

Inspiration for algorithm

• David Lewis’s theory [2] is that explanation
is the analysis of causal relationships.

• Presenting the set of differences between
the erroar trace and the closest successful
trace satisfies the definition of explaining
the error.

Example of finding a close valid
execution

Closest Successful Trace a’:
input1#0 = 1
input2#0 = 1
input3#0 = 1
least#0 = 1
most#0 = 1
\guard#1 = FALSE
most#1 = 1
most#2 = 1
\guard#2 = FALSE
most#3 = 1
most#4 = 1
\guard#3 = FALSE
most#5 = 1
most#6 = 1
\guard#4 = FALSE
least#1 = 1
least#2 = 1

Error trace a:
input1#0 = 1
input2#0 = 0
input3#0 = 1
least#0 = 1
most#0 = 1
\guard#1 = FALSE
most#1 = 0
most#2 = 1
\guard#2 = FALSE
most#3 = 1
most#4 = 1
\guard#3 = TRUE
most#5 = 0
most#6 = 0
\guard#4 = FALSE
least#1 = 1
least#2 = 1

Presenting traces to a user

1 Void MiniMax (int input1, int input2, int input3)
2 {
3 int least = input1;
4 int most = input1;
5 if (most < input2)
6 most = input2;
7 if (most < input3)
8 most = input3;
9 if (least > input2)
10 most = input2; (ERROR!)
11 if (least > input3)
12 least = input3;
13 assert (least <= most);
14 }

∆-Slicing
• ∆’s might contain assignments to some variable z that is not relevant to failed

assertion

Guiding Example: Let input1 = 1, input2 = 1; and then let input1 = 1, input2 = 0; line 7
would be part of ∆, but is irrelevant to failed assertion

1 Int main () {
2 int input1, input2;
3 int x = 1, y = 1, z = 1;
4 if (input1 > 0) {
5 x += 5;
6 y += 6;
7 z += 4;
8 }
9 if (input2 > 0) {
10 x += 6;
11 y += 5;
12 z += 4;
13 }
14 assert ((x < 10) || (y < 10));
15 }

∆-Slicing

• Attempts to answer the question: “What is
the smallest subset of changes in values
between these two executions that results
in a change in the value of the predicate”

• Further reduce the number of lines that a
designer has to examine

∆-Slicing (2)
• Let a be the error trace and b be the

closest successful trace
• Construct a new PBS problem:

– For every variable Vi such that ∆(i) = 0, i.e Vi{a}
== Vi{b}, construct a clause: (Vi = Vi{a})

• For every variable Vi such that ∆(i) = 1, i.e
(Vi{a} != Vi{b}) introduce a new clause:

• F(Vi) is an expression indicating that
changing Vi from Vi{b} to Vi{a} at that point
in the execution changes the value of the
predicate (wether error occurs)

∆-Slicing (3)
• Minimizing over the same PBS formula, i.e.

d(a,b), we remove all the ∆'s that were irrelevant
to the change in value of the predicate

• If all the ∆'s were important to the change in
success, we can't remove any slices

• However, variables that were simply changed,
because of execution branch taken will be
identified.

• However, the result is generally not a valid
execution sequence of the program
– This doesn't matter, since all we are interested

in is localizing error

Example of finding a close valid
execution

Closest Successful Trace a’:
input1#0 = 1
input2#0 = 1
input3#0 = 1
least#0 = 1
most#0 = 1
\guard#1 = FALSE
most#1 = 1
most#2 = 1
\guard#2 = FALSE
most#3 = 1
most#4 = 1
\guard#3 = FALSE
most#5 = 1
most#6 = 1
\guard#4 = FALSE
least#1 = 1
least#2 = 1

Error trace a:
input1#0 = 1
input2#0 = 0
input3#0 = 1
least#0 = 1
most#0 = 1
\guard#1 = FALSE
most#1 = 0
most#2 = 1
\guard#2 = FALSE
most#3 = 1
most#4 = 1
\guard#3 = TRUE
most#5 = 0
most#6 = 0
\guard#4 = FALSE
least#1 = 1
least#2 = 1

Presenting traces to a user

1 Void MiniMax (int input1, int input2, int input3)
2 {
3 int least = input1;
4 int most = input1;
5 if (most < input2)
6 most = input2;
7 if (most < input3)
8 most = input3;
9 if (least > input2)
10 most = input2; (ERROR!)
11 if (least > input3)
12 least = input3;
13 assert (least <= most);
14 }

The number of lines presented to the user can be
reduced by one

Evaluating Fault Localization

• Renieris and Reiss[3] proposed the following
algorithm:
– Consider a graph, G, where nodes represent lines of code,

and edges represent dependencies
– A node in this graph is faulty if it is incorrect
– An error report R presents a set of lines of code, i.e a set

of nodes in this graph
– Perform BFS starting from R, and let R* be the smallest

layer that contains at least one faulty node
– Error metric is:

Intuition behind benchmark

• Benchmark Measure:
• Lowest scores are achieved when |R*| is big:
– Many nodes are presented to the user
– Nodes are far away from faulty nodes

• Highest scores are achieved when |R*| is small:
– Few nodes are presented to the user
– Presented Nodes are closest to the user

• This benchmark has become accepted widely in
the fault localization research community

Benchmark results

Summary of Error Localization

• Model Checker produces error trace
• Explain tool generates close counter

example using a PBS
• Slicing removes the number of differences

between the error trace and valid trace that
are presented

• Slicing and Solving for the correct trace are
both solved using PBS. Is there some way
to combine them?

Repair of Errors

• Even with error localization techniques, the
counterexample is simply a hint to the root
cause of the error: some faulty piece of
code

• To fix the bug, the counterexample must be
analysed by a human who must identify the
root cause

• It would be even more useful to
automatically suggest repairs to the
programmer

Repair of Errors

• Intuition: Model checker internally
computes an abstraction of the c-program:
– A boolean program

• Come up with a strategy to repair the
boolean program

• Map repairs of boolean programs to
repairs of c-programs to suggest a repair

• Source: Grismayer et al, Repair of
Boolean Programs with an application to C

Boolean Programs
• Global Variables; Local Variables; Recursion, Assignments, Parallel

assignments and Nondeterminism.

• Formalization:

– (R, main, Vg)

– R is a set of routines

– Each R is (Sr, Vr)

– Sr = (Sr,0...Sr,f) is a set of statements

– Vr is set of local variables

– Vr’ = Vg U Vr set of visible variables

– Let E be the subset of Vr’ that is set (called Valuation)
• Each E is in Xr = 2Vr'

– Control flow is given by: next(E, s, s’) if s’ is a possible next
statement of s under valuation E

Boolean Programs Continued

• The set of states of a routine is in Qr = Sr *
Xr'

• For a call statement from src to dest, define
a relation Us: Xsrc * Xdest

• For a return statement define Ps: Xsrc *
Xdest -> Xsrc

Model-Checking Boolean Programs

• For each routine, associate an execution
graph Er

• Compute Set of reachable states
• If the set ever contains an error state, i.e

the set of visible variables that are on
violate some assertion, then boolean
program is faulty.

Requirements

• Repair should change program as little as
possible

• Repairs have to depend only on local
variables and global variables, i.e. only the
visible variables
– So strategy does not introduce new memory

Game Formulation

• System is protagonist

• Environment is antagonist

• Winning Strategy is one that ensures that
specification is adhered to by fixing
system decisions.

• If a winning strategy exists, we can fix the
boolean program.

The Game

• Extend model checking algorithm

• On one iteration of the model checker,
there is a transition from a good state to a
bad state via a boolean expression

• This is the expression that needs to be
repaired

Computing the strategy

• A possible expression is of the form Xr->Xr
or is in 2Xr

• Iterating over all possible expressions is
computationally infeasible

• Use BDDs to share computation and
examine all possible repairs simultaneously

Mapping repairs to C

• Boolean repair comes up with a list of
predicates

• Each line of the boolean program
corresponds to some line of the c program
after abstraction

• Use meaning of these predicates to
suggest repairs for c program.

Experimental Results

Conclusion

• Using the concept of a distance metric, we can reduce
the amount of information that a user has to look at to
identify a system error

• We can also use the model checker to identify the
transition on which the error occurs.
– Using this, we can determine whether there is an

automatic strategy to fix the expression so that the
error state is not reached

• Using the concept of a distance metric, we can reduce
the amount of information that a user has to look at to
identify a system error

Outside References

• [1] Dave, Sailesh: “Assertion-Based Verification
Shortens Project Design Time”, Chip Design
Magazine, Issue 16, Article ID 437

• [2] Lewis, Davis: “Causation”, Journal of
Philosophy 70:556-557

• [3] Reiter, R: “Fault localization with nearest
neighbor queries”, Automated Software
Engineer, pages 30-39

