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Abstract

Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed
control, system identification, robust control, state estimation, model predictive control and dynamic programming.
The recent advances in various topics of modern optimization have also been revamping the area of machine learning.
Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems,
this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its
emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain
seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we
study different numerical algorithms for large-scale conic optimization problems.

1. Introduction

Optimization is an important tool in the design, anal-
ysis, control and operation of real-world systems. In its
purest form, optimization is the mathematical problem of
minimizing (or maximizing) an objective function by se-
lecting the best choice of decision variables, possibly sub-
ject to constraints on their specific values. In the wider en-
gineering context, optimization also encompasses the pro-
cess of identifying the most suitable objective, variables,
and constraints. The goal is to select a mathematical
model that gives useful insight to the practical problem
at hand, and to design a robust and scalable algorithm
that finds a provably optimal (or near-optimal) solution
in a reasonable amount of time.

The theory of convex optimization had a profound in-
fluence on the development of modern control theory, giv-
ing rise to the ideas of robust and optimal control [1–3],
distributed control [4], system identification [5], model pre-
dictive control [6] and dynamic programming [7]. The
mathematical study of convex optimization dates by more
than a century, but its usefulness for practical applications
only came to light during the 1990s, when it was discov-
ered that many important engineering problems are actu-
ally convex (or can be well-approximated as being so) [8].
Convexity is crucial in this regard, because it allows the
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corresponding optimization problem to be solved—very re-
liably and efficiently—to global optimality, using only local
search algorithms. Moreover, this global optimality can be
certified by solving a dual convex optimization problem.

With the recent advances in computing and sensor tech-
nologies, convex optimization has also become the back-
bone of data science and machine learning, where it sup-
plies us the techniques to extract useful information from
data [9–11]. This tutorial paper is, in part, inspired by
the crucial role of optimization theory in both the long-
standing area of control systems and the newer area of
machine learning, as well as its multi-billion applications
in large-scale real-world systems such as power grids.

Nevertheless, most interesting optimization problems
are nonconvex: structured analysis and synthesis and out-
put feedback control in control theory [2, 12]; deep learn-
ing, Bayesian inference, and clustering in machine learn-
ing [4, 9, 13, 14]; and integer and mixed integer programs
in operations research [15–17]. Nonconvex problems are
difficult to solve, both in theory and in practice. While
candidate solutions are easy to find, locally optimal solu-
tions are not necessarily globally optimal. Even if a candi-
date solution is suspected of being globally optimal, there
is often no effective way of validating the hypothesis.

Convex optimization can rigorously solve nonconvex
problems to global optimality, using techniques collectively
known as convexification. The essential idea is to relax
a nonconvex problem into a hierarchy of convex prob-
lems that monotonously converge towards the global so-
lution [18–21]. These resulting convex problems come in a
standard form known as conic optimization, which gen-
eralizes semidefinite programs (SDP) and linear matrix
inequalities (LMI) from control theory, as well as quad-
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dratically-constrained quadratic programs (QCQPs) from
statistics, and linear programs (LPs) from operations re-
search. Conic optimization can be solved with reliability
using interior-point methods [22, 23], and also with great
efficiency using large-scale numerical algorithms designed
to exploit problem structure [24–32].

The remainder of this paper is organized as follows.
We begin in Section 2 by reviewing well-known conic op-
timization problems in control theory. Case studies are
provided in Section 3 to show the importance of conic op-
timization in emerging applications. Different convexifica-
tion techniques for polynomial optimization are studied in
Section 4, followed by a detailed investigation of numerical
algorithms for conic optimization in Section 5. Concluding
remarks are drawn in Section 6.

Notations: The symbols R and Sn denote the sets of
real numbers and n × n real symmetric matrices, respec-
tively. The symbols R+ and Sn+ denote the sets of non-
negative real numbers and n× n symmetric and positive-
semidefinite matrices, respectively. rank{·} and trace{·}
denote the rank and trace of a matrix. The notation
X � 0 means that X ∈ Sn+. Xopt shows a global solution
of a given conic optimization problem with the variable
X. The vectorization of a matrix is the column-stacking
operation

vecX = [X1,1, . . . , Xn,1, X1,2, . . . , Xn,2, . . . , Xn,n]T ,

and the Kronecker product

A⊗B =

A1,1B · · · A1,nB
...

. . .
...

An,1B · · · An,nB

 ,
is defined to satisfy the Kronecker identity

vec (AXB) = (BT ⊗A)vecX.

2. Conic Optimization in Control Theory

Before the 1990s, much of control theory was focused
around developing analytical solutions to specific control
problems. The development of conic optimization brought
about a paradigm shift in the field of control theory. Mod-
ern control theory is centered around reformulating a given
control problem into a conic optimization problem, with
the goal of deriving a numerical solution. The advantage
of the latter approach is that it is much more general, and
is better able to accommodate constraints that appear in
practical problems.

Below, we review two classical control problems where
the numerical approach provides a natural generalization
to the analytical approach. For a more detailed and exten-
sive review of conic optimization in control applications,
the reader is referred to classic texts [1, 2].

2.1. Stability Analysis

The discrete-time linear state-space model

xk+1 = Axk

with fixed A ∈ Rn×n matrix is said to be (asymptotically)
stable if, starting from any initial condition x0, the state xk
converges to zero as time goes to infinity k →∞. Stability
is readily established by examining the eigenvalues of A
and verifying that each of them has modulus strictly less
than one

|λi(A)| < 1 ∀i ∈ {1, 2, . . . , n}.

Equivalently via the classical results of Lypunov, the model
is stable if and only if there exists a positive definite matrix
P � 0 satisfying

APAT − P ≺ 0.

The matrix P is known as a quadratic Lyapunov function.
In this simple case, an explicit choice can be computed by
solving the discrete Lyapunov equation.

Now, suppose that the state-space model is allowed to
vary with time, as in

xk+1 = Akxk.

With a time-varying Ak matrix, asymptotical stability can
no longer be established via an analytical approach like ex-
amining the eigenvalues of individual matrices. However,
we can numerically verify stability, by attempting to find
a quadratic Lyapunov function P satisfying

P � 0

AkPA
T
k − P ≺ 0 ∀k ∈ {1, 2, 3, . . . , }.

If a valid choice of P can be found, then the time-varying 
model is stable. Indeed, the search for P is a conic feasi-
bility problem, and can be solved to arbitrary accuracy in 
polynomial time using an interior-point method. However, 
in the time-varying context, the quadratic Lypunov test is 
conservative, meaning that the model can still be stable 
even if valid choice of P does not exist.

More sophisticated stability tests, ranging from para-
meter-dependent Lyapunov functions to matrix sum-of-
squares, are less conservative than the stability test based 
on quadratic Lyapunov functions described above [33–35]. 
On the other hand, the reduction in conservatism usually 
comes with increases to computational cost.

2.2. Optimal Control

Given a discrete-time linear state-space model

xk+1 = Axk +Buk

with fixed A ∈ Rn×n and B ∈ Rn×m matrices, the linear
quadratic (LQ) optimal control problem seeks the optimal
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control signal {u0, u1, . . . , uT } that minimizes the quadra-
tic objective functional

J =
1

2

T∑
k=0

(xTkQxk + uTkRuk)

starting from a fixed initial condition x0 = c, where Q,R �
0. The problem has a well-known analytical solution known
as the linear quadratic regulator (LQR). This is a time-
varying linear feedback law

uk = −Kkxk k ∈ {1, 2, . . . , T}

with the gain matrix

Kk = (R+BTPkB)−1(BTPk+1A)

determined by the Riccati difference equation

PT = Q,

Pk−1 = ATPkA− (ATPkB)(R+BTPkB)−1(BTPkA).

As the control horizon approaches infinity T → ∞, the
Riccati difference equation reduces to the algebraic Riccati
equation, and the optimal control signal reduces to a static
linear feedback law.

In practice, the basic LQ problem is often too simple
to adequately capture the practical considerations faced by
the controls engineer. For example, it is usually necessary
to impose bound constraints on the state variables and the
control signal, as in

ulb ≤ uk ≤ uub, xlb ≤ xk ≤ xub,

in order to keep the physical plant and controller within
their “linear range”. Also, we may wish to minimize a
time-varying quadratic functional of the form

J =
1

2

T∑
k=0

(xTkQkxk + uTkRkuk),

in order to emphasize certain time periods over others, 
or to trade off the transient response against asymptotic 
behavior. This “realistic” version of the LQ problem does 
not have an analytic solution. However, it is a convex 
quadratic program, and can be converted into a second-
order cone program

minimize β

subject to x0 = c
xk+1 = Axk +Buk, ∀k ∈ {0, 1, . . . , T}
xlb ≤ xk ≤ xub, ∀k ∈ {0, 1, . . . , T}
ulb ≤ uk ≤ uub, ∀k ∈ {0, 1, . . . , T}

β ≥

∥∥∥∥∥
[
Q

1/2
0 x0 Q

1/2
1 x1 · · · Q

1/2
T xT

R
1/2
0 u0 R

1/2
1 u1 · · · R

1/2
T uT

]∥∥∥∥∥
F

where ‖ · ‖F denotes the Frobenius norm, and solved to 
arbitrary accuracy in polynomial time using an interior-
point method. (Modern interior-point methods solve con-
vex quadratic programs by converting them into second-
order cone programs, in order to exploit the self-scaled 
property of second-order cones [23, 36]; see also [37].) The 
resulting control signal can then be realized in a model-
predictive controller.

3. Emerging Applications of Conic Optimization

Although conic optimization has appeared in many
subareas of control theory since early 1990s, it has found
new applications in many other problems in the last decade.
Some of these applications will be discussed below.

3.1. Machine Learning

In machine learning, kernel methods are used to study
relations, such as principle components, clusters, rankings,
and correlations, in large datasets [9]. They are used for
pattern recognition and analysis. Support vector machines
(SVMs) are kernel-based supervised learning techniques.
SVMs are one of the most popular classifiers that are cur-
rently used. A kernel matrix is a symmetric and positive
semidefinite matrix that plays a key role in kernel-based
learning problems. Specifying this matrix is a classical
model selection problem in machine learning. A great
deal of effort has been made over the past two decades
to elucidate the role of semidefinite programing as an effi-
cient convex optimization framework for machine learning,
kernel-machines, SVMs, and learning kernel matrices from
data in particular [9, 13, 14, 38–40].

In many applications, such as social networks, neu-
roscience, and financial markets, there exists a massive
amount of multivariate timestamped observations. Such
data can often be modeled as a network of interacting
components, in which every component in the network is a
node associated with some time series data. The goal is to
infer the relationships between the network entities using
observational data. Learning and inference are important
topics in machine learning. Learning a hidden structure in
data is usually formulated as an optimization problem aug-
mented with sparsity-promoting techniques [41–43]. These
techniques have become essential to the tractability of big-
data analyses in many applications, such as data min-
ing [44–46], pattern recognition [47, 48], human brain func-
tional connectivity [49], and compressive sensing [11, 50].
Similar approaches have been used to arrive at a parsi-
monious estimation of high-dimensional data. However,
most of the existing statistical learning techniques in data
analytics need a large amount of data (compared to the
number of parameters), which limit their applications in
practice [10, 51]. To address this issue, a special atten-
tion has been paid to the augmentation of these learning
problems with sparsity-inducing penalty functions to ob-
tain sparse and easy-to-analyze solutions.
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Graphical lasso (GL) is a popular method for estimat-
ing the inverse covariance matrix [52–54]. GL is an opti-
mization problem that shrinks the elements of the inverse
covariance matrix towards zero compared to the maximum
likelihood estimates, using an l1 regularization. There is a
large body of literature suggesting that the solution of GL
is a good estimate for the unknown graphical model, un-
der a suitable choice of the regularization parameter [52–
57]. To explain the GL problem, consider a random vector
x = (x1, x2, ..., xd) with a multivariate normal distribu-
tion. Let Σ∗ ∈ Sd denote the correlation matrix associated
with the vector x. The inverse of the correlation matrix
can be used to determine the conditional independence be-
tween the random variables x1, x2, ..., xd. In particular, if
the (i, j)th entry of Σ−1

∗ is zero for two disparate indices i
and j, then xi and xj are conditionally independent given
the rest of the variables. The graph supp

(
Σ−1
∗
)

(i.e., the
sparsity graph of Σ−1

∗ ) represents a graphical model cap-
turing the conditional independence between the elements
of x.

Assume that Σ∗ is nonsingular and that supp
(
Σ−1
∗
)

is a sparse graph. Finding this graph is cumbersome in
practice because the exact correlation matrix Σ∗ is rarely
known. More precisely, supp

(
Σ−1
∗
)

should be constructed
from a given sample correlation matrix (constructed from
n samples), as opposed to Σ∗. Let Σ denote an arbitrary
d×d positive-semidefinite matrix, which is provided as an
estimate of Σ∗. Consider the convex optimization problem:

min
S∈Sd

− log det(S) + trace(ΣS)

s.t. S � 0
(1)

It is easy to verify that the optimal solution of the above
problem is equal to Sopt = Σ−1. However, there are two
issues with this solution. First, since the number of sam-
ples available in many applications is modest compared to
the dimension of Σ, the matrix Σ could be ill-conditioned
or even singular. In that case, the equation Sopt = Σ−1

leads to large or unbounded entries for the optimal solu-
tion of (1). Second, although Σ−1

∗ is assumed to be sparse,
a small random difference between Σ∗ and Σ would make
Sopt highly dense. In order to address the aforementioned
issues, consider the problem

min
S∈Sd

− log det(S) + trace(ΣS) + λ‖S‖∗

s.t. S � 0
(2)

where λ ∈ R+ is a regularization parameter and ‖S‖∗ de-
notes the sum of the absolute values of the off-diagonal en-
tries of S. This problem is referred to as Graphical Lasso
(GL). Intuitively, the term ‖S‖∗ in the objective function
serves as a surrogate for promoting sparsity among the off-
diagonal entries of S, while ensuring that the problem is
well-defined even with a singular input Σ.

There have been major interests in studying the prop-
erties of GL as a conic optimization problem, in addition

to the design of numerical algorithms for this problem
[52, 53, 58]. For example, [59] and [60] have shown that the
conic optimization problem (2) is highly related to a simple
thresholding technique. This result is leveraged in [61] to
obtain an explicit formula that serves as an exact solution
of GL for acyclic graphs and as an approximate solution
of GL for arbitrary sparse graphs. Another line of work
has been devoted to studying the connectivity structure
of the optimal solution of the GL problem. In particular,
[62] and [63] have proved that the connected components
induced by thresholding the sample correlation matrix and
the connected components in the support graph of the op-
timal solution of the GL problem lead to the same vertex
partitioning.

3.2. Optimization for Power Systems

The real-time operation of an electric power network
depends heavily on several large-scale optimization prob-
lems solved from every few minutes to every several months.
State estimation, optimal power flow (OPF), unit com-
mitment, and network reconfiguration are some funda-
mental optimization problems solved for transmission and
distribution networks. These different problems have all
been built upon the power flow equations. Regardless
of their large-scale nature, it is a daunting challenge to
solve these problems efficiently. This is a consequence
of the nonlinearity/non-convexity created by two different
sources: (i) discrete variables such as the ratio of a tap-
changing transformer, the on/off status of a line switch,
or the commitment parameter of a generator, and (ii) the
laws of physics. Issue (i) is more or less universal and re-
searchers in many fields of study have proposed various
sophisticated methods to handle integer variables. In con-
trast, Issue (ii) is pertinent to power systems, and it de-
mands new specialized techniques and approaches. More
precisely, complex power being a quadratic function of
complex bus voltages imposes quadratic constraints on
OPF-based optimization problems, and makes them NP-
hard [64].

OPF is at the heart of Independent System Operator
(ISO) power markets and vertically integrated utility dis-
patch [65]. This problem needs to be solved annually for
system planning, daily for day-ahead commitment mar-
kets, and every 5-15 minutes for real-time market balanc-
ing. The existing solvers for OPF-based optimization ei-
ther make potentially very conservative approximations or
deploy general-purpose local-search algorithms. For ex-
ample, a linearized version of OPF, named DC OPF, is
normally solved in practice, whose solution may not be
physically meaningful due to approximating the laws of
physics. Although OPF has been studied for 50 years,
the algorithms deployed by ISOs suffer from several issues,
which may incur tens of billions of dollars annually [65].

The power flow equations for a power network are qua-
dratic in the complex voltage vector. It can be verified
that the constraints of the above-mentioned OPF-based
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Table 1: Performance of penalized SDP for OPF.
Test Near-opt. Global opt. Run
cases cost guarantee time (s)

Polish 2383wp 1874322.65 99.316% 529
Polish 2736sp 1308270.20 99.970% 701
Polish 2737sop 777664.02 99.995% 675
Polish 2746wop 1208453.93 99.985% 801
Polish 2746wp 1632384.87 99.962% 699
Polish 3012wp 2608918.45 99.188% 814
Polish 3120sp 2160800.42 99.073% 910

problems can often be cast as quadratic constraints af-
ter introducing certain auxiliary parameters. This has
inspired many researchers to study the benefits of conic
optimization for power optimization problems. In par-
ticular, it has been shown in a series of papers that a
basic SDP relaxation of OPF is exact and finds global
minima for benchmarks examples [66–69]. By leveraging
the physics of power grids, it is also theoretically proven
that the SDP relaxation is always exact for every distribu-
tion network and every transmission network containing
a sufficient number of transformers (under some technical
assumptions) [70, 71].

The papers [72] and [68] show that if the SDP re-
laxation is not exact due to the violation of certain as-
sumptions, a penalized SDP relaxation would work for a
carefully chosen penalty term, which leads to recovering a
near-global solution. This technique is tested on several
real-world grids and the outcome is partially reported in
Table 1 [73]. The number in the name of the test cases in
the left column corresponds to the number of nodes in the
network. It can be observed that the SDP relaxation has
found operating points for the nationwide grid of Poland
in different times of the year, where the global optimality
guarantee of each solution is at least 99%, implying that
the unknown global minima are at most 1% away from the
obtained feasible solutions. In some cases, finding a suit-
able penalization parameter can be challenging, but this
can be remedied by using [74, Algorithm 1] based on the
notion of Laplacian matrix. Different techniques have been
proposed in the literature to obtain tighter relaxations of
OPF [75–79]. Several papers have developed SDP-based
approximations or reformulations for a wide range of power
problems, such as state estimation [80, 81], unit commit-
ment [17], and transmission switching [16, 82]. The recent
findings in this area show the significant potential of conic
relaxation for power optimization problems.

3.3. Matrix Completion

Consider a symmetric matrix X̂ ∈ Sn, where certain
off-diagonal entries are missing. The low-rank positive-
semidefinite matrix completion problem is concerned with
the design of the unknown entries of this matrix in such
a way that the matrix becomes positive semidefinite with
the lowest rank possible. This problem has applications in
signal processing and machine learning, where the goal is

to learn a structured dataset (or signal) from limited ob-
servations (or samples). It is also related to the complexity
reduction for semidefinite programs [24, 83, 84]. Let the

known entries of X̂ be represented by a graph G = (V, E)
with the vertex set V and the edge set E , where each edge
of the graph corresponds to a known off-diagonal entry of
X̂. The matrix completion problem can be expressed as:

min
X∈Sn

rank{X} (3a)

s.t. Xij = X̂ij , ∀(i, j) ∈ E (3b)

Xkk = X̂kk, ∀k ∈ V (3c)

X � 0 (3d)

The missing entries of X̂ can be obtained from an optimal
solution of the above problem. Since (3) is nonconvex, it
is desirable to find a convex formulation/approximation of
this problem. To this end, consider a number n̄ that is
greater than or equal to n. Let Ḡ = (V̄, Ē) be a graph with
n̄ vertices such that G is a subgraph of Ḡ. Consider the
optimization problem

min
X̄∈Sn̄

∑
(i,j)∈Ē\E

tij X̄ij (4a)

s.t. X̄ij = X̂ij , ∀(i, j) ∈ E (4b)

X̄kk = X̂kk, ∀k ∈ V (4c)

X̄kk = 1, ∀k ∈ V̄\V (4d)

X̄ � 0 (4e)

Define X̄opt(n) as the n × n principal submatrix of an
optimal solution of (4). It is shown in [85] that:

• X̄opt(n) is a positive semidefinite filling of X̂ whose
rank is upper bounded by certain parameters of the
graph Ḡ, no mater what the coefficients tij ’s are as
long as they are all nonzero.

• X̄opt(n) is low rank if the graph G is sparse.

• X̄opt(n) is guaranteed to be a solution of (3) for cer-
tain types of graphs G.

Since (4) is a semidefinite program, it points to the role of
conic optimization in solving the matrix completion prob-
lem.

3.4. Affine Rank Minimization Problem

Consider the problem

min
Y ∈Rm×r

rank{Y } (5a)

s.t. trace{NkY } ≤ ak, k = 1, . . . , p (5b)

where N1, . . . , Np ∈ Rr×m are constant sparse matrices.
This is a general affine rank minimization problem with-
out any positive semidefinite constraint. A special case of
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the above problem is the regular matrix completion prob-
lem defined as finding the missing the entries of a rect-
angular matrix with partially known entries to minimize
its rank [86–90]. A popular convexification method for (5)
is to replace its objective function with the nuclear norm
of Y [88]. This is motivated by the fact that the nuclear
norm function is the convex envelop of rank{Y } on the
set {Y ∈ Rm×r | ‖Y ‖ ≤ 1} [91]. Optimization (5) can be
reformulated as a matrix optimization problem whose ma-
trix variable is symmetric and positive semidefinite. To
explain this reformulation, consider a new matrix variable
X defined as

X ,

[
Z1 Y
Y T Z2

]
, (6)

where Z1 and Z2 are auxiliary matrices, and Y acts as a
submatrix of X corresponding to its first m rows and last
r columns. Now, consider the problem

min
X∈Sm+r

rank{X} (7a)

s.t. trace{MkX} ≤ ak, k = 1, . . . , p (7b)

X � 0 (7c)

where

Mk ,

[
0m×m

1
2N

T
k

1
2Nk 0r×r

]
(8)

For every feasible solution X of the above problem, its
associated submatrix Y is feasible for (5) and satisfies the
inequality

rank{Y } ≤ rank{X} (9)

The above inequality turns into an equality at optimality
and, moreover, the problems (5) and (7) are equivalent
[91, 92]. One may replace the rank objective in (7) with the
linear term trace{X} based on the nuclear norm technique,
or use the more general idea delineated in (4) to find an
SDP approximation of the problem with a guarantee on
the rank of the solution.

3.5. Conic Relaxation of Quadratic Optimization

Consider the standard non-convex quaddratically-con-
strained quadratic program (QCQP):

min
x∈Rn−1

xTA0x+ 2bT0 x+ c0 (10a)

s.t. xTAkx+ 2bTk x+ ck ≤ 0, k = 1, . . . ,m
(10b)

where Ak ∈ Sn−1, bk ∈ Rn−1 and ck ∈ R for k = 0, . . . ,m.
This problem can be reformulated as

min
X∈Sn

trace{M0X}

s.t. trace{MkX} ≤ 0, k = 1, . . . ,m

X11 = 1,

X � 0,

rank{X} = 1

(11)

where X plays the role of[
1
x

]
[1 xT ]. (12)

and

Mk =

[
ck bTk
bk Ak

]
, k = 0, . . . ,m (13)

Dropping the rank constraint from (11) leads to an SDP
relaxation of the QCQP problem (7). If the matrices Mk’s
are sparse, then the SDP relaxation is guaranteed to have
a low-rank solution. To enforce the low-rank solution to
be rank-1, one can use the idea described in (4) and find a
penalized SDP approximation of (7) by first dropping the
rank constraint from (11) and then adding a penalty term
similar to

∑
(i,j)∈Ē\E tij Xij to its objective function.

In an effort to study low-rank solutions of the SDP
relaxation of (7), let G = (V, E) be a graph with n ver-
tices such that (i, j) ∈ G if the (i, j) entry of at least one
of the matrices M0,M1, ...,Mm is nonzero. The graph G
captures the sparsity of the optimization problem (7). No-
tice that those off-diagonal entries of X that correspond
to non-existent edges of G play no direct role in the SDP
relaxation. Let X̂ denote an arbitrary solution of the SDP
relaxation of (7). It can be observed that every solution to
the low-rank positive-semidefinite matrix completion prob-
lem (3) is a solution of the SDP relaxation as well. Now,
one can use the SDP problem (4) to find low-rank feasi-
ble solutions of the SDP relaxation of the QCQP problem.
By carefully picking the graph Ḡ, one can obtain a feasible
solution of the SDP relaxation whose rank is less than or
equal to the treewidth of G plus 1 (this number is expected
to be small for sparse graphs) [85, 93].

3.6. State Estimation

Consider the problem of recovering the state of a non-
linear system from noisy data. Without loss of generality,
we only focus on the quadratic case, where the goal is to
find an unknown state/solution x ∈ Rn for a system of
quadratic equations of the form

zr = xTMrx+ ωr, ∀r ∈ {1, . . . ,m} (14)

where

• z1, . . . , zm ∈ R are given measurements/specifications.

• Each of the parameters ω1, . . . , ωm is an unknown
measurement noise with some known statistical in-
formation.

• M1, . . . ,Mm are constant n× n matrices.

One example is power systems state estimation. There,
the vector x corresponds to a vector of voltage phasors,
each corresponding to a different bus in the electricity
transmission network. The measurements are made by
a control system called supervisory control and data ac-
quisition (SCADA). The classical SCADA measurements
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of nodal and branch powers, and voltage magnitudes, can
all be posed in the quadratic form shown above.

Several algorithms in different contexts, such as signal
processing, have been proposed in the literature for solving
special cases of the above system of quadratic equations
[94–99]. These methods are often related to semidefinite
programming. As an example, consider the conic program

min
X∈Sn
ν∈Rm

trace{MX}+ µ

(
|ν1|
σ1

+· · ·+ |νm|
σm

)
(15a)

s.t. trace{MrX}+ νr = zr, r = 1, . . . ,m (15b)

X � 0 (15c)

where µ > 0 is a sufficiently large fixed parameter. The
objective function of this problem has two terms: one tak-
ing care of non-convexity and another one for estimating
the noise values. The matrix M can be designed such that
the solution Xopt of the above conic program and the un-
known state x be related through the inequality:

‖Xopt − αxxT ‖ ≤ 2

√
µ× ‖ω‖1 × trace{Xopt}

η
(16)

where ω := [ω1 · · · ωm], and α and η are constants [100].
This implies that the distance between the solutions of
the conic program and the unknown state depends on the
power of the noise. A slightly different version of the above
result holds even in the case where a modest number of
the values ω1, . . . , ωm are arbitrarily large corresponding
to highly corrupted/manipulated data [81]. In that case,
as long as the number of such measurements is not rel-
atively large, the solution of the conic program will not
be affected. The proposed technique has been successfully
tested on the European Grid, where more than 18,000 pa-
rameters were successfully estimated in [100, 101].

4. Convexification Techniques

In this section, we present convex relaxations for solv-
ing difficult non-convex optimization problems. These non-
convex problems include integer programs, quaddratically-
constrained quadratic programs, and more generally poly-
nomial optimization. There are countless examples: MAX
CUT, MAX SAT, traveling salesman problem, pooling prob-
lem, angular synchronization, optimal power flow, etc. Con-
vex relaxations are crucial when searching for integer solu-
tions (e.g. via branch-and-bound); when optimizing over
real variables, they provide a way to find globally optimal
solutions, as opposed to local solutions. Our focus is on
hierarchies of relaxations that grow tighter and tighter to-
wards the original non-convex problem of interest. That
is, hierarchies are a sequence of (generally) convex opti-
mization problems whose optimal values become closer and
closer to the global optimum of the non-convex problem.
Generally, each convex optimization problem is guaranteed

to provide a bound on the global optimum. The common
framework we consider is that of optimizing a polynomial
f of n variables constrained by m polynomial inequalities,
i.e.

inf
x∈Rn

f(x) s.t. gi(x) > 0, i = 1, . . . ,m.

We consider linear programming (LP) hierarchies, second
order-conic programming (SOCP) hierarchies, and semidef-
inite positive (SDP) hierarchies. These constitute three
alternative ways of solving polynomial optimization prob-
lems, each with their pros and cons. After briefly recalling
some of the historical contributions, we refer to recent de-
velopments that have taken place over the last three years.
They are aimed at making the hierarchies more tractable.
In particular, the recently proposed multi-ordered Lasserre
hierarchy can solve a key industrial problem with thou-
sands of variables and constraints to global optimality.
The Lasserre hierarchy was previously limited to small-
scale problems since it was introduced 17 years ago.

4.1. LP hierarchies

When solving integer programs, it is quite natural to
consider convex relaxations in the form of linear programs.
The idea is to come up with a polyhedral representation
of the convex hull of the feasible set so that all the ver-
tices are integral. In that case, optimizing over the rep-
resentation can yield the desired integral solutions. For
an excellent reference on the various approaches, includ-
ing those of Gomori and Chvátal, see the recent book [15].
It is out of this desire to obtain nice representations that
the Sherali-Adams [102] and Lovász-Schrijver [103] hierar-
chies arose in 1990; they both provide tighter and tighter
outer approximations of the convex hull of the feasible set.
In fact, after a finite number of steps (which is known a
priori), their polyhedral representations coincide with the
convex hull of the integral feasible set. At each iteration of
the hierarchy, the representation of Sherali-Adams is con-
tained in the one of Lovász-Schrijver [20]. One way to view
these hierarchies is via lift-and-project. For instance, the
Sherali-Adams hierarchy can be viewed as taking products
of the constraints, which are redundant for the original
problem, but strengthen the linear relaxation. Interest-
ingly, the well-foundedness of this approach, and indeed
the convergence of the Sherali-Adams hierarchy, can be
justified by the works of Krivine [104, 105] in 1964, as well
as those of Cassier [106] (in 1984) and Handelman [107]
(in 1988). It was Lasserre [21, Section 5.4] who recognized
that, thanks to Krivine, one can generalize the approach
of Sherali-Adams to polynomial optimization. Global con-
vergence is ensured under some mild assumptions which
can always be met when the feasible set is compact. In
order to meet these assumptions, one needs to make some
adjustements to the modeling of the feasible set. These in-
clude normalizing the constraints to be between zero and
one.

7



Example 1. Consider the following polynomial optimiza-
tion problem taken from [21, Example 5.5]:

inf
x∈R

x(x− 1) s.t. x > 0 and 1− x > 0

Its optimal value is −1/4. To obtain the second-order
LP relaxation, one can add the following redundant con-
straints:

x2 > 0, x(1− x) > 0, (1− x)2 > 0

The lifted problem then reads:

inf
y1,y2∈R

y2 − y1 s.t.


y1 > 0

1− y1 > 0
y2 > 0

y1 − y2 > 0
1− 2y1 + y2 > 0

where yk corresponds to xk for a positive integer k. An
optimal solution to this problem is (y1, y2) = (1/2, 0). We
then obtain a lower bound on the original problem equal to
−1/2. The third-order LP relaxation is obtained by adding
yet more redundant constraints:

x3 > 0, x2(1− x) > 0, x(1− x)2 > 0 (1− x)3 > 0

Now, the lifted problem reads:

inf
y1,y2∈R

y2 − y1 s.t.



y1 > 0
1− y1 > 0

y2 > 0
y1 − y2 > 0

1− 2y1 + y2 > 0
y3 > 0

y2 − y3 > 0
y1 − 2y2 + y3 > 0

1− 3y1 + 3y2 − y3 > 0

An optimal solution is given by (y1, y2, y3) = (1/3, 0, 0),
yielding the lower bound of −1/3. And so on and so forth.

While convergence of the Sherali-Adams hierarchy is
preserved when generalizing their approach to polynomial
optimization, finite convergence is not preserved. In the
words of Lasserre [21, Section 5.4.2]: “Unfortunately, we
next show that in general the LP-relaxations cannot be ex-
act, that is, the convergence is only asymptotic, not finite.”
This means that, while the global value can be approached
to abritrary accuracy, it may never be reached. As a con-
sequence, one cannot hope to extract global minimizers,
i.e. those points that satisfy all the constraints and whose
evaluations are equal to the global value.

We now turn our attention to some recent work on de-
signing LP hierarchies for polynomial optimization on the
positive orthant, i.e. with the constraints x1 > 0, . . . xn >
0. Invoking a result of Póyla in 1928 [108], it was re-
cently proposed in [109] to multiply the objective function
by (1 + g1(x) + . . . + gm(x))r for some positive integer r,

in addition to taking products of the constraints (as in
the aforementioned LP hierarchy). This work comes as a
result of generalizing the notion of copositivity from qua-
dratic forms to polynomial functions [110].

We next discuss some numerical aspects of LP hier-
archies for polynomial optimization. It has been shown
that multiplying constraints by one another when apply-
ing lift-and-project to integer programs is very efficient
in practice. However, it can lead to numerical issues for
polynomial optimization. The reason for this is that the
coefficients in the polynomial constraints are not necessar-
ily all of the same order of magnitude. For example, in the
univariate case, multiplying 0.1x − 2 > 0 by itself yields
0.01x2 − 0.2x + 4 > 0, leading to coefficients ranging two
orders of magnitude. This can be challenging, even for
state-of-the-art software in linear programming. To date,
there exists no way of scaling the coefficients of a poly-
nomial optimization problem so as to make them more
or less homogenous. In contrast, in integer programs, the
constraints x2

i −xi = 0 naturally have all coefficients equal
to zero or one. As can be read in [111, page 7]: “We re-
mark that while there have been other approaches to pro-
duce LP hierarchies for polynomial optimization problems
(e.g., based on the Krivine-Stengle certificates of positivity
[21, 105, 112]), these LPs, though theoretically significant,
are typically quite weak in practice and often numerically
ill-conditioned [113].” This leads us to discuss the LP hi-
erarchy proposed in [114] in 2014.

Viewed through the lenses of lift-and-project, the ap-
proach in [114] avoids products of constraints and instead
adds the redundant constraints x2αgi(x) > 0 and (xα ±
xβ)2gi(x) > 0 where xα = xα1

1 · · ·xαn
n and α, β ∈ Nn.

By doing this for monomials of higher and higher degree
α1 + . . .+αn, one obtains an LP hierarchy. The nice prop-
erty of this hierarchy is that it avoids the conditioning is-
sues associated with the previously discussed hierarchies.
The authors also propose to multiply the objective by
(x2

1 + . . .+x2
n)r for some integer r as a means to strenghen

the hierarchy. Global convergence can then be guaranteed
(upon reformulation) when optimizing a homogenous poly-
nomial whose individual variables are raised only to even
degrees and are constrained to lie in the unit sphere. This
follows from [111, Theorem 13], a consequence of Pólya’s
previously mentioned result [108]. We conclude by not-
ing that the distinct LP hierarchies presented above can
be combined. For the interested reader, numerical experi-
ments can be found in [115, Table 4.4].

4.2. SOCP hierarchies

A natural way to provide hierarchies that are stronger
than LP hierarchies is to resort to conic optimization whose
feasible set is not a polyhedra. In fact, in their origi-
nal paper, Lovász and Schrijver proposed strengthening
their LP hierarchy by adding a positive semidefinite con-
straint. We will deal with SDP in the next section, and
we now focus on SOCP for which very efficient solvers

8



exist. It was this practical consideration which led the au-
thors of [114] to restrain the cone of sum-of-squares aris-
ing in the Lasserre hierarchy. By restricting the number
of terms inside the squares to two at most, i.e. by avoid-
ing squares such as the one crossed out in σ(x1, x2) =
x2

1 + (2x1− x3
2)2 +(((((((hhhhhhh(1− x1 + x2)2, one obtains SOCP con-

straints instead of SDP constraints. Numerical exper-
iments can found in [116]. A dual perspective to this
approach is to relax the semidefinite constraints in the
Lasserre hierarchy to all necessary SOCP constraints. This
idea was independently proposed in [117], except that the
authors of that work do not relax the moment matrix. This
ensures that the relaxation obtained is at least as tight
as the first-order Lasserre hiearchy. When applied to find
global minimizers to the optimal power flow problem [118],
this provides reduced runtime in some instances. On other
instances, the hierarchy does not seem to globally con-
verge, at least with the limited computional power used in
the experiments. This was elucidated in [119] where it was
shown that restricting sum-of-squares to two terms at most
does not preserve global convergence, even if the polyno-
mial optimization problem is convex. Interestingly, the re-
striction on the sum-of-squares can be used to strenghten
the LP hierarchies described in the previous section [115].
However, this does not affect the ill-conditioning associ-
ated with the LP hierarchies, nor their asymptotic conver-
gence (as opposed to finite convergence).

We note that SOCP hierarchies have been successfully
applied for solving control problems in robotics. Below
we borrow an example from [120] to illustrate the use of
sums-of-squares and SOCP hierarchies to control.

Example 2. Consider the following dynamical system which
represents a jet engine model:

ẋ = −y − 3
2x

2 − 1
2x

3

ẏ = 3x− y

In order to prove the stability of the equilibrium (x, y) =
(0, 0), one may look for a Lyapunov function using sums-
of-squares, i.e. a function V : R2 −→ R such that V (x, y)
and −V̇ (x, y) are sums-of-squares. In this case, it suffices
to look for sums-of-squares of degree 4, which yields the
following Lyapunov function [121]:

V (x, y) = 4.5819x2 − 1.5786xy + 1.7834y2 − 0.12739x3

+2.5189x2y − 0.34069xy2 + 0.61188y3

+0.47537x4 − 0.052424x3y + 0.44289x2y2

+0.0000018868xy3 + 0.090723y4

In order to reduce the computational burden, one could re-
quire that V (x, y) and −V̇ (x, y) are sums-of-squares where
the number of terms inside the squares are limited to two
at most. This yields an SOCP feasibility problem. This
technique has been used to find regions of attraction to
problems arising in robotics [114].

4.3. SDP hierarchies
SDP hierarchies revolve around the notion of sum-of-

squares, which were first introduced in the context of opti-

mization by Shor [122] in 1987. Shor showed that globally 
minimizing a univariate polynomial on the real line breaks 
down to a convex problem. It relies on the fact that a 
univariate polynomial is nonnegative if and only if it is 
a sum-of-squares of other polynomials. This is also true 
for bivariate polynomials of degree four as well as multi-
variate quadratic polynomials. But it is generally not true 
for other polynomials, as was shown by Hilbert in 1888 
[123]. This led Shor [124] (see also [125]) to tackle the 
minimization of multivariate polynomials by reformulating 
them using quadratic polynomials. Later, Nesterov [126] 
provided a self-concordant barrier that allows one to use 
efficient interior point algorithms to minimize a univariate 
polynomial via sum-of-squares.

We turn our attention to the use of sum-of-squares 
in a more general context, i.e. constrained optimization. 
Working on Markov chains where one seeks invariant mea-
sures, Lasserre [19] realized that minimizing a polynomial 
function under polynomial constraints can also be viewed 
as a problem where one seeks a measure. He showed that 
a dual perspective to this approach consists in optimiz-
ing over sum-of-squares. In order to justify the global 
convergence of his approach, Lasserre used Putinar’s Posi-
tivstellensatz [127]. This result was discovered in 1993 and 
provided a crucial refinement of Schmüdgen’s Positivstel-
lensatz [128] proven a few years earlier. It was crucial be-
cause it enabled numerical computations, leading to what is 
known today as the Lasserre hierarchy. Schmüdgen’s 
Positivstellensatz essentially says that a polynomial that is 
positive on a set defined by polynomial inequalities can be 
decomposed a sum of products of the the polynomi-als 
multiplied by sums of squares; Putinar’s removes the 
product from the decomposition.

Example 3. Consider the following polynomial optimiza-
tion problem taken from [119]:

inf
x1,x2∈R

x2
1 + x2

2 + 2x1x2 − 4x1 − 4x2 s.t. x2
1 + x2

2 = 1

Its optimal value is 2 − 4
√

2, which can be found using
sums-of-squares since:

x2
1 + x2

2 + 2x1x2 − 4x1 − 4x2 − (2− 4
√

2) =

(
√

2− 1)(x1 − x2)2 +
√

2(−
√

2 + x1 + x2)2

+ 2(
√

2− 1)(1− x2
1 − x2

2)

It can be seen from the above equation that when (x1, x2)
is feasible, the first line must be nonnegative, proving that
2 − 4

√
2 is a lower bound. This corresponds to the first-

order Lasserre hierarchy since the polynomials inside the
squares are of degree one at most. To make the link with
the previous section, note that one can ask to restrict the
number of terms to two at most inside the squares. This
allows one to use second-order conic programming instead
of semidefinite programming, but does not preserve global
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convergence. The best bound that can be obtained (i.e.
−4
√

2) is given by the following decomposition:

x2
1 + x2

2 + 2x1x2 − 4x1 − 4x2 − (−4
√

2) =
√

2

2
(−
√

2 + 2x1)2 +

√
2

2
(−
√

2 + 2x2)2 + (x1 + x2)2

+ 2
√

2(1− x2
1 − x2

2)

Parallel to Lasserre’s contribution, Parrilo [18] pioneered
the use of sum-of-squares for obtaining strong bounds on
the optimal solution of nonconvex problems (e.g. MAX
CUT). He also showed how they can be used for many im-
portant problems in systems and control. These include
Lyapunov analysis for control systems [129]. We do not
dwell on these as they are outside the scope of this tuto-
rial, but we also mention a different view of optimal con-
trol via occupation measures [130]. In contrast to Lasserre,
Parrilo’s work [131] panders to Stengle’s Positivstellensatz
[112], which is used for proving infeasibility of systems of
polynomial equations. This result can be seen as a gener-
alization of Farkas’ Lemma which certifies the emptiness
of a polyhedral set.

As discussed above, the Lasserre hierarchy provides a
sequence of semidefinite programs whose optimal values
converge (monotonically) towards the global value of a
polynomial optimization problem. This is true provided
that the feasible set is compact, and that a bound R on
the radius of the set is known, so that one can include
a redundant ball constraint x2

1 + · · · + x2
n 6 R2. When

modeling the feasible set in this matter, there is also zero
duality gap in each semidefinite program [132]. This is a
crucial property when using path following primal-dual in-
terior point methods, which are some of the most efficient
approaches for solving semidefinite programs.

In contrast to LP hierarchies which have only asymp-
totic convergence in general, the Lasserre hierarchy has
finite convergence generically. This means that for a given
abritary polynomial optimization problem, finite conver-
gence will almost surely hold. It was Nie [133] who proved
this result, which had been observed in practice ever since
the Lasserre hierarchy was introduced. He relied on theo-
rems of Marshall [134, 135] which attempted to answer the
question: when can a nonnegative polynomial have a sum-
of-squares decomposition? In the Positivstellensätze dis-
cussed above, the assumption of positivity is made, which
only guarantees asymptotic convergence. The result of
Nie marks a crucial difference with the LP hierarchies be-
cause it means that in practice, one can solve non-convex
problems exactly via a convex relaxation, whereas with
LP hierarchies one may only approximate them. In fact,
when finite convergence is reached, the Lasserre hierarchy
not only provides the global value, but also finds global
minimizers, i.e. points that satisfy all the constraints and
whose evaluations are the global value. This last feature
illustrates a nice synergy between advances in optimiza-
tion and advances on the theory of moments, which we
next discuss.

When the Lasserre hierarchy was introduced, the the-
ory of moments lacked a result to guarantee when global
solutions could be extracted. At the time of Lasserre’s
original paper, the theory only applied to bivariate poly-
nomial optimization [136, Theorem 1.6]. With the success
of the Lasserre hierarchy, there was a growing need for
more theory to be developed. This theory was developed
a few years later by Curto and Fialkow [137, Theorem 1.1].
They showed that it is sufficient to check a rank condition
in the Lasserre hierarchy in order to extract global mini-
mizers (and in fact, the number of minimizers is equal to
the rank).

Interestingly, the same situation occured when the com-
plex Lasserre hierarchy was recently introduced in [138].
The Lasserre hierarchy was generalized to complex num-
bers in order to enhance its tractability when dealing with
polynomial optimization in complex numbers, i.e.

inf
z∈Cn

f(z, z̄) s.t. gi(z, z̄) > 0, i = 1, . . . ,m.

where f, g1, . . . , gm are real-valued complex polynomials
(e.g. 2|z1|2 +(1+ i)z1z̄2 +(1− i)z̄1z2, where i is the imagi-
nary number). This framework is natural for optimization
problems with oscillatory phenoma, which are omnipresent
in physical systems (e.g. electric power systems, imag-
ing science, signal processing, automatic control, quantum
mechanics). One way of viewing the complex Lasserre
hierarchy is that it restricts the sums-of-squares in the
original Lasserre hierarchy to Hermitian sums-of-squares.
These are exponentially cheaper to compute yet preserve
global convergence, thanks to D’Angelo’s and Putinar’s
Positivstellensatz [139]. On the optimal power flow prob-
lem in electrical engineering, they permit a speed-up factor
of up to one order of magnitude [138, Table 1].

Example 4. Consider the following complex polynomial
optimization problem

inf
z∈C

z + z̄ s.t. |z|2 = 1

whose optimal value is −2. One way to solve this problem
would be to convert it into real numbers z =: x1 + ix2, i.e.

inf
x1,x2∈R

2x1 s.t. x2
1 + x2

2 = 1

and to use sums-of-squares:

2x1 − (−2) = 12 + (x1 + x2)2 + 1× (1− x2
1 − x2

2)

But one could instead use Hermitian sums-of-squares, which
are cheaper to compute:

z + z̄ − (−2) = |1 + z|2 + 1× (1− |z|2)

When the complex Lasserre hierarchy was introduced,
the theory of moments lacked a result to guarantee when
global solutions could be extracted. This led its authors
to generalize the work of Curto and Fialkow using the
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notion of hyponormality in operator theory [138, Theorem
5.1]. They found that in addition to rank conditions, some
positive semidefinite conditions must be met. Contrary
to the rank conditions, these are convex and can thus be
added to the complex Lasserre hierarchy. In [138, Example
4.1], doing so reduces the rank from 3 to 1 and closes the
relaxation gap.

The advent of the Lasserre hierarchy not only sparked
progress in the theory of moments, but also led to some
notable results. In 2004, the author of [140] derived an up-
per bound on the order of the Lasserre hierarchy needed
to obtain a desired relaxation bound to a polynomial op-
timization problem. This upper bound depends on three
factors: 1) a certain description of the feasible set, 2) the
degree of the polynomial objective function, and 3) how
close the objective function is to reaching the relaxation
bound on the feasible set. It must be noted that this upper
bound is difficult to compute in practice. As of today, it
is therefore not possible to know ahead of time how far in
the hierarchy one needs to go in order to solve a given in-
stance of polynomial optimization. Along these lines, not
much is yet known about the speed of convergence of the
bounds generated by the Lasserre hierarchy, except when
optimizing over the hypercube [141, 142]. In practice, they
generally reach the global value in a few iterations. Some-
what paradoxically, there are some nice results [143] on the
speed of convergence of SDP hierarchies of upper bounds
[144], although their converge is slow in practice.

Another notable result is contained in [145]. As dis-
cussed previously, the discrepancy between nonnegative
polynomials and sum-of-squares was noticed towards the
end of the nineteenth century. In some applications of
sum-of-squares, the nonnegativity of a function on Rn is
replaced by requiring it to be a sum-of-squares. The result
in [145] quantifies how small the cone of sums-of-squares
is with respect to the cone of nonnegative polynomials. It
is perhaps the title of the paper that best sums up the
finding: “There are significantly more nonnegative polyno-
mials than sums of squares”.

Having discussed several theoretical aspects of the Lass-
erre hierarchy, we now turn our attention to practical con-
siderations. In order to make the Lasserre hierarchy tract-
able, it is crucial to exploit the problem structure. We have
already gotten a flavor of this with the complex hierarchy,
which exploits the complex structure of physical problems
with oscillatory phenoma (electricity, light, etc.). In the
following, some key results on sparsity and symmetry are
highlighted.

In order to exploit sparsity in the Lasserre hierarchy, it
was proposed to use chordal sparsity in sums-of-squares in
[146]. We briefly explain this approach. Each constraint
in a polynomial optimization problem is associated a sum-
of-squares in the Lasserre hierarchy. In fact, each sum-of-
squares can be interpreted as a generalized Lagrange mul-
tiplier [21, Theorem 5.12]. If a constraint only depends
on a few variables, say x1, x3, x20 among x1, . . . , x100, it
seems naturally that the associated sum-of-squares should

depend only on the variables x1, x3, x20, or some slightly 
larger set of variables. This was made possible by the 
work in [146]. To do so, the authors consider the cor-
relative sparsity pattern of the polynomial optimization 
problem. It can be viewed as a graph where the nodes 
are the variables and the edges signify a coupling of the 
variables. Taking a chordal extension of this graph and 
computing the maximal cliques, one can restraint the vari-
ables appearing in the sum-of-squares to belong to these 
cliques. This provides a more tractable hierarchy of relax-
ations while preserving global convergence, as was shown 
by Lasserre [21, Theorems 2.28 and 4.7]. What Lasserre 
proved was a sparse version of Punitar’s Positivstellensatz. 
This sparse version has two applications that we next dis-
cuss.

One application is to the bounded sum-of-squares hi-
erarchy (BSOS) [113]. The idea of this SDP hierarchy is 
to fix the size of the SDP constraint as the order of the 
hierarchy increases. The size of the SDP constraint can 
be set by the user. The hierarchy builds on the LP hierar-
chy based on Krivine’s Positivstellensatz discussed in the 
section on LP hierarchies. As the order of the hierarchy 
increases, the number of LP constraints augments. These 
are the LP constraints that arise when multiplying con-
straints by one another. A sparse BSOS [147] is possible, 
thanks to the sparse version of Putinar’s Positivstellen-
satz. Global convergence is guaranteed by [147, Theorem 
1], but the ill-conditioning associated with LP hierarchies 
is inherited.

Another applicaton of the sparse version of Punitar’s 
Positivstellensatz is the multi-ordered Lasserre hierarchy 
[138, 148]. It is based on two ideas: 1) to use a differ-
ent relaxation order for each constraint, and 2) to iter-
atively seek a closest measure to the truncated moment 
data until a measure matches the truncated data. Global 
convergence is a consequence of the aforementioned sparse 
Positivstellensatz.

Example 5. The multi-ordered Lasserre hierarchy can 
solve a key industrial problem of the twentieth century to 
global optimality on instances of polynomial optimization 
with up to 4,500 variables and 14,500 constraints (see also 
[138]). The relaxation order is typically augmented at a 
hundred or so constraints before reaching global optimal-
ity. The test cases correspond to the highly non-convex 
optimal flow problem, and in particular to instances of 
the European high-voltage synchronous electricity network 
comprising data from 23 different countries (available at 
[149, 150]).

Table 2 shows the globally optimal objective value and 
corresponding solver time for select test cases. The 
convex relaxations were parsed using YALMIP 
2015.06.26 [151] and MATLAB 2013a, and solved using 
MOSEK 7.1.0.28 on a quad-core 2.70 GHz processor 
with 16 GB of RAM. Parsing time is not included in the 
comparison; it could be substantially improved within an 
industrial-scale imple-mentation. Better runtimes (by up 
to an order of magni-
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Table 2: Numerical results for Example 5
Case Num. Num. Multi-ordered Lasserre
Name Var. Constr. Global val. Time (s.)

case57Q 114 192 7,352 3.4
case57L 114 352 43,984 1.4
case118Q 236 516 81,515 15.7
case118L 236 888 134,907 10.5
case300 600 1,107 720,040 7.2
nesta case24 48 526 6,421 246.1
nesta case30 60 272 372 302.7
nesta case73 146 1,605 20,125 506.9
PL-2383wp 4,354 12,844 24,990 583.4
PL-2746wop 4,378 13,953 19,210 2,662.4
PL-3012wp 4,584 14,455 27,642 318.7
PL-3120sp 4,628 13,948 21,512 386.6
PEGASE-1354 1,966 6,444 74,043 406.9
PEGASE-2869 4,240 12,804 133,944 921.3

tude) and higher precision can be obtained with the complex
Lasserre hierarchy mentioned above.

We finish by discussing symmetry. In the presence of
symmetries in a polynomial optimization problem, the au-
thors of [152] proposed to seek an invariant measure when
deploying the Lasserre hierarchy. This reduces the com-
putational burden in the semidefinite relaxations. It was
shown recently that in the presence of commonly encoun-
tered symmetries, one actually obtains a block diagonal
Lasserre hierarchy [138, Section 7].

The above approaches for making hierarchies more tract-
able lead to convex models that are more amenable for
off-the-shelf solvers. The next section deals with numeri-
cal algorithms for general conic optimization problems.

5. Numerical Algorithms

The previous section described convexification tech-
niques that relax hard, nonconvex problems into a hand-
ful of standard classes of convex optimization problems,
all of which can be approximated to arbitrary accuracy in
polynomial time using the ellipsoid algorithm [153, 154].
Whenever the relaxation is tight, a solution to the original
nonconvex problem can be recovered after solving the con-
vexified problem. Accordingly, convexification establishes
the original problem to be tractable or “easy to solve”,
at least in a theoretical sense. This approach was used
as early as 1980 by Gröteschel, Lovász and Schijver [155]
to develop polynomial-time algorithms for combinatorial
optimization.

However, the practical usefulness of convexification was
less clear at the time of its development. The ellipsoid
method was notoriously slow in practice, so specialized al-
gorithms had to be used to solve the resulting convexified
problems. The fastest was the simplex method for the solu-
tion of linear programs (LPs), but LP convexifications are
rarely tight. Conversely, semidefinite program (SDP) con-
vexifications are often exact, but SDPs were particularly
difficult to solve, even in very small instances (see [1, 156]

for the historial context). As a whole, convexification re-
mained mostly of theoretical interest.

In the 1990s, advancements in numerical algorithms 
overhauled this landscape. The interior-point method —
originally developed as a practical but rigorous algorithm 
for LPs by Karmarkar [157] — was extended to SDPs 
by Nesterov and Nemirovsky [158, Chapter 4] and Al-
izadeh [22]. In fact, this line of work showed interior-point 
methods to be particularly suitable for SDPs, generalizing 
and unifying the much of the previous framework devel-
oped for LPs. For control theorists, the ability to solve 
SDPs from convexification had a profound impact, giving 
rise to the disciplines of LMI control [1] and polynomial 
control [12].

Today, the growth in the size of SDPs has outpaced the 
ability of general-purpose interior-point methods to solve 
them, fueled in a large part by the application of convexifi-
cation techniques to control and machine learning applica-
tions. First-order methods have become popular, because 
they have very low per-iteration costs that can often be 
custom-tailored to exploit problem structure in a specific 
application. On the other hand, these methods typically 
require considerably more iterations to converge to reason-
able accuracy. Ultimately, the most effective algorithms 
for the solution of large-scale SDPs are those that com-
bine the convergence guarantees of interior-point methods 
with the ability of first-order methods to exploit problem 
structure.

This section reviews in detail three numerical algo-
rithms for SDPs. First, we describe the theory of interior-
point methods in Section 5.2, presenting them as a general-
purpose algorithm for solving SDPs to arbitrary accuracy 
in polynomial time. Next, we describe a popular first-
order method in Section 5.3 known as ADMM, and explain 
how it is able to reduce computational cost by exploiting 
sparsity. In Section 5.4, we describe a modified interior-
point method for low-rank SDPs that exploits sparsity like 
ADMM while also enjoying the strong convergence guar-
antees of interior-point methods. Finally, we briefly review 
other structure-exploiting algorithms in Section 5.5.

5.1. Problem description

In order to simplify our presentation, we will focus our 
efforts on the standard form semidefinite program

Xopt = minimize C • X (SDP)

subject to Ai •X = bi ∀i ∈ {1, . . . ,m}, X � 0,

over the data C,A1, . . . , Am ∈ Sn, b ∈ Rm, and its La-
grangian dual

{yopt, Sopt} = maximize bT y (SDD)

subject to
m∑
i=1

yiAi + S = C, S � 0.

Here, X � 0 indicates that X is positive semidefinite, and
Ai • X = trace{AiX} is the usual matrix inner product.
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In case of nonunique solutions, we use {Xopt, yopt, Sopt}
to refer to the analytic center of the solution set. We make
the following nondegeneracy assumptions.

Assumption 1 (Linear independence). The matrix A =
[vecA1, . . . , vecAm] has full column-rank, meaning the ma-
trix ATA is invertible.

Assumption 2 (Slater’s Condition). There exist y and
positive definite X and S such that Ai •X = bi holds for
all i, and

∑
i yiAi + S = C.

These are generic properties of SDPs, and are satisfied
by almost all instances [159]. Linear independence im-
plies that the number of constraints m cannot exceed the
number of degrees of freedom 1

2n(n + 1). Slater’s condi-
tion is commonly satisfied by embedding (SDP) and (SDD)
within a slightly larger problem using the homogenous self-
dual embedding technique [160].

All of our algorithms and associated complexity bounds
can be generalized in a straightforward manner to conic
programs posed on the Cartesian product of many semidef-
inite cones K = Sn1

+ × Sn2
+ × · · · × Sn`

+ , as in

minimize
∑̀
j=1

Cj •Xj (17)

subject to
∑̀
j=1

Ai,j •Xj = bi ∀i ∈ {1, . . . ,m}

Xj � 0 ∀j ∈ {1, . . . , `}

and

maximize bT y (18)

subject to

m∑
i=1

yiAi,j + Sj = Cj ∀j ∈ {1, . . . , `}

Sj � 0 ∀j ∈ {1, . . . , `}.

We will leave the specific details as an exercise for the
reader. Note that this generalization includes linear pro-
grams (LPs), since the positive orthant is just the Carte-
sian product of many size-1 semidefinite cones, as in Rn+ =
S1

+ × · · · × S1
+.

At least in principle, our algorithms also generalize to
second-order cone programs (SOCPs) by converting them
into SDPs, as in

‖u‖2 ≤ u0 ⇐⇒
[
u0 uT

u u0I

]
� 0.

However, as demonstrated by Lobo et al. [161], consider-
able efficiency can be gained by treating SOCPs as its own
distinct class of conic problems.

5.2. Interior-point methods

The original interior-point methods were inspired by
the logarithmic barrier method, which replaces each in-
equality constraint of the form c(x) ≥ 0 by a logarithmic

penalty term −µ log c(x) that is well-defined at interior-
points where c(x) > 0, but becomes unbounded from above
as x approaches the boundary where c(x) = 0. (This be-
havior constitutes an infinite barrier that restricts x to lie
within the feasible region where c(x) > 0.)

Consider applying this strategy to (SDP) and (SDD).
If we intepret the semidefinite condition X � 0 as a set
of eigenvalue constraints λj(X) ≥ 0 for all j ∈ {1, . . . , n},
then the resulting logarithmic barrier is none other than
the log-determinant penalty for determinant maximization
(see [162] and the references therein)

−
n∑
j=1

µ log λj(X) = −µ log

n∏
j=1

λj(X) = −µ log detX.

Substituting the penalty in place of the constraints X � 0
and S � 0 results in a sequence of unconstrained problems

Xµ = minimize C •X − µ log detX (SDPµ)

subject to Ai •X = bi ∀i ∈ {1, . . . ,m},

and

{yµ, Sµ} = maximize bT y + µ log detS (SDDµ)

subject to

m∑
i=1

yiAi + S = C,

which can be shown to be primal-dual pairs (up to a con-
stant offset).

After converting inequality constraints into logarith-
mic penalties, the barrier method repeatedly solves the re-
sulting unconstrained problem using progressively smaller
values of µ, each time reusing the most recent solution as
the starting point for the next minimization. Applying
this sequential strategy to solve (SDPµ) using Newton’s
method yields a primal-scaled interior-point method; do-
ing the same for (SDDµ) results in a dual-scaled interior-
point method. It is a seminal result of Nesterov and Ne-
mirovski [158] that either interior-point methods converge
to an approximate solution accurate to L digits after at
most O(nL) Newton iterations. (This can be further re-
duced to O(

√
nL) Newton iterations by limiting the rate

at which µ is reduced.) In practice, convergence almost
never occurs in more than tens of iterations.

In finite precision, the primal-scaled and dual-scaled
interior-point methods can suffer from severe accuracy and
robustness issues; these are the same reasons that had
originally caused the barrier method to fall out favor in
the 1970s. Today, the most robust and accurate interior-
point methods are primal-dual, and simultaneously solve
(SDPµ) and (SDDµ) through their joint Karush-Kuhn-
Tucker (KKT) optimality conditions

Ai •Xµ = bi ∀i ∈ {1, . . . ,m},
m∑
i=1

yµi Ai + Sµ = C,

XµSµ = µI.
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Here, the barrier parameter µ > 0 controls the duality gap
between the point Xµ in (SDP) and the point {yµ, Sµ} in
(SDD), as in nµ = Xµ•Sµ = C•Xµ−bT yµ. In other words,
the candidate solutions Xµ and {yµ, Sµ} are suboptimal
for (SDP) and (SDD) respectively by an absolute figure
no worse than nµ,

C •Xopt ≤ C •Xµ ≤ C •Xopt + nµ,

bT yopt − nµ ≤ bT yµ ≤ bT yopt.

The solutions {Xµ, yµ, Sµ} for different values of µ trace
a trajectory in the feasible region that approaches {Xopt,
yopt, Sopt} as µ→ 0+, known as the central path. Modern
primal-dual interior-point methods for SDPs like SeDuMi,
SDPT3, and MOSEK use Newton’s method to solve the
KKT equations (19), while keeping each iterate within a
wide neighborhood of the central path

N−∞(γ) ,
{
{X, y, S} ∈ F : λmin(XS) ≥ γ

n
X • S

}
,

where F denotes the feasible region

F ,

{X, y, S} :
Ai •X = bi ∀i,∑

i yiAi + S = C,
X, S pos. def.

 .

Here, γ ∈ (0, 1) quantifies the “size” of the neighborhood,
and is typically chosen with an aggressive value like 10−3.
The resulting algorithm is guarantee to converge to an
approximate solution accurate to L digits after at most
O(nL) Newton iterations. (This can be further reduced to
O(
√
nL) Newton iterations by adopting a narrow neigh-

borhood.) In practice, convergence almost always occurs
with 30-50 iterations.

5.2.1. Complexity

All interior-point methods converge to L accurate dig-
its in between O(

√
nL) and O(nL) Newton iterations, and

practical implementations almost always occurs with tens
of iterations. Accordingly, the complexity of solving (SDP)
and (SDD) using an interior-point method is—up to a
small multiplicative factor—the same as the cost of solving
the associated Newton subproblem

maximize bT y − 1

2
‖W 1

2 (S − Z)W
1
2 ‖2F (20)

subject to
m∑
i=1

yiAi + S = C,

in which W,Z ∈ Sn++ are used by the algorithm to approxi-
mate the log-det penalty1. The positive definite matrix W
is known as the scaling matrix, and is always fully-dense.

1Here, we assume that primal-, dual-, or Nesterov–Todd primal-
dual scalings are used. The less common H..K..M and AHO primal-
dual scalings have a sightly different version of (20); see [163] for a
comparison.

The standard approach found in the vast majority of
interior-point solvers is to form and solve the Hessian equa-
tion (also known as the Schur complement equation), ob-
tained by substituting S = C −

∑m
i=1 yiAi into the objec-

tive (20) and taking first-order optimality conditions:

Ai •

W
 m∑
j=1

yjAj

W

 = bi +Ai •W (C − Z)W︸ ︷︷ ︸
ri

(21)

for all i ∈ {∑1,m. . . , m}. Once y is computed, the variables 
S = C − i=1 yiAi and X = W (Z − S)W are easily 
recovered. Vectorizing the matrix variables allows (21)
to be compactly written as Hy ≡ [AT (W ⊗ W )A]y = r 
where A = [vec A1, . . . , vec Am]. It is common to solve it 
by forming the Hessian matrix H explicitly and factoring it 
using dense Cholesky factorization, in O(n3m+n2m2+m3) 
time and Θ(m2 + n2) memory. The overall interior-point 
method then has complexity between ∼ n3 time and ∼ n2 

memory (for m = O(1) constraints) and ∼ n6 time and ∼ n4 

memory (for m = O(n2) constraints).

5.2.2. Bibliography

The modern study of interior-point methods was initi-
ated by Karmarkar [164] and their extension to SDPs was 
due to Nesterov and Nemirovsky [158, Chapter 4] and Al-
izadeh [22]. Earlier algorithms were essentially the same as 
the barrier methods from the 1960s; M. Wright [165] gives 
an overview of this historical context. The effectiveness 
of these methods was explained by the seminal work of 
Nesterov and Nemirovski [158] on self-concordant barrier 
methods. For an accessible introduction to these classical 
results, see Boyd and Vandenberghe [8, Chapters 9 and 
11]. The development of primal-dual interior-point meth-
ods began with Kojima et al. [166, 167], and was eventu-
ally extended to semidefinite programming and second-
order cone programming in a unified way by Nesterov 
and Todd [23, 36]. For a survey on primal-dual interior-
point methods for SDPs, see Sturm [37]. Today, the best 
interior-point solvers for SDPs are SeDuMi, SDPT3, and 
MOSEK; the interested reader is referred to [37, 168, 169] 
for their implementation details.

5.3. ADMM

One of the most successful first-order methods for SDPs 
has been ADMM. Part of its appeal is that it is simple 
and easy to implement at a large scale, and that conver-
gence is guaranteed under very mild assumptions. Further-
more, the algorithm is often “lucky”: for many large-scale 
SDPs, it converges at a linear rate—like an interior-point 
method—to 6+ digits of accuracy in just a few hundred 
iterations [170]. However, the worst-case behavior is regu-
larly attained, particularly for SDPs that arise from con-
vexification; thousands of iterations are required to obtain 
solutions of only modest accuracy [171, 172].
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ADMM, or the alternating direction method of multi-
pliers, originates from the Douglas-Rachford splitting al-
gorithm [173] which was developed to find numerical solu-
tion to heat conduction problems. It is closely related to
the augmented Lagrangian method, a popular optimiza-
tion algorithm in the 1970s for constrained optimization
that was historically known as “the method of multipli-
ers” [174, 175]. Both methods begin by augmenting the
dual problem (SDD), written here as a minimization

minimize −bT y (22)

subject to

m∑
i=1

yiAi + S = C , S � 0

with a quadratic penalty term that does not affect the
minimum nor the minimizer

minimize −bT y +
t

2

∥∥∥∥∥
m∑
i=1

yiAi + S − C

∥∥∥∥∥
2

F

(23)

subject to

m∑
i=1

yiAi + S = C , S � 0.

However, the quadratic term makes (23) strongly convex
(for t > 0 and under Assumption 1). The convex con-
jugate of a strongly convex function is Lipschitz smooth
(see e.g. [176]), and this mean that the Lagrangian dual,
written

maximize
X�0

{
min
y,S�0

Lt(X, y, S)

}
, (24)

where the augmented Lagrangian Lt(X, y, S) = −bT y +

X •(
∑m
i=1 yiAi + S − C)+ t

2 ‖
∑m
i=1 yiAi + S − C‖2

F
is dif-

ferentiable with a Lipschitz-continuous gradient. Essen-
tially, adding a quadratic regularization to the dual prob-
lem (22) smoothes the corresponding primal problem (24),
thereby allowing a gradient-based optimization algorithm
to be effectively used for its solution.

The augmented Lagrangian algorithm is derived by ap-
plying projected gradient ascent to the maximization (24)
while setting the step-size to exactly t, as in

Xk+1 =

[
Xk + t∇X

{
min
y,S�0

Lt(X
k, y, S)

}]
+

,

where [W ]+ denotes the projection of the matrix W onto
the semidefinite cone Sn+, as in [W ]+ = arg minZ�0 ‖W −
Z‖2F . Some algebra shows that the gradient term can be
evaluated by solving the inner minimization problem, and
that the special step-size of t guarantees Xk � 0 so long
as X0 � 0. Substituting these two simplifications yields
the classic form of the augmented Lagrangian sequence

{yk+1, Sk+1} = arg min
y,S�0

Lt(X
k, y, S)

Xk+1 = Xk + t

(
m∑
i=1

yk+1
i Ai + Sk+1 − C

)
.

The iterates converge to the solutions of (SDP) and (SDD)
for all fixed t > 0, and that the convergence rate is super-
linear if t is allowed to increase after every iteration [177].
In practice, convergence to high accuracy is achieved in
tens of iterations by picking a very large value of t.

A key difficulty of the augmented Lagrangian method
is the evaluation of the joint y- and S- update step, which
requires us to solve a minimization problem that is not too
much easier than the original dual problem (SDD). ADMM
overcomes this difficulty by adopting an alternating-directions
approach, updating y while holding S fixed, then updating
S using the new value of y computed, as in

yk+1 = arg min
y

Lt(X
k, y, Sk)

Sk+1 = arg min
S�0

Lt(X
k, yk+1, S)

Xk+1 = Xk + t

(
m∑
i=1

yk+1
i Ai + Sk+1 − C

)
.

Here, the y- update is the unconstrained minimization of
a quadratic objective, and has closed-form solution

yk+1 = (ATA)−1

[
1

t

(
b−ATvecXk

)
+ ATvec (C − Sk)

]
,

where A = [vecA1, . . . , vecAm]. Similarly, the S-update is
the projection of a specific matrix matrix onto the positive-
semidefinite cone

Sk+1 = [D]+ where D = C −
m∑
i=1

yk+1
i Ai −

1

t
Xk,

and also has a closed-form solution in terms of the eigen-
value decomposition

D =

n∑
i=1

diviv
T
i , [D]+ =

n∑
i=1

max{di, 0}vivTi ,

where di and vi denote eigenvalues and eigenvectors, re-
spectively. The iterates converge towards to the solutions
of (SDP) and (SDD) for all fixed t > 0 [170, Theorem 2],
although the sequence now typically converge much more
slowly. In practice, a heuristic based on balancing the pri-
mal and dual residuals seems to work very well; see [170,
Section 3.2] or [4, Section 3.4.1] for its implementation de-
tails.

5.3.1. Complexity

Unfortunately, it is difficult to bound the convergence
rate of ADMM. It has been shown that the sequence con-
verges with sublinear objective error O(1/k) in an ergodic
sense [178], so in the worst case, the method converges to
L accurate digits in O(exp(L)) iterations. (This exponen-
tial factor precludes ADMM from being a polynomial-time
algorithm.) In practice, ADMM often performs much bet-
ter than the worst-case, converging to L accurate digits in
just O(L) iterations for a large array of SDP test prob-
lems [170].
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The per-iteration cost of ADMM can be dominated
by the y-update, due to the solution of the following sys-
tem (ATA)y = r with a different right-hand side at each
iteration. The standard approach is to precompute the
Cholesky factor, and to solve each instance by solving
two triangular systems via forward- and back-substitution.
When the matrix A is fully-dense, the worst-case com-
plexity of solving (ATA)y = r is O(n6) time and O(n4)
memory.

In practice, the matrix A is usually large-and-sparse,
and complexity of (ATA)y = r can be dramatically re-
duced by exploiting sparsity. Indeed, the problem of solv-
ing a large-and-sparse symetric positive definite system
with multiple right-hand sides is classical in numerical lin-
ear algebra, and the associated literature is replete. Ef-
ficiency can be substantially improved by reordering the
columns of A using a fill-minimizing ordering like mini-
mum degree and nested dissection [179], and by using an
incomplete factorization as the preconditioner within an
iterative solution algorithm like conjugate gradients [180].
The cost of solving practical instances of (ATA)y = r can
be as low as O(m).

Assuming that the cost of solving (ATA)y = r can
be made negligible by exploiting sparsity in A, the per-
iteration cost is then dominated by the eigenvalue decom-
position required for the S-update. Performing this step
using dense linear algebra requires Θ(n3) time and Θ(n2)
memory. For larger problems where Xopt is known to be
low-rank, it may be possible to use low-rank linear alge-
bra and an iterative eigendecomposition like Lanczos it-
erations to push the complexity figure down to as low as
O(n) per-iteration.

5.3.2. Bibliography

ADMM was originally proposed in the mid-1970s by
Glowinski and Marrocco [181] and Gabay and Mercier [182],
and was studied extensively in the context of maximal
monotone operators (see [4, Section 3.5] for a summary of
the historical developments). The algorithm experienced a
revival in the past decade, in a large part due to the publi-
cation of a popular and influential survey by Boyd et al. [4]
for applications in distributed optimization and statistical
learning. The algorithm described in this subsection was
first proposed by Wen, Goldfarb and Yin [170], and is one
of two popular variations of ADMM specifically designed
for the solution of large-scale SDPs, alongside the algo-
rithm of O’Donoghue et. al [183].

5.4. Modified interior-point method for low-rank SDPs

A fundamental issue with standard off-the-shelf interior-
point solvers is their inability to exploit problem struc-
ture to substantially reduce complexity. In this subsection,
we describe a modification to the standard interior-point
method that makes it substantially more efficient for large-
and-sparse low-rank SDPs, for which the number of nonze-
ros in the data A1, . . . , Am is small, and θ , rank{Xopt} is

known a priori to be very small relative to the dimensions
of the problem, i.e. θ � n. As we have previous re-
viewed in the previous two sections, such problems widely
appear by applying convexification to problems in graph
theory [71], approximation theory [21, 90], control the-
ory [21, 184, 185], and power systems [66]. They are also
the fundamental building blocks for global optimization
techniques based upon polynomial sum-of-squares [131]
and the generalized problem of moments [21].

To describe this modification, let us recall that mod-
ern primal-dual interior-point methods almost always con-
verge in 30-50 iterations, and that their per-iteration cost
is dominated by the solution of the Hessian equation

[AT (W ⊗W )A]︸ ︷︷ ︸
H

y = r, (25)

in which A = [vecA1, . . . , vecAm], and W is the positive
definite scaling matrix. An important feature of interior-
point methods for SDPs is that the matrix W is fully-
dense, and this makes H fully-dense, despite any apparent
sparsity in the data matrix A. The standard approach
of dense Cholesky factorization takes approximately the
same amount of time and memory for sparse, low-rank
problems as it does for dense, high-rank problems.

Alternatively, the Hessian equation may be solved iter-
atively using the preconditioned conjugate gradients (PCG)
algorithm. We defer to standard texts [186] for the im-
plementation details of PCG, and only note that at each
iteration, the method requires a single matrix-vector prod-
uct with the governing matrix H, and a single solve2 with
the preconditioner H̃. The key ingredient is a good pre-
conditioner: a matrix H̃ that is similar to H in a spectral
sense, but is otherwise much cheaper to invert. The fol-
lowing iteration bound is standard; a proof can be found
in standard references like [180] and [187].

Proposition 6. Consider using preconditioned conjugate
gradients to solve Hy = r, with H̃ as preconditioner. De-
fine y? = H−1r as the exact solution, and

κ = λmax(H̃−1H)/λmin(H̃−1H)

as the joint condition number. Then at most

i ≤
⌈√

κ

2
log

(
2
√
κ

ε

)⌉
PCG iterations

are required to compute an ε-accurate iterate yi satisfying
‖yi − y?‖ ≤ ε‖y?‖.

A preconditioner that guarantees joint condition num-
ber κ = O(1) was described in [30]. The preconditioner
based on the insight that the scaling matrix W can be
decomposed into two components,

W = W0 + UUT , (26)

2i.e. matrix-vector product with the inverse H̃−1.
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in which the rank of U is at most θ = rank{Xopt}, and
W0 is well-conditioned, meaning that all of its eigenvalues
are roughly the same value. Substituting (26) into (25)
reveals the same decomposition for the Hessian matrix,

H = AT (W0 ⊗W0)A + AT (U ⊗ Z)(U ⊗ Z)TA︸ ︷︷ ︸
UUT

(27)

where Z is any matrix (not necessarily unique) satisfying
ZZT = 2E + UUT . Note that the rank of U is at most
nθ.

To develop a preconditioner based on this insight, we
make the approximation W0 ≈ τI in (27), to yield

H̃ = τ2ATA + UUT . (28)

This dense matrix is a low-rank perturbation of the sparse
matrix ATA, and can be inverted using the Sherman-
Morrison-Woodbury formula

H̃−1 = (τ2ATA)−1(I −US−1UT (ATA)−1), (29)

in which the Schur complement S = τ2I + UT (ATA)−1U
can be precomputed.

Lemma 7 ([30, Lemma 7]). Let H̃ be defined in (28), and
choose τ to satisfy λmin(E) ≤ τ ≤ λmax(E). Then, the
joint condition number κ = λmax(H̃−1H)/λmin(H̃−1H) is
an absolute constant.

Combining Proposition 6 and Lemma 7, we find that
PCG with H̃ as preconditioner will solve the Hessian equa-
tion to L digits of accuracy in at most O(L) iterations.

5.4.1. Complexity

All interior-point methods converge to L accurate dig-
its in between O(

√
nL) and O(nL) Newton iterations, and

practical implementations almost always occurs with 30-
50 Newton iterations. Performing each Newton iteration
using the PCG procedure described above, this translates
into a formal complexity bound of O(

√
nL2) to O(nL2)

PCG iterations, and a practical value of between 500-1500
PCG iterations.

The per-iteration cost of PCG can be dominated by the
cost of applying the Sherman–Morrison–Woodbury for-
mula to invert the preconditioner H̃, due to the need of
repeatedly making matrix-vector products with (ATA)−1.
Like discussed in Section 5.3 for ADMM, the matrix A
is usually large-and-sparse in practical applications, and
standard techniques from numerical linear algebra can of-
ten substantially reduce the cost of this operation. As-
suming that this matrix-vector product can be performed
in O(m) time and memory, [30] showed that the cost of
inverting H̃ is O(θ2n2) time and memory, after an ini-
tial factorization step requiring O(θ3n3) time, where θ =
rank{Xopt}.

Assming that the cost of applying the preconditioner
H̃ is negligible, the per-iteration cost of PCG becomes

dominated by the matrix-vector with H, which is Θ(n3)
time and Θ(n2) memory. Assuming that θ and L are
both significantly smaller than n, the formal complexity
of the algorithm is Θ(n3.5) time and Θ(n2) memory, and
the practical complexity is closer to Θ(n3) time.

5.4.2. Bibliography

The idea of using conjugate gradients (CG) to solve
the Hessian equation dates back to the original Karmarkar
interior-point method [157], and was widely used in early
interior-point codes for SDPs [156, 188]. However, subse-
quent numerical experience [189, 190] found the approach
to be ineffective: the Hessian matrix H becomes ill-con-
ditioned as the interior-point iterate approaches the so-
lution, and CG requires more and more iterations to con-
verge. Toh and Kojima [25] were the first to develop highly
effective spectral preconditioners, based on the same de-
composition of the scaling matrix W as above. However,
its use required almost as much time and memory as a
single iteration of the regular interior-point method. The
modified interior-point method of [30], which we had de-
scribed in this subsection, makes the same idea efficient by
utilizing the Sherman–Morrison–Woodbury formula.

5.5. Other specialized algorithms

This tutorial has given an overview of the interior-point
method as a general-purpose algorithm for SDPs, and de-
scribed two specialized structure-exploiting algorithms for
large-scale SDPs in detail. Numerous other structure-
exploiting algorithms also exist. In general, it is convenient
to categorize them into three distinct groups:

The first group comprises first-order methods, like AD-
MM in Section 5.3, but also smooth gradient methods [31],
conjugate gradients [25, 29, 185], augmented Lagrangian
methods [27], applied either to (SDP) directly, or to the
Hessian equation associated with an interior-point solution
of (SDP). All of these algorithms have inexpensive per-
iteration costs but a sublinear worst-case convergence rate,
computing an ε-accurate solution in O(1/ε) time. They
are most commonly used to solve very large-scale SDPs to
modest accuracy, though in fortunate cases, they can also
converge to high accuracy.

The second group comprises second-order methods that
use sparsity in the data to decompose the size-n conic
constraint X � 0 into many smaller conic constraints
over submatrices of X. In particular, when the matri-
ces C,A1, . . . , Am share a common sparsity structure with
a chordal graph with bounded treewidth τ , a technique
known as chordal decomposition or chordal conversion can
be used to reformulate (SDP)-(SDD) into a problem con-
taining only size-(τ + 1) semidefinite constraints [24]; see
also [32]. While the technique is only applicable to chordal
SDPs with bounded treewidths, it is able to reduce the
cost of a size-n SDP all the way down to the cost of a
size-n linear program, sometimes as low as O(τ3n). In-
deed, chordal sparsity can be guaranteed in many impor-
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tant applications [32, 85], and software exist to automate
the chordal reformulation [191].

The third group comprises formulating low-rank SDPs
as nonconvex optimization problems, based on the outer
product factorization X = RRT . The number of decision
variables is dramatically reduced from ∼ n2 to n [26, 28],
though the problem being solved is no longer convex, so
only local convergence can be guaranteed. Nevertheless,
time and memory requirements are substantially reduced,
and these methods have been used to solve very large-scale
low-rank SDPs to excellent precision; see the computation
results in [26, 28].

6. Conclusion

Optimization lies at the core of classical control theory,
as well as up-and-coming fields of statistical and machine
learning. This tutorial paper provides an overview of conic
optimization, and its application to the design, analysis,
control and operation of real-world systems. In particular,
we give concrete case studies on machine learning, power
systems, and state estimation, as well as the abstract prob-
lems of rank minimization and quadratic optimization. We
show that a wide range of nonconvex problems can be con-
verted in a principled manner into a hierarchy of convex
problems, using a range of techniques collectively known as
convexification. Finally, we develop numerical algorithms
to solve these convex problems in a highly efficient man-
ner, by exploiting problem structure like sparsity and low
solution rank.

7. References

[1] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear ma-
trix inequalities in system and control theory, SIAM, 1994.

[2] K. Zhou, J. C. Doyle, K. Glover, et al., Robust and optimal
control, Vol. 40, Prentice hall New Jersey, 1996.

[3] G. Dullerud, F. Paganini, A Course in Robust Control Theory:
A Convex Approach, Springer-Verlag, 2000.

[4] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Dis-
tributed optimization and statistical learning via the alternat-
ing direction method of multipliers, Foundations and Trends R©
in Machine Learning 3 (1) (2011) 1–122.

[5] L. Ljung, System identification: Theory for the user, Prentice
Hall, 1998.

[6] E. F. Camacho, C. B. Alba, Model predictive control, Springer
Science & Business Media, 2013.

[7] D. P. Bertsekas, Dynamic programming and optimal control,
Vol. 1, Athena scientific Belmont, MA, 1995.

[8] S. Boyd, L. Vandenberghe, Convex optimization, Cambridge
university press, 2004.

[9] F. R. Bach, G. R. Lanckriet, M. I. Jordan, Multiple kernel
learning, conic duality, and the SMO algorithm, in: Proc. 21st
Int. Conf. Machine Learning, ACM, 2004, p. 6.
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[80] Y. Weng, M. D. Ilić, Q. Li, R. Negi, Convexification of bad
data and topology error detection and identification problems
in AC electric power systems, IET Gener. Transm. Distrib.
9 (16) (2015) 2760–2767.

[81] R. Madani, J. Lavaei, R. Baldick, A. Atamturk, Power system
state estimation and bad data detection by means of conic re-
laxation, in: Hawaii International Conference on System Sci-
ences (HICSS-50), 2017.

[82] S. Fattahi, J. Lavaei, A. Atamturk, Promises of conic relax-
ations in optimal transmission switching of power systems, in:
IEEE 56th Ann. Conf. Decis. Contr. (CDC), 2017.

[83] K. Nakata, K. Fujisawa, M. Fukuda, M. Kojima, K. Murota,
Exploiting sparsity in semidefinite programming via matrix
completion II: Implementation and numerical results, Math.
Program. 95 (2) (2003) 303–327.

[84] R. Grone, C. R. Johnson, E. M. Sá, H. Wolkowicz, Positive
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décomposition de polynômes à plusieurs variables, J. Funct.
Anal. 58 (1984) 254–266.

[107] D. Handelman, Representing polynomials by positive linear
functions on compact convex polyhedra, Pac. J. Math. 132
(1988) 35–62.
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