
Spatial Codes and the Hardness of String Folding Problems

(Extended Abstract)

Ashwin Nayak

�

Alistair Sinclair

y

Uri Zwick

z

Abstract

We present the �rst proof of NP-hardness (under random-

ized polynomial time reductions) for string folding prob-

lems over a �nite alphabet. All previous such intractability

results have required an unbounded alphabet size. These

problems correspond to the protein folding problem in vari-

ants of the hydrophobic-hydrophilic (or HP) model with a

�xed number of monomer types. Our proof also establishes

theMAX SNP-hardness of the problem (again under ran-

domized polynomial time reductions). This means that ob-

taining even an approximate solution to the protein fold-

ing problem, to within some �xed constant, is NP-hard.

Our results are based on a general technique for replacing

unbounded alphabets by �nite alphabets in reductions for

string folding problems. This technique has two novel as-

pects. The �rst is the essential use of the approximation

hardness of the source problem in the reduction, even for

the proof of NP-hardness. The second is the concept of

spatial codes, a variant of classical error-correcting codes in

which di�erent codewords are required to have large \dis-

tance" from one another even when they are arbitrarily

embedded in three-dimensional space.

1 Introduction

1.1 Synopsis

This paper is concerned with string folding problems

of the following type. We are given as input a

string or a set of strings over some alphabet. An

embedding is a mapping of the strings into some given

in�nite regular lattice (typically the 3-dimensional

rectangular grid Z

3

) so that adjacent symbols of each

string lie on adjacent lattice sites, and no site is

occupied by more than one symbol. The score of an

embedding is the number of pairs of equal symbols that

lie at adjacent lattice sites (excluding pairs that are

�

Computer Science Division, UC Berkeley. Email:

ashwin@cs.berkeley.edu. Supported by NSF grant CCR-

9505448.

y

Computer Science Division, UC Berkeley. Email:

sinclair@cs.berkeley.edu. Supported by NSF grant CCR-

9505448 and by the International Computer Science Institute.

z

Computer Science Department, Tel-Aviv University. Email:

zwick@math.tau.ac.il. This work was done while this author

was visiting ICSI and UC Berkeley.

adjacent in the strings themselves). Figure 1 shows an

example embedding in Z

2

of a single string over the

alphabet f0; 1g with a score of four. Our task is to �nd

an embedding of the strings that maximizes the score.

The motivation for these problems comes mainly

from computational biology. One of the principal chal-

lenges in this �eld is to infer the 3-dimensional na-

tive structure of a protein (or a collection of proteins)

from its amino acid sequence. This problem has been

investigated under a wide variety of models, each of

which attempts to emphasize di�erent aspects of the

problem. Perhaps the simplest, and combinatorially

most appealing of the widely studied models is the so-

called \hydrophobic-hydrophilic" model, or HP model

of Dill [5, 6]. Here a protein is represented as a string

over the two-letter alphabet fH;Pg, with the symbol H

representing hydrophobic monomers and P hydrophilic

(or polar) monomers. Conformations of the protein

correspond to embeddings of the string in Z

3

(a dis-

cretization of 3-dimensional space). The folded state

of the protein is the embedding which maximizes the

number of nearest-neighbor H-H contacts; this corre-

sponds to the minimum energy conformation under

the assumption that hydrophobic interactions are the

dominant contribution to the free energy of the pro-

tein. Thus protein folding in the HP model corre-

sponds to our string folding problem over the alpha-

bet fH;Pg, in which the symbol P is \neutral" (i.e.,

does not contribute to the score). The above string

folding model is more general in that it allows a larger

set of monomer types (i.e., a larger alphabet), with

only nearest-neighbor contacts between equal types

1

1

1

11

1

1

1 1

1

1

1

0 0

0

00

0 0

1

Figure 1: The embedding of a 0-1 string in Z

2

.

1

2

contributing to the score. This is precisely the model

considered by Paterson and Przytycka [17, 18].

Protein folding is notoriously hard in any reason-

able model, and it is natural to seek evidence for this

using the tools of computational complexity. Ngo,

Marks and Karplus [15] present a review of complexity

results on the problem, and argue that NP-hardness

results can be useful in exposing sources of di�culty

for algorithm designers (see also [8, 11, 12, 14, 20]). A

number of NP-hardness results are known for HP-like

models (see, e.g., [17, 18, 11]) but all of these have a

serious drawback: the alphabet size (i.e., the number

of monomer types) is allowed to grow with the length

of the input sequence, and hence is unbounded. This is

clearly not in the intended spirit of these models. The

question of whether the problem remains NP-hard for

a �xed alphabet has remained a signi�cant open prob-

lem for several years | see, e.g., [18, 11].

In this paper, we show that the string folding prob-

lem over a suitably large �xed �nite alphabet is indeed

NP-hard (under randomized polynomial time reduc-

tions). To the best of our knowledge, this represents

the �rst intractability result for a truly bounded HP-

like model.

1

We believe that our techniques hold at least as

much interest as the result itself. In order to explain

the techniques in the simplest possible setting, we

begin with the problem of folding a set of strings.

Our starting point here is a reduction similar to

one introduced by Paterson and Przytycka [17], in

which an unbounded alphabet is used. We reduce

from the MAX SNP-hard problem Max-Cut [16],

which asks for a cut of maximum cardinality in an

undirected graph. Our �rst innovation is to exploit

the approximation hardness ofMax-Cut: namely, for

suitable constants 0 < � < � < 1, given a graphG with

m edges in which the maximumcut is guaranteed to be

of size either at least �m or at most �m, it is NP-hard

to determine whether G has a cut of size at least �m.

This strong result is a consequence of the recent

dramatic breakthroughs in approximation hardness

pioneered by Feige et al. [7] and Arora et al. [3]. The

gap in the source problem Max-Cut is apparently

essential to our reduction. We believe this is the

�rst time that approximation hardness has been a key

ingredient in establishing an NP-hardness result (as

1

Subsequent to this work, Crescenzi et al. have informed us of

a very interestingNP-hardness result for the HP model in Z

2

[4].

While this result is stronger than ours in that their alphabet size

is smallest possible, it apparently does not extend to hardness of

approximation. Their approach is also quite di�erent from ours:

rather than giving a general method for replacing unbounded

alphabets by �nite ones, as we do, they construct intricate

gadgets tailored to the 2-d HP model.

opposed to a stronger approximation hardness result).

Not surprisingly, our reduction also immediately yields

an approximation hardness result for string folding. A

similar route, starting this time from theMAX SNP-

hard problem Max-3Sat(b) [16, 2], leads us to the

hardness of approximation in the biologically more

relevant case of folding a single string. This result

stands in interesting contrast to the work of Hart and

Istrail [9, 12] and Agarwala et al. [1] on polynomial

time approximation algorithms for protein folding in

HP-like models.

The second interesting feature of our technique is

the notion of a spatial code. In a conventional error-

correcting code, di�erent codewords are required to

have large distance from one another, where \distance"

typically means Hamming distance. In a spatial code,

the notion of distance is generalized to take account of

the spatial arrangements of the codewords: informally,

the \distance" between two codewords of length `

(viewed as strings over a �nite alphabet) is b � s,

where b is the Z

3

-bonding capacity of two strings of

length `, i.e., the maximum number of bonds that

can be formed between any two strings of length `

when embedded in Z

3

, and s is the maximum score

achievable by any embedding of the given pair of words

in Z

3

. We believe that this idea may be of independent

interest.

In order to reduce from an unbounded to a �nite

alphabet �, we replace each symbol of the unbounded

alphabet by a codeword of suitable length over �. For

the reduction to work, we require that these codewords

form a good spatial code. We leave the e�cient de-

terministic construction of spatial codes as an intrigu-

ing open question. However, we show that randomly

chosen codewords over a suitably large �nite alphabet

form a good spatial code with high probability. This

fact completes our randomized reduction.

We should emphasize that our approach operates

at a high level, and actually provides a general method-

ology for replacing an unbounded alphabet by a �nite

one in string folding reductions, provided that these

reductions are well-behaved. Since it has consistently

proved much simpler to obtain hardness results with

an unbounded alphabet, we believe that this method-

ology is generally useful. The main requirement for

good behavior is that the reduction be approximation-

preserving, i.e., that it should translate a constant fac-

tor gap in the objective function of the source prob-

lem to a similar gap in the target problem. This

property allows us, in principle, to adopt the above

approach of replacing symbols by letters from ran-

domly chosen strings. For the problem of folding a

set of strings, it is very straightforward to come up

3

with an approximation-perserving reduction over an

unbounded alphabet. In the single string case, the

task is a little harder; we show how to accomplish it by

modifying an existing reduction of Paterson and Przy-

tycka [18], which is not approximation-preserving. We

believe that these two examples su�ce to illustrate the

generality of our technique. Other variants of the string

folding problem (e.g., based on di�erent lattices) can

be handled in a similar fashion. We discuss possible

extensions of our work in Section 4.

1.2 Statement of results

As described above, we consider the problem of em-

bedding a set of strings in Z

3

so as to maximize the

number of nearest-neighbor contacts between equal let-

ters. To study its complexity, we de�ne two versions of

the string folding problem. Let A be a �xed alphabet

size. The decision version, Fold

A

, is de�ned as fol-

lows: given a multiset of strings, S = fs

1

; : : : ; s

m

g over

the alphabet f1; : : : ; Ag, and an integral threshold s,

determine whether there is an embedding of the strings

in the lattice Z

3

such that its score, i.e., the number

of pairs of identical letters adjacent to each other in

the embedding but not in the strings, is at least s.

(We will refer to the adjacencies that contribute to the

score as bonds.) The problemMax-Fold

A

is the opti-

mization version of this problem, namely the problem

of �nding the maximum score achievable by any em-

bedding of the strings in the 3-dimensional lattice Z

3

.

The restrictions of these problems in which the input

consists of a single string are referred to as 1-Fold

A

and Max-1-Fold

A

respectively.

Our �rst result states that there exists a �nite al-

phabet size A for which Fold

A

isNP-hard under ran-

domized polynomial time reductions. In other words,

if there exists a (randomized) polynomial time algo-

rithm for Fold

A

, then there is also a randomized

polynomial time algorithm for, say, the satis�ability

problem. We will in fact prove the stronger result

thatMax-Fold

A

isMAX SNP-hard under random-

ized polynomial time reductions. This means that

Max-Fold

A

is hard to even approximate within a cer-

tain constant factor. We can state these results more

precisely as follows:

Theorem 1.1 There is a �nite alphabet size A such

that the following hold:

(i) if there exists a polynomial time algorithm for

Fold

A

, then NP � co-RP;

(ii) for some constant
 < 1, if there exists a poly-

nomial time algorithm that approximates Max-Fold

A

within a factor of
, then NP � co-RP.

Part (i) of Theorem 1.1 is, of course, subsumed by

part (ii), the approximation hardness result. To prove

part (ii), we present a randomized approximation-

preserving reduction from the Max-Cut problem,

which is known to be MAX SNP-complete [16]. We

then extend the technique employed in the proof to

get our next (stronger) result, namely, the hardness of

approximatingMax-1-Fold

A

:

Theorem 1.2 The statements of Theorem 1.1 hold

also for the single string folding problems 1-Fold

A

and

Max-1-Fold

A

, for a suitable �nite alphabet size A.

The proof of this second theorem uses a re-

duction similar in
avor to that of Theorem 1.1,

but starting from the MAX SNP-complete problem

Max-3Sat(b), a version of Max-3Sat in which each

variable appears in a �xed number b of clauses [16, 2].

The rest of the paper is organized as follows. Sec-

tion 2 is devoted to the analysis of the problem of

folding a set of strings. We begin in Section 2.1 by

describing a very simple reduction from Max-Cut to

Max-Fold

1

, the version of the string folding prob-

lem in which the alphabet size is unbounded. We then

describe, in Section 2.2, a way of turning this into a

reduction from Max-Cut to Max-Fold

A

, for some

�xed �nite alphabet size A, using a special class of

codes that we call spatial codes. We know of no e�cient

deterministic construction of such codes. However, in

Section 2.3 we show that a random set of su�ciently

long words is, with very high probability, a good spa-

tial code. By using such a random set of words we

thus get a randomized reduction from Max-Cut to

Max-Fold

A

, thereby proving Theorem 1.1. In Sec-

tion 3, we turn to the problem of folding a single string

in Z

3

. We �rst extract, in Section 3.1, the essential ele-

ments of the multiple-string reduction and then outline

how a proof of hardness ofMax-1-Fold

A

can be syn-

thesized from similar elements. Sections 3.2 and 3.3

�ll in the details required to complete the description.

We conclude in Section 4 by discussing the limitations

and possible extensions of our approach and some di-

rections for future work. Owing to space limitations,

most of the proof details are deferred to the full pa-

per [13].

2 Folding a set of strings

2.1 A simple reduction

In this section we describe a very simple reduction from

Max-Cut to Max-Fold

1

. The reduction is similar

to a reduction from Not-all-equal-3Sat to Fold

1

given by Paterson and Przytycka [17].

The input to the Max-Cut problem is an undi-

rected graph G = (V;E). The goal is to �nd a cut ,

4

jcj
ej ej

sp
sq

sp
sq

c

(b)(a)

Figure 2: (a) The two letters e

j

can bond i� their

strings start at lattice points of opposite parity. (b)

Two codewords corresponding to an edge bond along

the z direction.

i.e., a subset C � V of the vertices, such that the num-

ber of edges that connect vertices in C with vertices in

V � C (the size of the cut) is maximized. It follows

from the fact thatMax-Cut isMAX SNP-complete

that there exist constants 0 < � < � < 1, such that

it is NP-hard to distinguish graphs with m edges that

have a cut of size at least �m, from those that have cuts

of size at most �m [3]. The best known lower bound

for the \gap" � � � is 1=22, as is implicit in [19]. We

�x such a pair �; � for the rest of Section 2.

Suppose we are given as input to Max-Cut a

graph G = (V;E) with n vertices, v

1

; : : : ; v

n

, and m

edges, e

1

; : : : ; e

m

. Our reduction constructs a set of

n strings S

G

= fs

1

; : : : ; s

n

g over the alphabet N , the

natural numbers. The string s

i

, corresponding to the

vertex v

i

, is the concatenation of m blocks s

i1

; : : : ; s

im

,

corresponding to the m edges of G. The blocks s

ij

are

de�ned as follows:

s

ij

=

�

�

n

e

j

�

n+1

if v

i

2 e

j

,

�� otherwise.

Here each e

j

is a distinct letter from the alphabet,

and `�' is assumed to be a special (neutral) symbol

that does not interact with any other symbol, including

itself. If such a symbol is not part of the model, we can

simply replace each `�' with a distinct letter from the

(unbounded) alphabet. Note that each of the blocks s

ij

is of even length. This ensures that the two copies of

symbol e

j

can bond i� their strings start at lattice

points of opposite parity. By associating the two sides

of a cut in G with the two possible parities of the

starting points of the strings in an embedding of S

G

(refer to Figure 2(a); the details can be found in the

full paper [13]), it is easy to see that:

Lemma 2.1 The graph G has a cut of size at least k

i� there is an embedding of S

G

with a score of k.

As an immediate consequence we get:

Theorem 2.2 (i) Fold

1

is NP-hard ;

(ii) Max-Fold

1

is MAX SNP-hard.

2.2 From the in�nite to the �nite

The reduction given in the previous section su�ers from

a serious drawback common to all previous hardness

results in HP-like models: it requires an unbounded

alphabet. Our goal here is to obtain a reduction for a

�xed, �nite alphabet. A natural approach to this is to

try to replace each letter in the above reduction by a

codeword over a �xed �nite alphabet. In order that the

codewords emulate alphabet symbols, we require that

unequal codewords should bond only very weakly with

one another, no matter how hard they try by turning

and twisting around each other. Thus, the codewords

of such a code, which we refer to as a spatial code,

must satisfy conditions that are much more stringent

than those demanded of codewords in classical error-

correcting codes. We believe that this concept may be

of independent interest. Before formalizing it, we need

the following important de�nition.

De�nition 2.3 (Intended and unintended bonds)

Let S = fs

1

; : : : ; s

m

g be a multiset of strings over

the alphabet f1; 2; : : :; Ag. A bond in an embedding

of S, formed by the adjacency of the i

1

-th letter in s

j

1

and the i

2

-th letter in s

j

2

is said to be intended if

i

1

= i

2

and s

j

1

= s

j

2

, and unintended otherwise. The

intended (unintended) score of the embedding is the

number of intended (unintended) bonds formed in it.

Note in particular that, if all the strings in the set S

are distinct, then all bonds in an embedding of S are

considered to be unintended. We are now ready for the

de�nition of spatial codes.

De�nition 2.4 (Spatial Codes) A set C of m

strings of length ` over the alphabet f1; 2; : : :; Ag is said

to be a (c; f)-spatial code if the unintended score of any

embedding of the multiset consisting of c copies of each

codeword of C in Z

3

is at most f � 3cm`.

Note that if we take c copies of each of m strings of

length `, we can always achieve a certain intended

score in an obvious way by aligning the copies of

the same string next to each other; e.g., in the case

c = 2 this score would be m`. But if the strings

constitute a (c; f)-spatial code, then no matter how

we embed the strings we can only achieve a relatively

small unintended score (even if we are willing to

sacri�ce some of the intended bonds): namely at most

a fraction f of the total bonding capacity of m strings

of length `, which is clearly bounded above by 3cm`.

(The total number of letters in these words is cm`,

and in Z

3

each letter can bond with at most six other

letters. This should be divided by two as each potential

bond is counted twice.)

5

To simplify the exposition we assume for the

moment that the �nite alphabet contains a neutral

symbol `�', and denote the corresponding problems by

Fold

�

A

andMax-Fold

�

A

. We now claim the following:

Theorem 2.5 If a (2; f)-spatial code consisting of m

codewords over the alphabet f1; 2; : : : ; Ag, with f <

(� � �)=6, exists for each m and can be constructed

in polynomial time (in m), then:

(i) Fold

�

A

is NP-hard ;

(ii) Max-Fold

�

A

is MAX SNP-hard.

The proof of Theorem 2.5 is obtained by replacing

each active symbol e

j

in the reduction of Section 2.1

by a codeword c

j

from a (2; f)-spatial code. A bond

between two e

j

symbols can easily be simulated by

lining up the corresponding copies of the codewords

as shown in Figure 2(b), so the codewords behave

essentially like the original symbols e

j

. The only

problem is the existence of unintended bonds between

di�erent codewords. The de�nition of spatial codes

ensures that this contribution to the score is small, and

hence cannot compensate for the gap �� �.

We do not know of any deterministic polynomial

time algorithm for constructing the spatial codes re-

quired in Theorem 2.5. Indeed, this seems like a chal-

lenging problem in its own right. However, we are

able to give a very simple randomized algorithm for

their construction. As Theorem 2.6 of the next sec-

tion shows, we can simply choose a random set of suf-

�ciently long words over a su�ciently large, but �nite,

alphabet. Together with Theorem 2.5 above, this im-

mediately proves the NP-hardness and MAX SNP-

hardness of Fold

�

A

and Max-Fold

�

A

respectively, via

randomized reductions. This almost completes the

proof of Theorem 1.1. The only remaining issue is the

elimination of the neutral symbol `�'. (Note that this

is not trivial as in the case of an unbounded alphabet.)

This can be done by replacing each occurrence of `�'

with a random symbol from the �nite alphabet. Since

the arguments are very similar to those used in the

construction of spatial codes, we omit them here.

2.3 Randomized construction of spatial codes

In this section we demonstrate that almost any set of

strings over a su�ciently large �nite alphabet forms a

good spatial code. More speci�cally, we show:

Theorem 2.6 Let C be a set of m random strings of

length ` over the alphabet f1; 2; : : :; Ag. Then, for every

�xed c � 1 and f > 0, there exist constants �

1

> 0 and

�

2

> 0 determined by c and f such that if ` � lnm,

Pr[C is a (c; f)-spatial code] > 1� e

�(�

1

lnA��

2

)m`

:

In particular, for every �xed c � 1 and f > 0, if A

is large enough and ` � lnm, then most sets of m

strings of length ` over the alphabet f1; 2; : : : ; Ag are

(c; f)-spatial codes.

Proof: Let C be a set ofm random strings of length `

over the alphabet f1; 2; : : : ; Ag. Let C

c

be the multiset

composed of c copies of each codeword. We have to

show that, with very high probability, the unintended

score of any embedding of C

c

is at most f � 3cm`.

We can consider each letter in each codeword

of C to be a random variable, independently and

uniformly distributed over the set f1; 2; : : : ; Ag. For

an embedding E of the multiset C

c

in Z

3

, we let X

E

denote the random variable giving the unintended score

of this embedding.

Consider an embedding E of the multiset C

c

in Z

3

.

The adjacency graph of this embedding is the graph

whose vertex set is the set of cm` symbol positions in

the strings in C

c

. Two such positions are connected

by an edge in the graph i� they are adjacent in the

embedding but not in the strings. For the purposes

of analysing the score in any embedding, it is clearly

enough to examine the corresponding adjacency graph,

rather than the embedding itself: two embeddings

with the same adjacency graphs have both the same

intended score and the same unintended score, and

hence the same score.

With this observation, the theorem follows almost

immediately from the following two lemmas, whose

proofs are left to the full paper [13].

Lemma 2.7 Let E be an embedding of the multiset C

c

in Z

3

. Then, for some �

1

; �

3

> 0 that depend only

on c and f , we have

Pr[X

E

� f � 3cm`] � e

�(�

1

lnA��

3

)m`

:

Lemma 2.7 is basically a Cherno�-like large deviation

bound: note that E[X

E

] is at most (3cm`)=A. The

di�culty in the proof comes from the fact that the

potential bonds in E are not independent.

Lemma 2.8 If ` � lnm, then the number of di�erent

adjacency graphs of all embeddings of the strings in C

c

in Z

3

is at most e

�

4

m`

, for some �

4

> 0 that depends

only on c.

To complete the proof of Theorem 2.6, we note

that the probability that C is not a (c; f)-spatial code

is bounded by the number of possible adjacency graphs

times the probability that the spatial code condition

is violated for a particular adjacency graph. Thus

combining the bounds from Lemmas 2.7 and 2.8 gives

Pr[C is not a (c; f)-spatial code] �

e

�

4

m`

� e

�(�

1

lnA��

3

)m`

= e

�(�

1

lnA��

2

)m`

;

6

for ` � lnm, where �

2

= �

3

+ �

4

. This completes the

proof of Theorem 2.6.

Remark: To get an idea of how large Theorem 2.6 re-

quires A to be for the existence of a (c; f)-spatial code,

we can explicitly calculate the constants posited by

Lemmas 2.7 and 2.8, and plug in the best known value

of 1=22 for the gap ���, implicit in [19]. Doing this

gives us a lower bound on A of something like 10

300

, an

extremely large (but constant!) value. We could im-

prove this bound very substantially with a more careful

analysis, but this would not be su�cient to reduce it

to realistic biological proportions (of, say, 20, which is

the number of di�erent amino acid types).

3 Folding a single string

In this section, we extend our techniques to show that

the problem Fold

A

of the previous section remains

NP-hard under randomized reductions even for a single

string (rather than a set of strings), for a suitably large

�nite alphabet size A, as claimed in Theorem 1.2. This

single-string version of the problem, which we refer

to as 1-Fold, is the one most commonly studied in

computational biology (see, e.g., [18]).

3.1 Generalizing the technique

We begin by outlining our overall strategy, which

the reader should recognize as a generalization of the

approach of Section 2. Our strategy proceeds as

follows:

(1) We start with an approximation-preserving

reduction from a MAX SNP-hard problem to

Max-1-Fold

�

1

, the single string folding problem over

an unbounded alphabet with a neutral symbol. We

assume that in this reduction each active symbol ap-

pears no more than c times, for some constant c. The

reduction implies that there are constants 0 � � <

� � 1 such that it is NP-hard to distinguish instances

of Max-1-Fold

�

1

that have a score of at least �M

from those that have a score of at most �M , where M

is the total number of active symbols in the instance

of Max-1-Fold

�

1

. (In the case of Max-Fold

�

1

, in

Section 2.1 we gave such a reduction from Max-Cut

with c = 2 and � = �=2, � = �=2, where �; � are the

gap factors for Max-Cut.)

(2) Next we show that there are constants 0 � �

0

<

�

0

� 1 such that it isNP-hard to distinguish instances

of Max-1-Fold

�

1

that have a score of at least �

0

L

from those that have a score of at most �

0

L, where L is

now the total length of the instance, counting both

active and neutral symbols. The rationale for this

is the following. In our randomized construction of

Section 2.3 we traded o� the number of embeddings

(or adjacency graphs) against the probability that the

unintended score of some embedding overwhelms the

gap (see Lemmas 2.8 and 2.7). Since the number of

embeddings here is exponential in L, we need the large

deviation probability for the unintended score to be

exponentially small in L. For this, we require that the

gap be a constant fraction of L. (We shall see how this

works in more detail under point 3 below.)

To get such a gap, we replicate the active parts

of the strings produced by the reduction above. We

assume that the active parts of these strings are

organized in short (constant-length) contiguous chunks

which correspond to gadgets used in the reduction. A

string s produced by the above reduction is of the form

c

1

� c

2

� c

3

� � � � � c

k

;

where c

1

; c

2

; : : : ; c

k

are the active chunks and `�'

represents a long padding string. We transform such a

string into a string s

0

of the form

c

1

1

�c

2

1

�� � ��c

`

1

�c

1

2

�c

2

2

�� � ��c

`

2

� � � ��c

1

k

�c

2

k

�� � ��c

`

k

where c

1

i

; : : : ; c

`

i

are replicas of c

i

, and `�' repre-

sents a short (constant-length) padding string. If � is

the set of active symbols used in the original chunks

c

1

; c

2

; : : : ; c

k

, we choose ` disjoint copies �

1

; : : : ;�

`

of �. For every 1 � j � `, the chunks c

j

1

; c

j

2

; : : : ; c

j

k

are

obtained from the original chunks c

1

; c

2

; : : : ; c

k

by re-

placing each active symbol of � by its equivalent in �

j

.

(In the case of Max-Fold

�

A

, the chunks were simply

individual symbols e

j

, and the replication involved re-

placing each one by a contiguous codeword of length `,

with padding strings of zero length inbetween.)

As a result of this `-fold replication, the optimal

score of the string is multiplied by `. (This property is

not guaranteed to hold in general, as the short padding

between copies of the same chunk may not be su�cient

to allow the bonds in all ` copies to be formed, and at

the same time, an individual copy may be able to score

more; but it will hold in our case.) In the process of

this replication, the lengths of the long padding strings,

represented by `�' above, are not increased. Therefore,

by making ` su�ciently large (taking ` to be the length

of the original string is more than enough), we ensure

that at least a constant fraction of the symbols in the

resulting string are active, and that the optimal score

is at least a constant fraction of the total length. This

gives us a gap whose size is a constant fraction of the

total length, as desired.

(3) Finally, we show that Max-1-Fold remains

MAX SNP-hard when the unbounded alphabet is

replaced by a su�ciently large �nite alphabet. In other

words, we show that Max-1-Fold

�

A

is MAX SNP-

hard, under randomized reductions, for some �nite

7

alphabet size A. A small additional step shows that

the same holds for Max-1-Fold

A

, where no neutral

symbols are available (and A is now a little larger).

Let �

0

=

S

`

j=1

�

j

be the set of all active symbols

in the string s

0

obtained as above. We construct a

string s

00

by replacing each symbol of �

0

by a random

symbol from the �nite alphabet f1; 2; : : : ; Ag, where A

is a su�ciently large constant. Clearly, the optimal

score of s

00

is at least as large as the optimal score

of s

0

. Thus, if the optimal score of s

0

is at least �

0

L,

where L is the length of s

0

, then the score of s

00

is also

at least �

0

L. We show, on the other hand, that if the

optimal score of s

0

is at most �

0

L, then with very high

probability the optimal score of s

00

is less than �

0

L.

To show that the optimal score of s

00

is not much

larger than the optimal score of s

0

, we use an analysis

similar to the one carried out in Section 2.3. More

speci�cally, let X

E

be the unintended score of the

embedding E of s

00

in Z

3

. (A bond in s

00

is now said

to be unintended if it involves two positions whose

symbols in s

0

are unequal.) Recall that each symbol

of �

0

appears in s

00

only a constant number of times.

For every f > 0, there exist some constants �

1

; �

3

> 0

such that

Pr[X

E

� f � 3L] � e

�(�

1

lnA��

3

)L

:

This follows exactly as in the proof of Lemma 2.7,

which relies only on the fact that the degree of the

collapsed adjacency graph is bounded by a constant.

As the number of di�erent embeddings of s

00

is at

most 5

L

, we get, as in the proof of Theorem 2.6, that

Pr[X

E

< f � 3L for all E] � 1� e

�(�

1

lnA��

2

)L

for some �

1

; �

2

> 0. This probability approaches 1

if we take A to be a su�ciently large constant. By

choosing f to be less than (�

0

� �

0

)=3, we can make

the unintended score of every embedding negligible

compared to the gap (�

0

� �

0

)L, with high probability.

This completes the randomized reduction, and shows

that Max-1-Fold

�

A

is MAX SNP-hard. We can

dispense with the neutral symbol `�' exactly as in

Section 2.

Remark: It is possible to broaden the de�nition of

spatial codes given in Section 2 to �t the generalized

scenario described above, thereby again isolating the

role of randomness in the reduction. However, as this

broader de�nition does not appear to be as natural as

the original one, we will not present it here.

Having outlined our strategy, we �ll in the de-

tails in the following two subsections. In Section 3.2

we give an approximation-preserving reduction to

Max-1-Fold

�

1

. Once this is done, the rest of the

above procedure will go through more or less automat-

ically; we provide the details in Section 3.3.

3.2 An approximation-preserving reduction

over an unbounded alphabet

We start from Max-3Sat(b), a version of Max-3Sat

in which each variable occurs a �xed constant number b

times in the whole formula. In [2], it is shown that this

problem isMAX SNP-hard for b = 5. It is in fact not

hard to show, by essentially the same argument, that

Max-3Sat(b) is MAX SNP-hard even for b = 3.

Theorem 3.1 Max-3Sat(3) is MAX SNP-hard.

We now present an approximation-preserving

reduction from Max-3Sat(3) to Max-1-Fold

�

1

.

Given a Max-3Sat(3) instance � with m

clauses C

1

; C

2

; : : : ; C

m

over the variables x

1

; : : : ; x

n

,

we construct a string s

�

over the unbounded alpha-

bet Z (with a neutral symbol `�'). The string s

�

consists of n rod-
ap combinations of constant size (see

Figure 3(a)&(b)), one for each variable, and m ligands

corresponding to the m clauses, also of constant size

(see Figure 3(d)). The rod-
ap combinations are

connected in sequence with constant length padding

(strings of `�'s) inbetween, and the m ligands are

attached to the resulting string in sequence with �(m)

padding for each ligand. The symbols appearing in

di�erent ligands and in di�erent rod-
ap combinations

are all distinct, except for clause symbols c

j

, one for

each clause C

j

, which occur both in the corresponding

ligand and in the (at most three) rods corresponding

to the variables in that clause. Thus, apart from

bonds internal to the ligands and to the rod-
ap

combinations, the only other bonds that can be

formed are between related ligands and rods.

The clause symbols in a rod are placed on one of

two opposite edges of the rod depending on whether the

variable occurs positively or negatively in the clause.

The rod-
ap combination is so designed that, in its

optimal embedding, the
ap completely covers one of

these two edges of the rod and leaves the other ex-

posed (see Figure 3(c)). The choice of which edge to

expose corresponds to making a truth assignment to

the associated variable: in the optimal embedding of

the string, the clause symbols along the exposed edge of

each rod are available for bonding with the correspond-

ing ligands (thus \satisfying" the clause). The �(m)

padding with which the ligands are connected to the

rest of the string is su�cient to allow them to reach any

rod for bonding. We ensure that all the rods have the

same parity, which is opposite to that of the ligands.

This prevents the same clause symbol in di�erent rods

frombonding while permitting bonds between rods and

8

0
0

1
1

3
3

3
3

5
5

c

4
4

0
0

2
2

(b)

-1

2

4

-5

6

8

-8
-8

-4
-4

-6
-6

-9

-3

-9

9
9

10
10

-10
-10

11
11

-11
-11

-7

(d)

(a)

1
1

2
1

2
c

4
5

8
c

55
6

6
-7

0
-1

3
4

4
-5

7
8

8

0
2

3
3

c
6

7
7

-3

(c)

c

-1

4

-5

2

62

-1

c

-3

-3

4 6

-5

c

-7

8

-7
8

Figure 3: (a) The symbol pattern in a rod, shown in one of its two optimal embeddings. (b) The
ap corresponding

to the rod. (c) One of the two optimal embeddings of the rod-
ap combination: only symbols involved in bonds

between the rod and the
ap are shown. (d) The unique optimal embedding of a ligand.

ligands. Furthermore, the construction of the gadgets

ensures that there is no pro�t in ligands bonding with

more than one rod, or in rod-
ap pairs deviating from

their intended embedding. Figure 4(a) sketches an op-

timal embedding of the entire string.

This construction ensures that the score of the op-

timal embedding of the string precisely re
ects the

maximum number of clauses simultaneously satis�-

able in the Max-3Sat(3) instance, leading to an

approximation-preserving reduction:

Proposition 3.2 Let � be a Max-3Sat(3) instance

with m clauses and n variables, and let s

�

be the

string constructed as described above. If the maximum

number of simultaneously satis�able clauses in � is k,

then the optimal score of s

�

is 34n+ 11m + k.

A detailed proof of this proposition is given in the full

paper [13].

Since in any instance of Max-3Sat(3) we have

n � 3m, Proposition 3.2 tells us that the mapping

�! s

�

is an approximation-preserving reduction from

Max-3Sat(3) to Max-1-Fold

�

1

. We therefore get:

Corollary 3.3 Max-1-Fold

1

is MAX SNP-hard.

Remark: This reduction owes its origins to an ear-

lier reduction of Paterson and Przytycka [17, 18], from

3Sat to 1-Fold

�

1

. Our main innovation here is to

make the reduction approximation-perserving, the es-

sential ingredient being the constant-size rod-
ap com-

binations which replace the long \teeth" of Paterson

and Przytycka. We note in passing that, in addition

to the \helices" (used in the rods) and the \ligands",

variants of which were already present in the earlier re-

duction, our reduction includes a third biological mo-

tif, namely the \sheets" used in the
aps. It is unclear

whether the presence of these motifs has any biological

signi�cance.

This concludes the �rst (and major) part of our

strategy as outlined at the beginning of the section. It

remains only to explain how to carry out the replication

process, which we now do.

3.3 Reduction to a �nite alphabet

Recall from point 2 of our general strategy that we

need to replicate active portions of the string so that

the optimal score becomes a constant fraction of the

string length. Note that in s

�

the active parts (the

9

(a)

(b)

Figure 4: (a) An optimal embedding of the string s

�

. (b) An optimal embedding of the replicated string s

`

�

.

ligands, rods and
aps) have net length �(m), while

the padding has total length �(m

2

), so we will need to

replicate each chunk ` =
(m) times. The \chunks"

that we replicate are the gadgets, namely the ligands

and the rod-
ap combinations. We take ` copies of each

of these, over disjoint sets of symbols. The ` copies of

a given rod-
ap combination are connected together

in sequence, separated by constant length padding

strings so that all copies have enough room to fold as

intended. Similarly, the ` copies of a given ligand are

glued together with constant length padding strings so

that, if the �rst copy bonds with the �rst copy of some

rod, then every copy of the ligand in the sequence can

bond with the corresponding copy of the rod. The

padding between successive sets of rods remains of

constant length, and that between successive sets of

ligands remains of length �(m). This allows the sets

of ligands complete freedom in bonding with sets of

rods. A sketch of this `-fold replication of the string s

�

(which we denote by s

`

�

) is shown in Figure 4(b), in

an optimal embedding. Now Proposition 3.2 yields the

following property of s

`

�

:

Corollary 3.4 Let � be aMax-3Sat(3) instance with

m clauses and n variables, and let s

`

�

be the string de-

scribed above. If the maximum number of simultane-

ously satis�able clauses in � is k, then the optimal score

of s

�

is (34n+ 11m+ k)`.

Now we are essentially done. Since the length of

the string s

`

�

is �(m` + m

2

), by taking ` � m we

can make the optimal score as large as a constant

factor times the string length, as required in point 2

of our strategy. As explained in point 3, if we

replace the symbols of s

`

�

with random letters from

f1; 2; ; : : : ; Ag for a su�ciently large constant A, we get

a (randomized) reduction to Max-1-Fold

�

A

. Finally,

we may remove the neutral symbol `�' exactly as

in the multiple string case, although at the cost of

increasing the value ofA. We have therefore proved the

MAX SNP-hardness ofMax-1-Fold

A

, as claimed in

Theorem 1.2.

4 Extensions and further work

We have presented the �rst NP-hardness, and also

MAX SNP-hardness results for string folding in an

HP-like model with a �nite alphabet. This model

has various obvious limitations that compromise its

biological plausibility. In this �nal section, we discuss

these and comment on the potential for overcoming

them.

As we have already observed, our technique is

robust with respect to many details of the model, and

can in principle be used to convert any well-behaved

reduction to string folding in an HP-like model over an

unbounded alphabet to a reduction to string folding

in the same model over a �xed �nite alphabet. The

primary criterion for well-behavedness here is that the

original reduction be approximation-preserving. We

believe that this is not a severe restriction, and that

most existing reductions over unbounded alphabets can

be modi�ed so as to satisfy it. Obvious candidates

include string folding in lattices other than Z

3

, such as

the 2-dimensional lattice Z

2

or non-bipartite lattices

like the triangular or tetrahedral lattice. Reductions

over an unbounded alphabet already exist for a wide

variety of lattices (see, e.g., [11]); we believe that our

techniques can be applied to make the alphabet �nite

in these cases also.

Our model assumes that the only contributions

to the energy arise from adjacencies between identical

10

amino acid monomers. Although this property is often

assumed in theoretical models, it is clearly unrealistic;

one would want to allow a more general matrix of

interactions between di�erent types. We have not

investigated in detail how robust our technique is

with respect to changes in the interactions. However,

we believe that it should still be applicable if the

interactions are suitably regular.

An obvious drawback of our technique is that,

while the alphabet size required for hardness is �nite,

it is extremely large. We have made no attempt here

to minimize it, and some �ne tuning of our arguments

would reduce the alphabet size dramatically; however,

it appears that a conceptual advance would be required

to bring it down to a size of biological proportions (such

as 20, the number of di�erent amino acids, or two, the

alphabet size of the HP model). Although a proof of

NP-hardness for the HP model in Z

2

does now exist

using a di�erent method [4], the question of hardness

of approximation for the string folding problem over a

reasonably small alphabet remains open.

Finally, we mention two intriguing open questions

related to the concept of a spatial code, de�ned in Sec-

tion 2.2. Firstly, do there exist spatial codes over alpha-

bets that are substantially smaller than those that we

get using our current techniques? Secondly, are there

any explicit constructions, i.e., e�cient deterministic

algorithms for constructing spatial codes? We believe

that these questions are interesting in their own right.

In addition, positive answers to these questions would

presumably yield approximation hardness results for

the string folding problem over smaller alphabets.

Acknowledgements

We would like to thank Ken Dill and Sorin Istrail

for helpful introductions to protein folding, and Mike

Paterson for interesting discussions on snails.

References

[1] R. Agarwala, S. Batzoglou, V. Dan�c��k, S.E. Decatur,

M. Farach, S. Hannenhalli, S. Muthukrishnan and

S. Skiena. Local rules for protein folding on a tri-

angular lattice and generalized hydrophobicity in the

HP model. J. Comp. Biol. 4 (1997), pp. 275-296.

[2] S. Arora and C. Lund. Hardness of approxima-

tions. In Approximation algorithms for NP-hard prob-

lems, D.S. Hochbaum ed., PWS Publishing Company,

Boston, 1996.

[3] S. Arora, C. Lund, R. Motwani, M. Sudan and

M. Szegedy. Proof veri�cation and hardness of ap-

proximation problems. Proc. 33rd IEEE Symposium

on Foundations of Computer Science, 1992, pp. 14{23.

[4] P. Crescenzi, D. Goldman, C. Papadimitriou, A. Pic-

colboni and M. Yannakakis. On the Complexity of

Protein Folding. Manuscript, October 1997. Submit-

ted to RECOMB 98.

[5] K.A. Dill. Dominant forces in protein folding. Bio-

chemistry 29 (1990), pp. 7133{7155.

[6] K.A. Dill, S. Bromberg, K. Yue, K.M. Fiebig,

D.P. Yee, P.D. Thomas and H.S. Chan. Principles

of protein folding: a perspective from simple exact

models. Protein Science 4 (1995), pp. 561{602.

[7] U. Feige, S. Goldwasser, L. Lov�asz, S. Safra, and

M. Szegedy. Interactive proofs and the hardness

of approximating cliques. Journal of the ACM 43

(1996), pp. 268{292.

[8] A.S. Fraenkel. Complexity of protein folding. Bulletin

of Mathematical Biology 55 (1993), pp. 1199{1210.

[9] W.E. Hart and S. Istrail. Fast protein folding in the

hydrophobic-hydrophilic model within three-eighths

of optimal. J. Comp. Biol. 3 (1996), pp. 53{96.

[10] W.E. Hart and S. Istrail. Invariant patterns in crystal

lattices: implications for protein folding algorithms.

In Combinatorial Pattern Matching 1996, Springer

Lecture Notes in Computer Science, pp. 288{303.

[11] W.E. Hart and S. Istrail. Robust proofs of NP-

hardness for protein folding: general lattices and

energy potentials. J. Comp. Biol. 4 (1997), pp. 1{20.

[12] W.E. Hart and S. Istrail. Lattice and o�-lattice side

chain models of protein folding: linear time structure

prediction better than 86% of optimal. J. Comp.

Biol. 4 (1997), pp. 241{259.

[13] A. Nayak, A. Sinclair and U. Zwick. Spatial codes and

the hardness of string folding problems. Full version,

submitted to J. Comp. Biol., July 1997.

[14] J.T. Ngo and J. Marks. Computational complexity of

a problem in molecular structure prediction. Protein

Engineering 5 (1992), pp. 313{321.

[15] J.T. Ngo, J. Marks and M. Karplus. Computa-

tional complexity, protein structure prediction, and

the Levinthal paradox. In The protein folding prob-

lem and tertiary structure prediction, K.M. Merz and

S.M. Le Grand eds., Birkh�auser, Boston, 1994.

[16] C.H. Papadimitriou and M. Yannakakis. Optimiza-

tion, approximation, and complexity classes. J. Com-

puter and System Sciences 43 (1991), pp. 425{440.

[17] M. Paterson and T. Przytycka. On the complexity of

string folding. Research Report CS-RR-286, Univer-

sity of Warwick, 1995.

[18] M. Paterson and T. Przytycka. On the complexity

of string folding. Discrete Applied Mathematics 71

(1996), pp. 217{230.

[19] L. Trevisan, G.B. Sorkin, M. Sudan, and D.P.

Williamson. Gadgets, approximation, and linear pro-

gramming (extended abstract). In Proc. 37th Annual

IEEE Symposium on Foundations of Computer Sci-

ence, 1996, pp. 617{626.

[20] R. Unger and J. Moult. Finding the lowest free energy

conformation of a protein is an NP-hard problem:

proof and implications. Bulletin of Mathematical

Biology 55 (1993), pp. 1183{1198.

