
Improving GPU based Evaluation and
Rendering of NURBS

Course project report – Sushrut Pavanaskar – CS284 Fall 2009

Contents
Introduction .. 2

Problem Statement and Scope ... 3

Relevant literature .. 3

Original proposal and Initial Work .. 4

Outward growing of surfaces .. 4

Cracks’ surroundings ... 5

Implemented Solution of thick edges ... 6

Reading the Edges ... 6

Developing the Quad .. 6

Renderging and GPU shader ... 6

Early Results .. 7

Silhouette Edges ... 8

Improved Results .. 8

Conclusion ... 9

Further thoughts ... 9

User manual to test or use 3rd party SAT files ... 9

References .. 10

Introduction
Non uniform B-Splines or NURBS is a popular representation of geometry (particularly curves and

surfaces) in today’s modeling world. Due to the inherent accuracy of rational B-spline curves, NURBS

represent the geometry extremely accurately and yet are quite compact to represent. Not surprisingly,

many solid modeling software such as Solidworks, use NURBS to internally represnt surfaces of models.

NURBS owe their accuracy to the elegant mathematical formulation of B-splines that they base on. Thus

to display a NURBS based surface, one has to necessarily evaluate it first at certain points on the surface

and then use those points to render it. This is a repetitive mathematical task, and owing to the

complexity of models (models can have hundreds of surfaces) can become computationally intensive.

Also, there is no hardware support for direct NURBS rendering offered by any of the leading vendors.

Saving grace to this scenario is a fact that alike B-spline surfaces, evaluation of a point on a NURBS

surface involves computation of basis functions and then multiplication by values of control points etc. It

does not, in any way, depend on the adjacent points on the surface. Further, the 3 coordinates X, Y and

Z of a point on the surface are evaluated in exactly the same manner using the same basis function

values. Necessarily, these conditions allow parallelism in evaluation.

Researchers in our lab have successfully demonstrated that NURBS surfaces can be efficiently evaluated

and directly rendered using parallel processing algorithms on GPUs [1]. GPUs, which, inherently are

tuned for parallel processing, can also perform non-graphics computational tasks as they can be

programmed. This allows use of GPUs to implement parallel algorithms for NURBS evaluation and direct

rendering.

However, parallel processing at various levels results in some issues. The model, which may have many

surfaces, is built surface by surface and is displayed as a collection of those. There is no knowledge or

consideration given to the neighboring surfaces when surface is displayed. Further, since surfaces can be

smaller or larger, the parameterization of each may not be of the same size when seen in screen space.

This causes artifacts at the boundaries where two or more such unknown neighbors meet. These are

termed as “cracks”, as highlighted by yellow circles in Figure 1.

Figure 1 GPU rendered NURBS model with 12 surfaces and some “cracks” highlighted with yellow circles

In this project, I tried to work on removing these cracks to obtain a clean, artifact free display of a given

model by using the direct evaluation and rendering code. The emphasis of this report is to enumerate

the approaches I used, followed by the most plausible approach that was implemented conclusing with

thoughts about the current state and known issues.

Problem Statement and Scope
After judging the span of the project for this course, I decided to formally state the problem as “to

remove cracks from a GPU-evaluated NURBS model to improve its visualization and rendering.” I also

decided to limit myself to mathematically correct geometric models supplied by the user (no holes in the

model, all face normal pointing outwards etc.) in SAT file format and using all other features as

developed by the researchers in [1].

Clearly, this is a clean-up type of task and thus as such does not add any “value”. Therefore, I decided to

limit myself to a simpler approach which will be essentially invisible (in terms of resources) and will work

in nearly no time. I also decided to restrict myself to C++ environment and use existing data structure in

the code to store geometric entities.

Relevant literature
The problem of filling the cracks, somewhat similar to repairing a mesh with holes, has been tackled in

various forms by a number of researchers in the literature. Following figures, show some of the popular

ways. Generally, as shown in Figure 2, a triangle strip can be built in the cracked region or the cracked

region itself can be eliminated by artificially “welding” or merging the two vertices, which ideally should

have been coincident.

Figure 2 Triangle strip and welding of vertices

Both these approaches work better with one to one vertex correspondence. The triangle stip (or fan) or

the merging operation needs to be computed with every new frame since cracks change every time the

viewport changes (e.g. by zooming or panning). Further, triangle fans would result in tiny skinny

triangles which could also hinder the view. Thus I decided not to use these techniques in this project.

Original proposal and Initial Work
Initially, to ensure simplicity and reduced computational intensity, I thought of using an entirely 2D

image processing based approach to this problem. I proposed to identify cracks by checking for color

discontinuity in a n x n pixel neighborhood and then fill the crack pixel with the adjacent pixel color.

Essentially, this would act like a n x n pixel mask, run over an image of the size of the viewport. However,

I quickly realized that this was not sufficient. The coloring information was much more than just RGB

(involved shading) and it changed with every zoom/pan/rotate operation. Thus the image processing

approach was computationally intensive (the 9 pixel filter would have to operate each time the viewport

image changed) and not good enough too since the pixels would look like a flat shaded surface defect.

Therefore I decided to work in the 3D model space and fill the cracks in model space so that when they

went through later transformations, they would automatically generate a visually perfect, shaded

surface. Also, model space operations would be needed just once unlike the image processing filter

needed to operate every time the viewport changed.

Outward growing of surfaces
After realizing that the cracks always appeared when two surfaces met, i.e. at the boundaries, I decided

to follow a simplistic approach of growing the surfaces outwards beyond the boundaries. This meant

that the surfaces would cover up the cracks and go even beyond. Since the models were 2 manifold,

these additionally grown surfaces would not be seen (just like when one stitches of two pieces of fabric

with an overlap, looking from outside the overlap is hidden inside). This is shown in Figure 3. But I

observed difficulties with this approach as it created artifacts of additional floating regions when the

two meeting surfaces had an acute angle between them. So I discontinued this approach and focused on

filling the cracks only where they existed.

Figure 3 Problems with surface "growing"

Cracks’ surroundings
Cracks hinder the visualization of an originally water-tight model. Sometimes, through a crack, the

background would show up or sometimes, another surface of the model would be seen.These 2 cases

are shown symbolically in Figure 4. In rare cases, one of the two neighboring surfaces of a crack, if highly

curved, would be seen from the crack. Sometimes there was a crack at the boundary on the silhouette

and in that case it would just merge into the background.

Figure 4 Cracks with background seen in the left case and another (yellow) surface seen in the right case

Thus, merely looking at the neighborhood it was difficult to say whether a color-mismatching pixel was

indeed a crack or not. An important observation still prevailed that the cracks always appeared around

the boundaries (edges). This led me to work on edges for crack prevention. Inspired from the literature

[2], I decided to use a similar approach of thickened edges as used in [2], to cover up the cracks. I

decided to do this “thickening” in model space as reasoned in the earlier section.

Implemented Solution of thick edges

Figure 5 Thematic represenation of the approach

Algorithmically, I attempted to eliminate cracks in 3 steps as follows. In the first step, I read all the edges

of the model and subdivided each to a 10 segment polyline. Then I developed 2 pixel wide quadrilaterals

(edge-quads) around each segment of this polyline. Finally, during rendering, I implemented a GPU

fragment shader which rendered only those parts of the edge-quad which were a “crack”. Thematically,

this is shown in Figure 5.

Reading the Edges
I used ACIS APIs to read edges from a SAT file and stored it in my own data structure. The topmost entity

is a vector called Edges. First I stored 10 parametrically equidistant points on the edge (edge-points).

ACIS provides direct handles to these and computes them directly from the NURBS curve of the edge

(hence they are accurate). Then I also stored IDs of the two neighboring surfaces of that edge. This step

is important as I used these IDs later in the shader to determine a real crack. Due to particular format

restrictions, even using APIs, this reading step was a huge learning step of the project.

Developing the Quad
This is perhaps the most important step. From the screen space coordinates of the edge segment, I

computed a 2 pixel wide quadrilateral around each edge segment. This operation was done is screen

space and essentially was a 2D operation only in X, Y. Thus the quads were computed parallel to the

viewport. Then I transformed the quad corners to model space coordinates so that I could draw the

quads in model space. This step ensured consistency in coloring and was extremely important to have

the cracks merge smoothly into the actual surface. The back and forth transformations of the

coordinates was done using openGL view matrix and projection matrix (and their inverses). Thus after

computing the quads, I actually drew the quads while drawing the whole model in the model space. I

used triangle strips to draw the quads as it is more efficient to do so.

Renderging using GPU shader
As targeted, I wrote the GPU shader to perform a mere comparison job and hence it worked extremely

fast. The shader, implemented in CG, is supplied with a quad to draw and with each quad are supplied

two IDs of the neibhboring surfaces to that edge. It compares each ID of the screen pixel to the two

supplied IDs and renders a pixel in the quad only if the ID on the viewport does not match any of the

two supplied neighbor IDs. Therefore a quad is rendered only when there is a crack and something other

than the two neighboring surface is seen.

It may be noted, that in order to have the fragment shader do this comparison, it should originally have

the IDs of all the pixels in the current viewport. Those are computed early in the code with a separate

pass and stored as a 2 dimensional array on the GPU. Therefore no new CPU-GPUdata transfer was

introduced in the original code.

Early Results
Following result (Figure 6) shows cracks filled first with a different color just for illustration purpose (in

the middle figure) and in the right most figure, with original edge colors. The model was purposefully

evaluated at lower resolution to have clearly visible cracks. A few new issues came up after testing.

Figure 6 Early results of filling the cracks

Most importantly, there was an issue of quads being rendered at some unexpected points as marked by

orange circles in Figure 7 below. Upon further study, I could claim that these were due to edge

semgments on the silhouette. These additional quads were not exactly required and thus I implemented

another fix to stop the shader from rendering them automatically.

Figure 7 A Faucet model rendered after filling the cracks, with an unexpected region encircled in orange

Silhouette Edges
As clearly seen in the figure, the edge on the silhouette need not be patched for cracks. Even if they had

cracks, either the cracks were behind the actual object and so were not seen or the cracks merged with

the background and hence un-noticed. Therefore, I attempted to find out such silhouette edge

segments. To do this, I computed the normals of the two triangles of the edge quad around each

segment and then compared these normals to the view vector derived from openGL. Their dot product,

if less than 0 meant that the edge was on a silhouette and thus need not be patched. In such cases, I

made the quad around that edge segment to be of zero width thereby avoiding artifacts.

Improved Results
Figure 8 shows a model where a part of the circular edge is rendered with edge quads but rest of it is

not. The edge near the horizon, i.e. the silhouette, is not rendered.

Figure 8 Result of a silhouette edge test

Conclusion
From the current results and tests, it can be seen that this work of patching the cracks with edge quads

has promise. It works with little computational time, and as such there is no effect seen while in

operation. Though, I have not yet tested or profiled the code for actual use of the resources. The models

before patching are significantly improved when the algorithm is implemented and show no visual

cracks. Also special attention to coloring ensures that crack filling is “invisible”.

There still are a few unaddressed issues as there are cases where attention is needed. These include

some areas where silhouette test fails. Also the implementation needs more attention in terms of

memory leaks.

Further thoughts
There are some areas where more work is required to make this code robust. First, the strategy to build

zero width quads around the silhouette edge to avoid artifacts needs more work. Also, sometimes,

particularly in areas of high curvature, the normals might be largly different even for two consective

edge segments. This can lead to an edge being detected as silhouette (and so no quad may be rendered)

but yet may have some portion visible thereby causing a crack.

Another thought is to develop the quads in the direction of the neighboring surface rather than parallel

to the viewport. This will take care of all the silhouette issues automatically and also may not need a

shader as artifacts would not appear. But to develop such quads in model space will need some more

computations and/or data extraction from the model.

User manual to test or use 3rd party SAT files
This code is developed in visual C++ and runs under Microsoft Visual Studio 2005 environment. Currently

we have implemented the shaders in CG and we also use GLUT libraries for improved openGL

visualization. To run the code, along with Visual Studio, openGL, GLUT and CG must be installed. Also the

computer should have a programmable GPU (any dedicated video card of the current times is OK). The

onboard graphics chip like Intel Media Graphics Accelerator, however, is not supported since it does not

have a programmable GPU. NVIDIA GeForce GPUs (or equivalent ATI cards) are programmable (after

version 6XXX) and so are supported. Also, for Nvidia chips, the computer should use a graphics driver

version higher than 185.68.

To run the code, just open the solution file in MS Visual Studio environment and RUN. To change the

model being evaluated and rendered, change the command line parameter in Project Options by right

clicking the project name and selecting Debug properties.

To run the executable from command line, just input “GPView” and make sure that the SAT file model is

in the same folder.

Once running, the GUI is developed to have normal mouse controls, zooming based on mouse wheel

and panning is done by holding down the mouse wheel button. To rotate the model, use left click and

drag. Actions caused by right click and other keyboard controls are beyond the scope of this project.

References
[1] KRISHNAMURTHY, A., KHARDEKAR, R., AND MCMAINS, S. 2007. Direct evaluation of nurbs curves

and surfaces on the GPU. In SPM ’07: Proceedings of the 2007 ACM symposium on Solid and physical

modeling, ACM, New York, NY, USA, 329–334.

[2] MCGUIRE, M., AND HUGHES, J. F. 2004. Hardware-determined feature edges. In NPAR ’04:

Proceedings of the 3rd international symposium on Non-photorealistic animation and rendering, ACM,

New York, NY, USA, 35–47.

	Introduction
	Problem Statement and Scope
	Relevant literature
	Original proposal and Initial Work
	Outward growing of surfaces

	Cracks’ surroundings
	Implemented Solution of thick edges
	Reading the Edges
	Developing the Quad
	Renderging using GPU shader

	Early Results
	Silhouette Edges
	Improved Results
	Conclusion
	Further thoughts

	User manual to test or use 3rd party SAT files
	References

