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Outline

• Motivations and Ideas
• Pros and Cons of Verification and Testing
• Combining Verification and Testing

• More advanced research
• Ketchum by Ho et al. 
• Synergy by Gulavani et al.
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The verification 
approach

• It tries to construct the formal proof that the 
implementation meets the specification

• Pros 

• Successful proof is easy to find

• If it is proved to be correct, it is mathematically 
correct.

• Cons 

• Often inefficient in finding errors

• State explosion, complex data structure and algorithm
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The testing approach
• It tries to find inputs and executions which 

demonstrate violations of the property

• Pros

• Works best when errors are easy to find

• Relatively easy to implement the algorithm

• Cons

• Often difficult to achieve sufficient coverage

• The passing the test doesn’t mean that there is no 
bug
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Today’s topics

• Ketchum by Ho et al. (2000, Synopsys)

• Random Simulation

• Symbolic Simulation and SAT based BMC

• Synergy by Gulavani et al. (2006, Microsoft)

• Synergy between verification and testing

• Testing for finding bugs

• Verification for proving

• Synergy between F and A data structure
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The motivation for 
Ketchum

• We’re interested in IDLE/Empty, Write/Normal ...

• We’re also interested in Read/Empty, Write/Full is 
left unvisited

• Coverage signal : signals that is given and we have a 
interest in.

• Coverage state : Each combination of Coverage 
Signals.
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Ketchum - basic ideas

• Visit all the (or as many as) states quickly : 
Automatic Test Generation

• Random Simulation - Testing

• Symbolic Simulation - Verification

• SAT-based BMC - Verification

• Reduce the number of states : Unreachability

• Identifies as many unreachable coverage states 
as possible

• Can find unreachable states fast using projection 
method
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Ketchum Algorithm

• Rectangle - the entire state space

• Stars - Coverage states

• Zig-zag - random simulation

• Circle - Symbolic simulation
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Comparisons of search 
engines

• The algorithm starts with Random simulation 

• Extremely fast

• Reaches very deep states

• But, searches along a single trace/line

• They used commercial software for this
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Reachable Analysis
• Ketchum uses Reachability Analysis by BDD Based 

state enumeration

• But, how to check if the newly found states using 
BDD is visited or not?

• Mark as ‘unclassifed’ for the new coverage states

• Replace ‘unclassified new coverage states’ with 
‘symbolic formula of the coverage signal’

• If the result after the operation is not null, a new 
coverage state has been reached by symbolic 
simulation. We update the unclassified BDD and 
generate a trace to be used in simulation.
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Observations
• The # of symbolic variables that have been used 

during simulation has “more impact” on the 
complexity of the symbolic simulation than the # 
of latches

• The # of symbolic variables is (# of PI * 
simulation steps)

• So, symbolic simulation is good only for wide 
range exhaustive search

• The under-approximation of replacing some 
symbolic variables to constant 1/0.
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SAT Based BMC
• Ketchum uses ‘unreachablity engine’ to reduce the 

state space to search

• The targeted coverage states are

• States that are not reached

• States that are not proven unreachable

• Uses SAT based BMC to find them by expanding 
i steps

• Kethum’s method is good for exhaustive short-
range search engine for it has reduced search 
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Ketchum input/output

• Input 

• Synthesizable MUT(Model under Test)

• A set of less than 64 ‘coverage signals’

• Output

• Test sequence to reach as many coverage as 
possible

• Identifies as many unreachable coverage as 
possible
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Ketchum Algorithm

while(find all the state) {
  simulation to find states
  if (rate falls below a threshold) {
    SAT-based BMC
    if (does not reach coverage states) {
      Symbolic simulation
      if (reach coverage states) {
             resimulation
      } 
    } else // If it finds a state 
      resimulation 
    }  
  }
  // simulation starts again
}

14



Interesting results
• After the exhaustive search, the next reachable states are 

easily found by the random simulation as a next step

• There are easy-to-transition signals(signals that can 
find a new state easily) and hard-to-transition signals
(signals that can find a new state hard)

• After exhaustive search, the engine manages to reach a 
hard-to-transition signals

• Random simulation will bump into different 
combinations of the easy-to-transition/hard-to-
transition 
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Unreachability - goal

• Provide fast and robust results without 
necessarily trying to detect all of the 
unreachable states.

• If we can find unreachable states, we just 
skip them to fasten the search. 

• For an CPU example

• The # of coverage states becomes from 
1102 to 60
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Unreachability - approach

• They could prove a state unreachable

• They could not prove a state reachable

• Conservative method - prune model of 
MUT (Model under test) : Pruned MUT

• New idea - Select latch/combinational 
logics to include this pruned model 

• The pruning can be regarded as an 
abstraction process
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Pruned MUT projection

MUT

Pruned 
MUT

Coverage 
Signal

Rechable

Unrechable
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Latch selection

• Using BFS, one can find the latch 
dependancy to add the result

• After the selection of subset of latches, 
cutting algorithm to reduce the number of 
variables in the support of the transitive fan 
in. 

• All the other latches are considered as PI
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Unreachability

• We can do better, for it is not the  “# of 
gates” that we want to  reduce, but “# of 
signals” in the support of the transition 
functions. 
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The effect of 
unrechable analysis

• Pruned model + Optimized number of 
latches

• smaller number of variables
• smaller BDD sizes

I don’t have to 
visit the unreachable 

states!
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Implementation

• Tools used

• Main programming - C

• Simulator - Verilog

• Symbolic Simulator - BuDDy

• SAT - GRASP

• We can have a much smaller number of states

• The number of Latch >> Coverage Signal
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Results

• Improvement is from 2% to 677%

• The # of coverage state  after unrechable analysis is 
reduced much.
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Results

• Improvement is from 2% to 677%

• The # of coverage state  after unrechable analysis is 
reduced much.

Unreachability 
idea applied

Automatic test 
generation idea 

applied
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What gives the good  
result in Ketchum

• The test generation only focus on coverage 
states that are reachable, so fast and 
correct in terms of the verification result. 

• Back-bone of Ketchum is an off the shelf 
commercial simulator that is very efficient.

• As a result - it has the 10x higher capacity/
coverage result.
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Synergy

• Software verification method

• Synergy between testing method and verification 
method

• Synergy between F and A data structure

• Testing to find bugs

• Testing can help refine verification 

• Verification to find proof

• Verification can help grow the test results
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Counter example guided 
partition refinement - SLAM

• Find error, and refine 
on and on

• Might have too big 
counter-examples

• Loop causes 
problems in this case

• Case split works 
well
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DART - Directed Testing

• Exhaustively 
generates input 
vectors

• Normally, not 
work well with 
many branches
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Lee-Yannakakis algorithm

• T := initial state

• S_ := {Initial, Error, S_\(Initial + Error)}

• Loop 

• Error : If S in S_ is included in Error and S and T 
has common set 

• Find a new state s that is reachable from T

• If You can find it, add it to T

• If you can’t find it

• Refine

• If you can’t refine, it’s a Proof
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Lee-
Yannakakis
Algorithm
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LY vs. Synergy

• Synergy is based on the LY algorithm

• Loop structure, fail test, refinement

• The idea of stability(bisimilation) is not used in Synergy

• <P,Q> is stable if 

• P and Pre(Q) = NULL or

• P included in Pre(Q)

• If not stable, refinement is needed

•
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LY vs. Synergy

• Synergy doesn’t attempt to find a part of 
the bisimilarity quotient

• When Synergy terminates with a proof, the 
partition does not necessarily form a 
bisimilarity quotient

• The distinguishing feature of the SYNERGY 
algorithm is the simultaneous search for a 
test case to witness an error and a 
partition to witness a correctness proof
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Synergy data structure

• F structure

• Forest to store the findings in Testing

• When there is an abstract path, it is added to F 
structure

• A structure

• Abstract to store the refinements in Verification

• A is refined more and more by looking into F 
structure - F gives hints how to refine
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Frontier in Synergy

• There exists a frontier(S0,S1, ..., Sn) such that (a) 0 
<= k <=n, and (b) Si and F = 0 for all k <= i <= n 
and (c) Sj and F not 0 for all 0 <= j < k

• The trace with frontier is “ordered trace”

• Frontier is a mark in A structure used to direct F 
structure to know what attempt it has to do
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F, A structure and Frontier

F A

Frontier
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Synergy API

• CreateAbstractProgram

• Given partition, returns Program 

• GetAbstractTrace

• Searches for abstract error trace

• Frontier

• TestFromWitness

• GetOrderedAbstractTrace

• Given trace, returns <Terr, k> k=frontier

• RefineWithGeneralization
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Synergy algorithm 
overview

• Fail - return with an error trace t

• Same as LY

• Pass - return with a proof that cannot reach error 
states

• If GetAbstractTrace return null

• It means that there is no abstract/concrete 
error trace that leads to Error

• Basic algorithm is (almost) same as LY.

• F & A data structure is used

• Refine procedure is based on Sk-1 and Sk
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Synergy 
algorithm

• Every line corresponds to each 
state

• Refinement corresponds to a 
state(line) with variables

• We can get refinement more 
and more with more variables
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Example of Synergy

• error() occurs if a <= 0

• First, F is empty

• A is {0,1,2,5,6} and Front is at 
position 0(‘0’)

• Generate vector to go 0,1: 
Let’s say 10

• F has {0,1,2,3,4,5} and 
Frontier is 3(‘5’)

• Generate vector to go 5,6 : 
Let’s say -10

• We find an error trace
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Example of Synergy

• Line 7 : means that x == 
y when out of the loop

• lock.state = U when x 
== y

• So, there should be no 
error
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Example

• GetOrderedAbstractTrace returns 
{<0,1,2,3,4,7,8,9>,0}

• F tries to generate vector : y = 10

• F has <0,1,2,3,4,5,6,7,8>, so the frontier is 6
(line 8)

• There is no way to get another F, so refinement 
is needed

• <(0,1,2,3,4,5,6,7,<8,p>,9),6> Refinement 
is processed until there is no refinement 
available

• <(0,1,2,3,4,5,6,<7,q>,<8,p>,9),7>

• It proves that the program has “passed”
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Soundness of Synergy
• Theorem - Suppose  that we run the Synergy 

algorithm on a Program P and Property Error

• If Synergy returns (“pass”,Sigma), then the 
partition Sigma with respect to Error, and thus is 
a proof that P cannot reach Error 

• If Synergy returns (“fail”, t) then t is an error 
trace

• Which means that every found proof and error is 
valid
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Problem in Synergy

• Refinement step on line 20-21 unable to find 
the “right split”

• predicate with y <0

• then, y + x < 0

• then, y + 2x < 0

• for ever until memory limit

• RefineWithGeneralization() function is needed 
for solving this kind of problem
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Comparison with other 
tools

• Synergy works well with if

• Overcome the problem of SLAM

• Synergy works well with branch

• Overcome the problem of DART 

• Synergy solves the problem that LY can or 
can’t solve
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Results
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How about verilog 
code?

• Synergy doesn’t have the function testing.

• Verilog’s instantiation is easily adapted

• The real problem is how to deal with the 
parallelization process of  Verilog.

• For the F structure, the state graph is 
bigger than the state graph for Verilog.
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