Write up for CSG decomposition project

James Andrews

CS284

Goal:

To make boundary representations, especially triangle meshes, editable as if they had been composed of CSG half spaces. For example, if we had two ellipses as in Figure 1, we would want to be able to select an ellipse and move it about as if it were a half-space in a CSG tree. However, because we do not actually have a CSG representation of the shape to start with, we must automatically (or at least semi-automatically) ‘guess’ at the structure which was ‘hidden’ behind that moved half space. Figure 2 explores some of the possible solutions to this fundamentally ambiguous problem.
While a large body of work exists on converting boundary representations to actual CSG trees (eg: Shapiro, V. and Vossler, D. L. "Separation for Boundary to CSG Conversion," in ACM Transactions on Graphics, 12(1), January 1993, and a bunch of techniques for restricted / 2.5D problems), I chose to explore methods that side-step this problem and give some of the control of a CSG tree without actually finding a full (or perhaps without even a partial) CSG tree.

[image: image28.png]

Figure 1. Our target workflow.

Additionally, because we expect an input of a triangle mesh, we must adapt a segmentation algorithm to allow the user to guide the system in ‘re-intepreting’ the mesh as a set of larger quadric half-spaces. As illustrated in Fig 1 part 2, these half-spaces may be disconnected in the mesh due to intersections with other half spaces, so in a full system we may automatically find and suggest disconnected continuations of a half space, and the user may also directly specify them. However, I didn’t explore the problem of disconnected half-spaces in this work yet; my code only touches on parts 1 and 3.
[image: image2.png]

[image: image3.png]

[image: image4.png]

[image: image5.png]

[image: image6.png]

[image: image7.png]

Figure 2: A 2d mouse-head b-rep is formed from circular arcs. The right ear is selected, and moved. Shown in a row are several options for extending adjacent half-spaces to naturally ‘fill in’ what was ‘behind’ the circle; from left to right we have: naïve subtraction, extending the small circle, extending both circles, and extending the small circle full while extending the large one only to a bisecting half-plane.
2d prototype:
To explore the possible rules for this CSG-style editing, I created a prototype system as a java web applet, available at http://www.eecs.berkeley.edu/~jima/csg/
The lowres folder contains the same applet set to run at a lower resolution, for older computers that may have trouble with my inefficient prototype implementation of booleans. Source is available on the webpage.

This program has 3 modes: design, selection, and edit. Press ‘m’ to toggle modes.
In design mode, press ‘a’ to add vertices under the mouse cursor. Press ‘g’ to grow polygon edges to the nearest vertex.
In selection mode, press ‘s’ to select an edge. Press ‘c’ to toggle the selected edge between being a circle or a line. Press ‘f’ to toggle the half space to a negative space (for circles only).

In edit mode: click and drag to move the selected half space. Right-click and drag to rotate it (only has an effect for lines). Select another half-space and add a clipping plane by pressing 1 or 2 (for inside or outside clipping), or 3 or 4 to put a line constraint in the middle of a circle. Press f to flip the ‘side’ of the constraints you’re adding. Press [or] to delete outside or inside clipping half-spaces respectively.

The paradigm explored in this prototype is to maintain ‘consistency with the input shape’ and see how far this alone gets us. By ‘consistency’ I mean that inside/outside determination will always be the same if we’re on the same side of the edited half-space before and after the edit, ie in the ‘unchanged’ regions in Fig. 3. We then naively add everything in the ‘add???’ region, which wasn’t in the half-space before but now is, and subtract everything in the ‘subtract???’ region. We allow the user to refine this naïve guess by adding additional ‘internal’ and ‘external’ trimming half-spaces, which delete extra added content in the ‘add?’ region, or add back extra deleted content in the ‘subtract?’ region.
[image: image8.png]Unchanged

Unchanged

Fig 3. Guiding principle of the 2D prototype.

The default naïve guess has some obvious problems, such as infinite surfaces and other poor choices of half-space in practice, shown in Figure 4. However, my experience with the prototype indicated that these problems could be corrected in practice by adding only a few manual trimming half-spaces, as shown in Figure 5.

[image: image9.png]

 [image: image10.png]

 [image: image11.png]

Figure 4. Failures of the naïve guess.

[image: image12.png]

Figure 5. An external trimming half-space on the bottom of the shape avoids the weird hole seen in Fig. 4.

3d prototype:

For mesh segmentation and an early exploration of extending CSG editing to 3D with a raycast renderer, I extended my research code and have an opengl program which I’ve uploaded a snapshot of here: http://www.eecs.berkeley.edu/~jima/modelsweep.zip
 The mesh segmentation part of this work took as a starting point the ‘Quadric Surface Extraction by Variational Shape Approximation’ paper, a mesh segmentation technique which segments a mesh into nice quadric surfaces. Underlying this technique is the standard variational shape approximation technique, a simple algorithm for k-means clustering of the a mesh into fewer planar ‘proxy’ surfaces. Fig 6 shows an example of my implementation of this algorithm running on a teacup mesh.

[image: image13]
Figure 6. My implementation of variational shape approximation breaks the teacup into planar patches. You can see the spherical shell is broken up into similar-sized chunks, while the planar top of the cup is one large segment (in magenta).

This algorithm does not give as much or as intuitive local control of the segmentation as I’d like, so I also wrote a simple variation which just creates a segment starting from a user’s sketch on the mesh surface, and choosing an error threshold to include all the geometry the user sketches on. Results of this system are in Fig 7. While this approach gives better control, it is also less ‘idiot proof’, as shown in Fig. 8 – incoherent sketching on the mesh currently leads to a similarly incoherent segmentation.

[image: image14]
[image: image15]

[image: image16]

 SHAPE * MERGEFORMAT
[image: image17]
Figure 7. Examples of the sketch-to-select segmentation mechanism. In the top row, note that scribbling on a spherical region selects only the triangles close to the scribble, but a small stroke on a large planar region selects the full region. In the bottom row, note that when a small stroke on the handle doesn’t select the full side of the handle, additional strokes may be added to extend the segmentation.

[image: image18]
Figure 8. Incoherent scribbling leads to an incoherent segmentation.

Once we have these halfspaces, we can attempt to edit them in a similar fashion to the 2D prototype. To visualize this, I put together a simple raycast renderer of the triangle meshes, as well as a raycast renderer of csg half-spaces. I can use this raycast renderer to trim the triangle mesh with a half-space, as shown in Fig 9.

[image: image19.png]

[image: image20.png]

 (a) (b)

[image: image21.png]

[image: image22.png]

 (c) (d)

Figure 9. (a) A halfspace is selected on a simple mesh. (b) A low-res raycast render of the mesh is performed, and (c and d) the half-space is moved to trim the mesh down to the blue surface.
[image: image1.png]1. Select
quadric
half-space

2. Disconnected
parts are found
automatically

Generated
surface

/

3. Move, modify or
deleting the half-
space, leaving a
natural result

[image: image23.png]

[image: image24.png]

[image: image25.png]

[image: image26.png]

[image: image27.png]

