Collaborative
Verification and Testing

Sungmin Cho
EECS, UC Berkeley

Qutline

® Motivations and ldeas
® Pros and Cons of Verification and Testing
® Combining Verification and Testing
® More advanced research
® Ketchum by Ho et al.
® Synergy by Gulavani et al.

The verification
approach

® |t tries to construct the formal proof that the
implementation meets the specification

® Pros
® Successful proof is easy to find

e |[f it is proved to be correct, it is mathematically
correct.

e Cons
e Often inefficient in finding errors

® State explosion, complex data structure and algorithm

3

The testing approach

® |t tries to find inputs and executions which
demonstrate violations of the property

® Pros

® Works best when errors are easy to find

® Relatively easy to implement the algorithm
® Cons

e Often difficult to achieve sufficient coverage

® The passing the test doesn’t mean that there is no
bug

Today’s topics

® Ketchum by Ho et al. (2000, Synopsys)
® Random Simulation
® Symbolic Simulation and SAT based BMC
® Synergy by Gulavani et al. (2006, Microsoft)
® Synergy between verification and testing
® Testing for finding bugs
® Verification for proving
® Synergy between F and A data structure

5

The motivation for
Ketchum

® We're interested in IDLE/Empty,Write/Normal ...
® We're also interested in Read/Empty, Write/Full is

left unvisited

Coverage signal : signals that is given and we have a
Interest in.

Coverage state : Each combination of Coverage
Signals.

Ketchum - basic ideas

® Visit all the (or as many as) states quickly :
Automatic Test Generation

® Random Simulation - Testing
® Symbolic Simulation - Verification
® SAT-based BMC - Verification
® Reduce the number of states : Unreachability

® |dentifies as many unreachable coverage states
as possible

® Can find unreachable states fast using projection
method

Ketchum Algorithm

Rectangle - the entire state space
Stars - Coverage states

Zig-zag - random simulation
Circle - Symbolic simulation

Comparisons of search
engines

Engine Effective Strength Limitation
Search
Range
Random Long Deep Single trace
simulation states
Symbolic Medium Designs Time, memory,
simulation with fewer | length of trace
inputs
SAT-based Short Short hit | Time, length of
BMC traces trace

® The algorithm starts with Random simulation
® FExtremely fast
® Reaches very deep states

® But, searches along a single tracel/line
® They used commercial software for this

Reachable Analysis

® Ketchum uses Reachability Analysis by BDD Based
state enumeration

® But, how to check if the newly found states using
BDD is visited or not!

® Mark as ‘unclassifed’ for the new coverage states

® Replace ‘unclassified new coverage states’ with
‘symbolic formula of the coverage signal’

If the result after the operation is not null,a new
coverage state has been reached by symbolic
simulation.We update the unclassified BDD and

generate a trace to be used in simulation.
|0

Observations

® The # of symbolic variables that have been used
during simulation has “more impact” on the

complexity of the symbolic simulation than the #
of latches

® The # of symbolic variables is (# of Pl *
simulation steps)

® So, symbolic simulation is good only for wide
range exhaustive search

® The under-approximation of replacing some
symbolic variables to constant 1/0.

SAT Based BMC

® Ketchum uses ‘unreachablity engine’ to reduce the
state space to search

® The targeted coverage states are
® States that are not reached

® States that are not proven unreachable

® Uses SAT based BMC to find them by expanding
| steps

® Kethum’s method is good for exhaustive short-
range search engine for it has reduced search

12

Ketchum input/output

® |[nput
® Synthesizable MUT(Model under Test)
® A set of less than 64 ‘coverage signals’
e Output

® Test sequence to reach as many coverage as
possible

® |dentifies as many unreachable coverage as
possible

Ketchum Algorithm

while(find all the state) {
simulation to find states
if (rate falls below a threshold) {
SAT-based BMC
if (does not reach coverage states) {
Symbolic simulation
if (reach coverage states) {
resimulation
}

} else // If it finds a state
resimulation

}
J

// simulation starts again

}

Interesting results

® After the exhaustive search, the next reachable states are
easily found by the random simulation as a next step

® There are easy-to-transition signals(signals that can
find a new state easily) and hard-to-transition signals
(signals that can find a new state hard)

After exhaustive search, the engine manages to reach a
hard-to-transition signals

Random simulation will bump into different
combinations of the easy-to-transition/hard-to-
transition

Unreachability - goal

® Provide fast and robust results without
necessarily trying to detect all of the
unreachable states.

® |f we can find unreachable states, we just
skip them to fasten the search.

® For an CPU example

® The # of coverage states becomes from
1102 to 60

Unreachability - approach

® They could prove a state unreachable
® They could not prove a state reachable

® Conservative method - prune model of
MUT (Model under test) : Pruned MUT

® New idea - Select latch/combinational
logics to include this pruned model

® The pruning can be regarded as an
abstraction process

|7

Pruned MUT projection

Coverage

‘MUT

j
Pruned

Unrechable

Latch selection

® Using BFS, one can find the latch
dependancy to add the result

® After the selection of subset of latches,
cutting algorithm to reduce the number of
variables in the support of the transitive fan

IN.

® All the other latches are considered as PI

Unreachability

rPFim;ﬂr}' ™~ » nincut
inputs

L™ .\

free "

inputs < s free cut
non- . 2
selecte |

latches
b :

bound gates

selected
latches

® We can do better, for it is not the “# of
gates” that we want to reduce, but“# of
signals™ in the support of the transition
functions.

20

The effect of
unrechable analysis

| don’t have to
visit the unreachable

® Pruned model + Optimized number of
latches

® smaller number of variables
® smaller BDD sizes

Implementation

® Tools used
® Main programming - C
® Simulator - Verilog
® Symbolic Simulator - BuDDy
e SAT - GRASP
® We can have a much smaller number of states
® The number of Latch >> Coverage Signal

Results

Cov | Cov Reach
sig. | state aftr cover
Kchm states
unreach Rndm

230 g
445s5ec 24hr

896 317
299sec 24hr
111 109
259sec 24hr

132 104
1423sec 24hr

342 44
60sec 24hr

® [mprovement is from 2% to 677%

® The # of coverage state after unrechable analysis is

reduced much. s

Results

Unreachability — —
v v eac

idea applled sig. | state aftr cover
Kchm states

unreach Rndm

230 g
445s5ec 24hr

896 317
299sec 24hr

111 109
259sec 24hr

132 104
1423sec 24hr

342 44
60sec 24hr

® Improvement is from 2% to 677%

® The # of coverage state after unrechable analysis i
reduced much.

23

Res L] It Automz.ltic Fest

generation idea

Unreachability —
v v

idea applied sig. | state aftr

unreach

230
445s5ec

896
299sec

111
259sec

132
1423sec

342
60sec

® |Improvement is from 2% to 677%

® The # of coverage state after unrechable analysis i
reduced much.

23

VVhat gives the good
result in Ketchum

The test generation only focus on coverage
states that are reachable, so fast and
correct in terms of the verification result.

Back-bone of Ketchum is an off the shelf
commercial simulator that is very efficient.

As a result - it has the 10x higher capacity/
coverage result.

Synergy

Software verification method

Synergy between testing method and verification
method

Synergy between F and A data structure

Testing to find bugs

® Testing can help refine verification

Verification to find proof

® Verification can help grow the test results

25

Counter example guided
partition refinement - SLAM

Find error, and refine
onh and on

Might have too big
counter-examples

Loop causes
problems in this case

Case split works
well

DART - Directed Testing

® Exhaustively
generates input
vectors

® Normally, not
work well with
many branches

. if (=) {

+1: m = Xn + 1;
}

+2: else {

+3: Im=xn - 1;
}

+4: if (lock.state != L)

+5 error() ;

1

Lee-Yannakakis algorithm

® T :=initial state
o S :={lnitial, Error,S_\(Initial + Error)}
® |oop

® Error:lfSinS_ isincluded in Error and Sand T
has common set

® Find a new state s that is reachable from T
® |[fYoucanfindit,addittoT
® |f you can’t find it

® Refine

® |f you can’t refine,it’s a Proof

Lee-
Yannakakis
Algorithm

LEE-YANNAKAKIS(P = (£, o', =),)

Assumes: o’ My = 0.

Returns:

(“fail”, t), where £ is an error trace of P reaching 1 or
(“pass”, ¥~), where ¥~ is a proof that PP cannot reach 1.

i

Loy i 5
' :-'—'II'-. T I‘—"L".'I}l

P—_\.hr-\.

for all 5 € .. do
if SNT#0and 5§ C ¢ then
choose s SNT
t := TestFromWitness(s)
return (“fail”, ¢)
end if
end for
choose S € ¥.. such that SNT =0 and
| 1 there exist s € S and t € T with t—s
13: if such § € ¥~ and s,t € ¥ exist then
14: T:=TU{s}
15: parent(s) :=t
16: else
17: choose P,() € X such that PNT # 0 and
18: Pre(Q)N P # @ and P & Pre(())
19: if such P, ¢} € ¥~ exist then
20: Yo = (= \ {PHU{PNPre(Q), P\ Pre(Q)}
21: else
22 return (“pass”, ¥-.)
23 end if
24: end if
20: end loop
29

e

LY vs. Synergy

® Synergy is based on the LY algorithm
® | oop structure, fail test, refinement

® The idea of stability(bisimilation) is not used in
ynergy

® <PQ> is stable if
® P and Pre(Q) = NULL or

® Pincluded in Pre(Q)

® |f not stable, refinement is needed
o Pre(Sy)={seX|3ds" € Sg,s— 5}

LY vs. Synergy

® Synergy doesn’t attempt to find a part of
the bisimilarity quotient

® When Synergy terminates with a proof, the
partition does not necessarily form a
bisimilarity quotient

® The distinguishing feature of the SYNERGY
algorithm is the simultaneous search for a
test case to witness an error and a
partition to witness a correctness proof

31

Synergy data structure

® [structure
® Forest to store the findings in Testing

® When there is an abstract path, it is added to F
structure

® A structure
® Abstract to store the refinements in Verification

® A is refined more and more by looking into F
structure - F gives hints how to refine

Frontier in Synergy

® There exists a frontier(So,S1, ..., Sn) such that (a) O
<=k <=n,and (b) Siand F=0forall k <=i <=n
and (c) Sjand Fnot O forall 0 <=j <k

® The trace with frontier is “ordered trace”

® Frontier is a mark in A structure used to direct F
structure to know what attempt it has to do

F A structure and Frontier

Synergy API

CreateAbstractProgram <o .o é >
® Given partition, returns Program

GetAbstractTrace

® Searches for abstract error trace

Frontier

TestFromWitness

GetOrderedAbstractlrace

® Given trace, returns <Terr, k> k=frontier

RefineWithGeneralization

Synergy algorithm
overview

® f[ail - return with an error trace t
® Same as LY

® Pass - return with a proof that cannot reach error
states

® |f GetAbstractlrace return null

® |t means that there is no abstract/concrete
error trace that leads to Error

® Basic algorithm is (almost) same as LY.
® | & A data structure is used

® Refine procedure is based on Si.| and Sk

36

SYNERGY(P = (T, 0’

Assumes: o' M =0,

Returns:

(“fail”, t), where t is an error trace of I? reaching 1; or

(“pass”, X~), where ¥~ is a proof that P cannot reach .

: B = {o", ¢, B\ (eT Uy))
: loop
. for all Se¥. do
it SNF -"' IEI and § C i then
choose s € SN F
t := TestFromWitness(s)
return (“fail”, t)
end if
end for
(B, 0 vy =) == Createﬂbﬁtracthgramxﬁ Farw)
= GEtAbEtr’aCtTFECEtIL~ O ey =t b, W)
if 7 =€ then
return (“pass”, X~)
else
{Tere := GetOrderedAbstract Trace(T, F)
= GenSmtabIeTestf*’ o o
let 5 - r'_'l|. : C..ll_. = "',.I..I.. in
if 'f = then
l;.“- '.—|: '{‘J-, }:l L)
{8k_1N Pre::fi'_a,.]l.ﬂ- 1 \ Pre(Si)}
else
let 50, 81,...,8m =1 1n
for i = 0to m do
if 5; & F then
F:=FuU/{s;}
parent(s;) := if i = 0 then ¢ else 5.
end if
end for
end if
end if

|Il :.-
!

The following code is commented out,
and is explained in Section 5:
»~. := RefineWithGeneralization(X~ tf}

W
|

. end loop

Synergy
algorithm

Every line corresponds to each
state

Refinement corresponds to a
state(line) with variables

We can get refinement more
and more with more variables

Example of Synergy

volid fool(int a)

error() occurs if a <=0 ;
imt i, €;
First, F is empty 5 R
: while (i < 1000} {
. . : o c ¥+ 1;
Ais {0,1,2,5,6} and Front is at - ATEe
position 0(‘0’) g Fnsiiosass

error();

Generate vector to go 0, I:
Let’s say 10

F has {0,1,2,3,4,5} and
Frontier is 3(‘5’)

Generate vector to go 5,6 :
Let’s say -10

We find an error trace

Example of Synergy

void foo(int y)
|
lock.state = U;
do {
lock.state = L;
X =Yy;
if (=) {
: lock.state = U;
. o — — = ::‘I'++;
Line 7 : means that x ==)
} while (x != y)

y When Out Ofthe IOOP if (lock.state != L)

lock.state = U when x
p——)/

So, there should be no
error

Example

void feoo(int y)
|
lock.state = U;
do {
lock.state = L;
X = §¥;
if (=) {
lock.state = U;
y++;
I,
} while (x != y)
if (lock.state != L)
arror() ;

GetOrderedAbstractTrace returns
{<0,1,2,3,4,7,8,9>,0}

[5 T Y T T A O B

F tries to generate vector :y = 10

F has <0,1,2,3,4,5,6,7,8>, so the frontier is 6
(line 8)

woon =l

There is no way to get another F, so refinement
is needed

o <(0,1,2,345,6,7,<8,p>9),6> Refinement
is processed until there is no refinement

available
] d 5

° <(0,1,23456,<74><8p>9),7> S el

[lock.atate |= L)} E& (X

® |t proves that the program has “passed” " (leck.state 1= L) & (x

L el)

Soundness of Synergy

® Theorem - Suppose that we run the Synergy
algorithm on a Program P and Property Error

® |f Synergy returns (“pass’,Sigma), then the
partition Sigma with respect to Error, and thus is

a proof that P cannot reach Error

® |f Synergy returns (“fail”, t) then t is an error
trace

® Which means that every found proof and error is
valid

Problem in Synergy

° Refinement step on line 20-2 1 unable to find el e
the “right split” :

it X, ¥;
. . ; x = 0;
® predicate with y <0 .
: while (y >= 0) {

® theny+x<0 L y=3*x;

}
assert(false) ;

® theny+2x<0
® for ever until memory limit

® RefineWithGenerdlization() function is needed
for solving this kind of problem

Comparison with other
tools

® Synergy works well with if

® Overcome the problem of SLAM
® Synergy works well with branch

® Overcome the problem of DART

® Synergy solves the problem that LY can or
can’t solve

Results

Program

SYNERGY

SLAM

LEE-YANNAKAKIS

iters

time

iter

s | time

iters

time

testl.

w

3.92

4

1.70

*

*

test?.

7.88

4

R

*

*

testd.

2.19

13

8.032

*

testd,

2.67

12

3.52

tesths.

1.28

0.90

testh.

1.45

1.2¢

test?.

<04 |

1.11

test8.

1.28

1.19

testH

OO |0 0(aja | 0|00

1.39

1.19

testl10.

1.5

185

testll.

1.30

5.03

testl?2.

=l MN|WWRN =R RO

i

10.25

testl13.

s
K

3.1/

1.31

testld,

1.0625

3.453

test1b.

L] =

5.98

*

testl6.

9.20

testl’.

2.28

testl8.

13.41

testl1l9.

10.84

test20.

OO0 |0jalloja(aolla|lal|lo

0.42

How about verilog
code!

® Synergy doesn’t have the function testing.
® Verilog’s instantiation is easily adapted

® [he real problem is how to deal with the
parallelization process of Verilog.

® For the F structure, the state graph is
bigger than the state graph for Verilog.

