Error Localization And System
Repair

Shyam Rajagopalan
EECS 219c

Motivation

Close to 70% of project time for chip-design is
spent on verification [1]

Industrial verification centers around assertion-
based debugging [1]

— E.g. LTL Property: G (request -> F ack)

— E.g. C-style assert: assert(x ==vy);

If Model Checker verifies the property

— Assertion is true for design

If Model Checker fails to verify the property

— Tool returns an error-trace
— Then, what?

Two Approaches

* Error traces tend to be long and complex. Reducing the
amount of information a designer/verifier has to process
reduces the time spent on debugging (Localization)

— Source: Groce et al: Error Explanation with Distance Metrics

* Automate the repairing process itself. Rather than
displaying what went wrong with the program, display
suggestions for how the program could be fixed

— Source: Grismayer et al, Repair of Boolean Programs with an
application to C

Outline of Error Explanation

SSA form and Distance Metrics
Notions of Causality

Which parts of the error-trace were
relevant to the error?

Which parts of the error-trace should be
presented to the user?

Guiding Example

1 Void MiniMax (int input1, int input2, int input3)

2 {

3 int least = input1;

4 int most = input1;

3 if (most < input2)

6 most = input2;

7 if (most < input3)

8 most = input3;

9 if (least > input2)

10 most = input2; (ERRORY!)
11 if (least > input3)

12 least = input3;

13 assert (least <= most);

Static Single Assignment (SSA)
Form

gz/oid MiniMax (int input1, int input2, int input3) {-14} least#0 == input1#0
-13} most#0 == input1#0
3 int least = input1; %—12% \guard#1 == (pmost#O < input2#0)
4 int most = input1; — {-11} most#1 == input2#0
5 if (most < input2) {-10} most#2 == (\guard#1 ? most#1 : most#0)
6 most = input2; {-9} \quard#2 == (most#2 < input3#0)
7 if (most < input3) {-8} most#3 == input3#0
8 most = input3; {-7} most#4 == (\quard#2 ? most#4 : most#3)
9 if (least > input2) {-6} \guard#3 == (least#0 > input2#0)
10 most = input2; {-5} most#5 == input2#0
11 if (least > input3) {-4} most#6 == (\guard#3 ? most#5 : most#4)
— . {-3} \quard#4 == (least#0 > input3#0)
1% . 'leaStt;Tp“t?’i _ (-2} least#1 == input3#0
14 3 assert (least <= most), {-1} least#2 == (\quard#4 ? least#1 : least#0)

{1} least#2 <= most#6

* CBMC uses loop unrolling (with known finite depths) and
SSA form to convert every c-program into a series of single
assignments

* CBMC plugs in CNF equivalent of clauses:

({14} A {=13} A ... A{=1} A ={1})

CBMC continued

{-14} least#0 == input1#0 input1#0 = 1

{-13} most#0 == input1#0 input2#0 = 0

{-12} \guard#1 == (most#0 < input2#0) input3#0 = 1

{-11} most#1 == input2#0 least#0 = 1

{-10} most#2 == (\guard#1 ? most#1 : most#0) most#0 = 0

{-9} \guard#2 == (most#2 < input3#0) , \guard#1=FALSE
{-8} most#3 == input3#0 Counterexample most#1 =0

{-7} most#4 == (\quard#2 ? most#4 : most#3) most#2 = 1

{-6} \guard#3 == (least#0 > input2#0) \guard#2 = FALSE
{-5} most#5 == input2#0 most#3 = 1

{-4} most#6 == (\guard#3 ? most#5 : most#4) most#4 = 1

{-3} \guard#4 == (least#0 > input3#0) \guard#3 = TRUE
{-2} least#1 == input3#0 most#5 = 0

{-1} least#2 == (\gquard#4 ? least#1 : least#0) most#6 = 0

-- \guard#4 = FALSE
{1} least#2 <= most#6 least#1 = 1

least#2 = 1

Distance Metrics

* How close/far away are two error traces?
* Apply the concept of a distance metric

. Nonnegatwe property: Ya . vb . da,b) = 0

. Zero property: Ya . ¥b . dla,b)=0& a=1b

3. Symmetry: Va . b . d(a,b) = d(b, a)

4. Triangle inequality: Ya . vb . Ve . d{a,b) + d(b,c) =
dla,c)

b =

Distance Metric in CMBC

Represent executions of program P as a set of
assignments using SSA form

Executiona: {vO=val O;v1=val 1.}
Execution b : {vO =val 0;v1=val 1..}

Because of SSA form, executions a and b perform
assignment to the same sequence of assignments

d(a,b) = > A(i) where A(i) = (val i'==val i)?0: 1

Distance Metric is the number of differing assignments in
the execution path.

Execution trace a:
input1#0 = 1
input2#0 = 0
input3#0 = 1
least#0 = 1
most#0 = 0
\guard#1 = FALSE
most#1 =0
most#2 = 1
\guard#2 = FALSE
most#3 = 1
most#4 = 1
\guard#3 = TRUE
most#5 = 0
most#6 =0
\guard#4 = FALSE
least#1 = 1
least#2 = 1

=>d(a,b) = 1

Sample Distance Metric Calculation

Execution trace b:
input1#0 = 1
input2#0 = 0
input3#0 =0
least#0 = 1
most#0 = 0
\quard#1 = FALSE
most#1 =0
most#2 = 1
\quard#2 = FALSE
most#3 = 1
most#4 = 1
\guard#3 = TRUE
most#5 = 0
most#6 =0
\guard#4 = FALSE
least#1 = 1
least#2 = 1

Error Explanation Procedure

Use SAT Solver to solve: Prog. AND (NOT Spec)

— (generates counterexample)

Use explain tool to generate closest valid
execution of P

Compute A’'s between valid and invalid executions

Perform Slicing Step to reduce number of A’s that
must be presented to the user

Finding the valid closest execution

* First Method:

— Solve SAT instance of (Program and Spec)

— Encode required distance, i.e the sum of the A(i)'s into
the SAT problem. For a fixed error trace a, encode
d(a,b) = n directly into the SAT problem by requiring
exactly n of the A’s to be 1.

— Then iteratively solve for various values of n

— In practice this is not very efficient

* Encoding that exactly n of the A’s should be 1 results in
large problems and state space explosion for long error
traces.

Finding the closest execution

 Second Method:

— Use a Pseudo-Boolean solver (PBS)

— A PBS solver can accept a SAT problem in CNF and
maximizes a pseudo-boolean expression objective
function

— A pseudo-bgolean formula is of the form:

Zci *dg

i=1
where di is a boolean variable, and ci is a rational
constant

— Use c¢i = 1 and di as each of the Ai variables and
minimize d(a,b)

Example of finding a close valid
execution

Error trace a:
input1#0 = 1
input2#0 = 0
input3#0 = 1
least#0 = 1
most#0 = 1
\quard#1 = FALSE
most#1 =0
most#2 = 1
\quard#2 = FALSE
most#3 = 1
most#4 = 1
\guard#3 = TRUE
most#5 = 0
most#6 =0
\guard#4 = FALSE
least#1 = 1
least#2 = 1

v

Closest Successful Trace a’:
input1#0 = 1
input2#0 = 1
input3#0 = 1
least#0 = 1
most#0 = 1
\guard#1 = FALSE
most#1 = 1
most#2 = 1
\guard#2 = FALSE
most#3 = 1
most#4 = 1
\guard#3 = FALSE
most#5 = 1
most#6 = 1
\guard#4 = FALSE
least#1 = 1
least#2 = 1

Definition of Causality

* A predicate e is causally dependent on a
predicate ¢ in an execution trace a iff:

c(a) Ae(a)
db—c(b) A —e(b)
(YO, =c(b') Ae(t)) = d(a,b) < d(a,b))

* \What does this mean?

lllustration

Cau sal dependence

Inspiration for Algorithm

Theorem: let a be the counterexample trace and b
be any closest successful execution to a. Let D be
the set of As for which the values in a and b differ.
If c is a predicate stating that an execution
disagrees with b for at least one of these values,
and e is the proposition that an error occurs, e is
causally dependent on c in a.

Inspiration for algorithm

* David Lewis’s theory [2] is that explanation
is the analysis of causal relationships.

* Presenting the set of differences between
the erroar trace and the closest successful
trace satisfies the definition of explaining
the error.

Example of finding a close valid

execution
Error trace a: Closest Successful Trace a’:
input1#0 = 1 input1#0 = 1
input2#0 =0 input2#0 = 1
input3#0 = 1 input3#0 = 1
least#0 = 1 least#0 = 1
most#0 = 1 most#0 = 1
\guard#1 = FALSE \guard#1 = FALSE
most#1 =0 most#1 = 1
most#2 = 1 e most#2 = 1
\guard#2 = FALSE \guard#2 = FALSE
most#3 = 1 most#3 = 1
most#4 = 1 most#4 = 1
\guard#3 = TRUE \guard#3 = FALSE
most#5 =0 most#5 = 1
most#6 =0 most#6 = 1
\guard#4 = FALSE \guard#4 = FALSE
least#1 = 1 least#1 = 1
least#2 = 1 least#2 = 1

Presenting traces to a user

1 Void MiniMax (int input1, int input2, int input3)

2 {

3 int least = input1;

4 int most = input1;

5 if (most < input2)

6 most = input2;

7 if (most < input3)

8 most = input3;

9 if (least > input2)

10 most = input2; (ERRORY!)
11 if (least > input3)

12 least = input3;

13 assert (least <= most);

A-Slicing

* A’s might contain assignments to some variable z that is not relevant to failed
assertion

Guiding Example: Let input1 =1, input2 = 1; and then let input1 = 1, input2 = 0; line 7
would be part of A, but is irrelevant to failed assertion
Int main () {
int input1, input2;
intx=1,y=1,z=1;
if (input1 >0) {
X +=5;
y+=6
Z+=4;
/
if (input2 > 0) {
10 x+=6;
11 y+=5;
12 z+=4;
13 }
14 assert (x < 10) || (y < 10));
15 }

© OO NO O A WIN =

A-Slicing

* Attempts to answer the question: “What is
the smallest subset of changes in values
between these two executions that results
in a change in the value of the predicate”

* Further reduce the number of lines that a
designer has to examine

A-Slicing (2)

* Let a be the error trace and b be the
closest successful trace

* Construct a new PBS problem:
— For every variable Vi such that A(i) = 0, i.e Vi{a}
== Vi{b}, construct a clause: (Vi = Vi{a})
* For every variable Vi such that A(i) =1, i.e
(Vi{a} = Vi{b}) introduce a new clause:

(Vi=Vi{a}) V((Vi=Vi{b}) A f(V1))

* F(Vi) is an expression indicating that
changing Vi from Vi{b} to Vi{a} at that point
in the execution changes the value of the
predicate (wether error occurs)

A-Slicing (3)

Minimizing over the same PBS formula, i.e.
d(a,b), we remove all the A's that were irrelevant
to the change in value of the predicate

If all the A's were important to the change in
success, we can't remove any slices

However, variables that were simply changed,
because of execution branch taken will be
Identified.

However, the result is generally not a valid
execution sequence of the program

— This doesn't matter, since all we are interested
in Is localizing error

Example of finding a close valid

execution
Error trace a: Closest Successful Trace a’:
input1#0 = 1 input1#0 = 1
input2#0 =0 input2#0 = 1
input3#0 = 1 input3#0 = 1
least#0 = 1 least#0 = 1
most#0 = 1 most#0 = 1
\guard#1 = FALSE \guard#1 = FALSE
most#1 =0 most#1 = 1
most#2 = 1 e most#2 = 1
\guard#2 = FALSE \guard#2 = FALSE
most#3 = 1 most#3 = 1
most#4 = 1 most#4 = 1
\guard#3 = TRUE \guard#3 = FALSE
most#5 =0 most#d = 1
most#6 =0 most#6 = 1
\guard#4 = FALSE \guard#4 = FALSE
least#1 = 1 least#1 = 1
least#2 = 1 least#2 = 1

Presenting traces to a user

1 Void MiniMax (int input1, int input2, int input3)

2

3 int least = input1;

4 int most = input1;

5 if (most < input2)

6 most = input2;

7 if (most < input3)

8 most = input3;
10 most = input2; (ERRORY!)
11 if (least > input3)

12 least = input3;

13 assert (least <= most);
14 }

The number of lines presented to the user can be
reduced by one

Evaluating Fault Localization

* Renieris and Reiss[3] proposed the following
algorithm:

— Consider a graph, G, where nodes represent lines of code,
and edges represent dependencies

— A node in this graph is faulty if it is incorrect

— An error report R presents a set of lines of code, i.e a set
of nodes in this graph

— Perform BFS starting from R, and let R* be the smallest
layer that contains at least one faulty node

— Error metricis: 1 — |R*|

G

Intuition behind benchmark

"
Benchmark Measure: 1 — ||}é||
Lowest scores are achieved when |[R*| is big:

— Many nodes are presented to the user

— Nodes are far away from faulty nodes

Highest scores are achieved when |R*| is small:
— Few nodes are presented to the user

— Presented Nodes are closest to the user

This benchmark has become accepted widely in
the fault localization research community

Benchmark results

explain assume JPF R &R CBMC
Var, exp | slice | time || assm | slice | time || JPF | time n-c | n-s || CBMC | time
#1 051 | 0.00 | 4 090 | 091 | 4 0.87 | 1,521 || 0.00 | 0.58 0.41 l
#11 0.36 | 0.00 | 5 088 | 093 | 7 093 | 5673 | 0.13 | 0.13 0.51 l
#31 0.76 | 0.00 | 4 089 1 093 | 7 | FAIL - 0.00 | 0.00 || 046 1
#40 0.75 | 0.88 | 6 - - - 0.87 | 30482 || 0.83 | 0.77 || 0.35 1
#41 0.68 | 0.00 | 8 084 | 0.88 | 5 0.30 34 0.58 | 0,92 || 0.38 1
Average 0.61 | 0.18 | 54 | 088 | 091 | 58 || 059 | 7,542 || 031 | 0.48 (.42 1
pC/OSIT | 0,99 | 0,99 | 62 - N/A | N/JA || N/A | N/A || 097 44
pC/OSIT* || 0.81 | 0.81 | 62 - N/A | N/A || N/A | N/A || 0.00 44

Summary of Error Localization

Model Checker produces error trace

Explain tool generates close counter
example using a PBS

Slicing removes the number of differences
between the error trace and valid trace that
are presented

Slicing and Solving for the correct trace are
both solved using PBS. Is there some way
to combine them?

Repair of Errors

* Even with error localization techniques, the
counterexample is simply a hint to the root
cause of the error: some faulty piece of
code

* To fix the bug, the counterexample must be
analysed by a human who must identify the
root cause

* |t would be even more useful to
automatically suggest repairs to the
programmer

Repair of Errors

Intuition: Model checker internally
computes an abstraction of the c-program:

— A boolean program

Come up with a strategy to repair the
boolean program

Map repairs of boolean programs to
repairs of c-programs to suggest a repair

Source: Grismayer et al, Repair of
Boolean Programs with an application to C

Boolean Programs

Global Variables; Local Variables; Recursion, Assignments, Parallel
assignments and Nondeterminism.

Formalization:
— (R, main, Vq)
— Ris a set of routines
— Each Ris (Sr, Vr)
— Sr =(Sr,0...5r,f) is a set of statements
— Vris set of local variables
— Vr' =Vg U Vr set of visible variables
— Let E be the subset of Vr’ that is set (called Valuation)
* Each Eisin Xr=2"

— Control flow is given by: next(E, s, s’) if s’ is a possible next
statement of s under valuation E

Boolean Programs Continued

* The set of states of a routineisin Qr=Sr*
Xr'

* For a call statement from src to dest, define
a relation Us: Xsrc * Xdest

* For a return statement define Ps: Xsrc *
Xdest -> Xsrc

Model-Checking Boolean Programs

* For each routine, associate an execution
graph Er

* Compute Set of reachable states

* If the set ever contains an error state, i.e

the set of visible variables that are on
violate some assertion, then boolean

program is faulty.

Requirements

* Repair should change program as little as
possible

* Repairs have to depend only on local
variables and global variables, i.e. only the

visible variables
— So strategy does not introduce new memory

Game Formulation

System is protagonist
Environment is antagonist

Winning Strategy is one that ensures that
specification is adhered to by fixing
system decisions.

If a winning strategy exists, we can fix the
boolean program.

The Game

* Extend model checking algorithm

* On one iteration of the model checker,
there is a transition from a good state to a
bad state via a boolean expression

* This is the expression that needs to be
repaired

Computing the strategy

* A possible expression is of the form Xr->Xr
orisin 2%

* |terating over all possible expressions is
computationally infeasible

* Use BDDs to share computation and
examine all possible repairs simultaneously

Mapping repairs to C

* Boolean repair comes up with a list of
predicates

* Each line of the boolean program
corresponds to some line of the ¢ program
after abstraction

* Use meaning of these predicates to
suggest repairs for ¢ program.

Experimental Results

Driver LoC #Expr. #Total #inDriver Time(s) # vars Results Property
1394 diag 7223 273 51 8 1345 10 MarklrpPending
bulltlp3. 1 4751 a6 30 3 16482 1315 X' IrpProcComplete
daytona [4364 305 2) 379 200 X° StartloRecursion
sameenum 4001 217 24 l 517 29 ¥ MatklrpPending
hidgame 361l 335 21 1 7132 917 X° LowerDriverReturn
mousehlter 1755 165 21 3 4035 133 v PendCompleteReq
parport 243 1055 3 1 3334 20 v DoubleCompletion
pscr 4842 374 5) 2797 67 X' IrgIReturn
stloppy 2216 19 b 1 4 0 AddDevice

Conclusion

* Using the concept of a distance metric, we can reduce
the amount of information that a user has to look at to
identify a system error

* We can also use the model checker to identify the
transition on which the error occurs.

— Using this, we can determine whether there is an
automatic strategy to fix the expression so that the
error state is not reached

* Using the concept of a distance metric, we can reduce
the amount of information that a user has to look at to

identify a system error

Outside References

* [1] Dave, Sailesh: “Assertion-Based Verification
Shortens Project Design Time”, Chip Design
Magazine, Issue 16, Article ID 437

* [2] Lewis, Davis: “Causation”, Journal of
Philosophy 70:556-557

* [3] Reiter, R: “Fault localization with nearest
neighbor queries”, Automated Software
Engineer, pages 30-39

