
Alexei Baboulevitch

CS284 - Final Report

The main goal of this project was to take a "regular map", which is a symmetric 2D

tesselation of a 3D object, and turn it into its corresponding 3D shape. Many regular

maps have been discovered algorithmically, but we have no idea what most of them look

like in 3D. Folding them up by hand, especially for higher genus, is unfeasible, which is

why we need a program like this to do it for us. Ideally, it would create an aesthetically

pleasing representation, but its main benefit would be to provide a rough idea of the

mapping.

My approach consisted of taking the regular map and transforming it according to an

algorithm from a topology textbook by William Massey (which involves non-linear

distortions of the map, and cuts between arbitrary vertices), which eventually

recombines it into the topological representaiton of the sum of several tori. These can

then be mapped onto carefully designed torroidal "fold-outs", which would be re-folded

into the 3D object and maybe even subdivided.

My initial goal was to enable the cuts and distortions utilized by the topology

algorithm. I settled on using a compatible-triangulation-based transformation, as

described in "As Rigid as Possible Shape Deformation" by Marc Alexa et al. (The paper

was more about creating smooth transitions between the two shapes, which I didn't

need. I got the compatible triangulation algorithm itself from "On Compatible

Triangulations of Simple Polygons" by B. Aronov et al.). The algorithm transitions from

one polygon into another by tesselating both of them, mapping the tesselations onto a

symmetric n-gon, intersecting the tesselations, and moving the vertices back. I picked

this approach because it was adaptive to some extent and didn't require solving complex

equations -- the distortion was approximated by the triangulation.

I started out by scavanging parts of my genus 4 homework assignment to create an

OpenGL applet. I decided to use OpenGL instead of other environments because it had

hardware-accelerated triangle support (which is what the algorithm uses) and because it

allowed for both 2D and 3D applications -- which is great for constructing a 2D surface

that folds into a 3D object. (I simply set the z-axis coordinates of every point to 0 and

the projection to orthogonal.)

I decided to use a texture to represent my regular map because I figured it would be

easier for a first draft of the application (less things to keep track of, such as inner edges



and vertices), and because the barycentric mapping is already taken care of by OpenGL's

texture support. The texture is imported using PyImage, and the edges and vertices are

parsed from a text file. Each edge and vertex is assigned a label in accordance with the

regular map, even though their positions may be different.

Next, I created a set of classes to represent the shape: a texture class (representing

the main shape) with a list of polygons, a polygon class with a list of vertices, and a

vertex class with a set of coordinates and texture coordinates. These classes were

modified substantially as I worked my way through the problem. For instance, after I

realized that cutting and moving polygons wouldn't work with vertex-based texture

coordinates (since neighboring polygons could have different texture coordinates at their

common vertices after a cut), I gave each polygon texture coordinates instead. In order

to utilize OpenGL shading, I initialized a normal vector with each polygon. The texture

class got a list of all the vertices (so that I wouldn't have to iterate through every

polygon), and optionally allowed initializaiton without specifying the polygons. (Instead,

the triangulation routine triangulated all the starting vertices.)

I made the applet interactive from the start, allowing the user to drag the vertices

with their mouse. Since the projection is orthogonal, mapping from a pixel on the screen

to the actual coordinates is as simple as applying a linear transformation. The manual

control was intended mainly for demo purposes.

The topology algorithm begins with a possibly concave polygon, defined by a set of

outer connected vertices. I didn't initially want to create a separate edge representation,

so I gave each vertex a "left" and "right" neighboring vertex, which are set to None by

default (this is preserved for inner vertices). Anything to the right of a vertex/right-

neighboring-vertex edge is on the outside of the polygon, and vice versa.

In order to triangulate the shape, I started with a Delaunay triangulation, as specified

in the shape deformation paper. In order to do this, I tried using several libraries,

including scikits and Delny. However, they used unconstrained Delaunay triangulations,

meaning that the all the vertices were treated as a point cloud and the outer edges were

ignored.

At first, I tried to remove the "outside" polygons algorithmically, eventually settling on

a graph search over the polygons. I started with a polygon I knew for sure was "inside"

because it had a vertex/right-neighboring-vertex edge going counter-clockwise (and thus

making the polygon "inside"), and then traversed its neighboring polygons. Each time I

crossed an outer edge, I knew I was opposite of where I had just been -- "inside"



became "outside" and vice versa. (I had no edge data structure and my vertices did not

contain neighboring polygon data, so edges were first mapped to polygons using a

search over all the polygons. This is a very inefficient way of doing things, and I intend

to add additional structure to fix this.)

Unfortunately, this method did not prove successful, since there exist cases where a

Delaunay triangulation avoids creating polygons with some of the outer edges, thus

making culling the "outside" polygons impossible. After some looking, I discovered

constrained Delaunay triangulation, and used the CGAL Python module to do it.

My Delaunay triangulation algorithm first iterates through the shape's vertices and

picks out the outer edges, adding them to a CGAL triangulation object if the shape has

no polygons (as it does when the program is first started -- only the vertices are passed

to the new texture object.) If the shape has polygons, these are iterated as well. All the

outer edges are added to the CGAL triangulation object, as well as any other constrained

edges. (To clarify, there are two iterations of adding constraints -- one for when the

shape is initialized without polygons, and the other for when the shape has polygons.

Also, the first iteration works by finding the first vertex on the outside of the polygon,

and then following its "right" neighbors until it reaches the same vertex again. These are

added to an array to form a consecutive list of outer edge vertices, which are used to

remove concavities later on. The second iteration through the polygons would not find

these edges in consecutive order. This system is somewhat inefficient, and I would like

to contain my search to one loop if possible.) After this, I put the new polygons through

my algorithm for removing concavities, leaving me with the final triangulated shape.

After the triangulation algorithm was in place, I added a nearly identical one to the

polygon class. I did this so that I could have polygons with arbitrary numbers of vertices,

instead of just triangles. As they stand now, the texture and polygon classes overlap

quite a bit, and I don't think having a separate triangulation routine for the main texture

object is necessary. I could just as easily store the untriangulated texture as an

"edgeless polygon" and triangulate it on initialization.

Next, I needed a procedure that would let me transform the shape into a symmetrical

n-gon. This was fairly easy to do by multiplying a vertical vector several times by a

rotational matrix, and mapping the vertices to the corresponding points.

After this, I needed to be able to intersect edges at arbitrary points while keeping

everything triangulated and without creating duplicate vertices. I did this at first by

expanding my applet to create arbitrary cuts, but this was too complex for the algorithm



I was trying to implement. I only needed to cut across pre-existing vertices, so I

modified it to do that.

The algorithm works by going through all the polygons and creating edges for each

pair of vertices. Edges that have already been tested for intersections are stored in a set.

Edges that include either of the two intersecting vertices aren't considered. Then, the

intersection between the two intersecting vertices and the edge is calculated by creating

the appropriate parametric equations and solving a matrix using numpy. The results of

this are two values of t, one for the line between the intersecting vertices and the other

for the edge. These values are used to calculate the location of the new, intersecting

vertex and to interpolate the texture coordinates. Finally, the difference between the

coordinates of the new vertex and both of the edge vertices are calculated; if it's below

an error threshhold, the vertex is discarded. (This is done in order to avoid numerical

error, which can create duplicate vertices.) The new vertex is then stored in the edge

set. After this, the new vertices are inserted into the correct positions in the polygon's

vertex array. In the end, the polygons are triangulated and added to the texture's

polygon list.

Because the polygons are only intersected by one line at a time, there is guaranteed

to be a straight line between the newly created vertices. When new vertices are created

at intersections, they are set to move linearly along the line between the two

intersecting "control" vertices. These dependent vertices are added to a separate list in

the main texture object and updated whenever any of the control vertices are moved.

One of the parametric solutions from the matrix solver is used to specify where along the

line they should be. This is an easy way to take care of the inner vertices, but it causes

problems later on down the line.

I then added "temporary coordinates" to each vertex, which can be positioned by the

user. This does not move the actual vertices, but instead creates a "ghost" shape which

the current shape is meant to transform into. I also added a "temp" boolean parameter

to the triangulation algorithms, so that I could triangulate the temporary polygon

without influencing the real one.

With triangulation, mapping to an n-gon, and intersection in place, I could easily

implement the compatible triangulation and transformation algorithm. After the user

moves the temporary vertices into the desired configureation, the temporary and actual

polygons are triangulated using Delaunay (with constraints on the outer edges of the

polygon, and also on edges between dependent vertices with the same control vertices).



The actual shape is transformed into an n-gon, and all the edges from the triangulation

of the temporary shape are intersected with it. Because all the dependent vertices move

along with the intersecting edges, the n-gon can then be linearly transformed into the

temporary shape with no intersections.

Unfortunately, after one step, the inner dependent vertices create boundaries

between their control vertices, thus creating hard-to-avoid "walls" inside the shape. This

means that it can no longer be distorted arbitrarily, since crossing one of these lines

violates the constraints. If I don't do this, then the inner vertices will have to be moved

some other way, so that they don't end up outside the shape boundaries. The solution to

this still eludes me, although I suspect it can be done by merging polygons.

In order to be able to stick one part of the shape onto another, I need to be able to

cut across an arbitrary vertex-to-vertex line, update the outer edge representation for

each vertex along the cut (that is, update the "left" and "right" vertices for each vertex

between the outer vertices along the cut), update any dependant vertices to follow the

vertices along the cut, rotate and translate the non-merging vertices, and merge the

merging vertices. This has not been implemented yet, but to make it easier, I'm

considering adding an edge object. This would also prevent searching through all the

polygons to find the edges, which occurs in several of the algorithms.

Over the course of this project, I learned about how malleable the topology of a shape

can be. It's surprising how easily a regular map can be cut and distorted without the

final result losing any coherence, and also how a flat, continuous 2D representation can

be folded up into a 3D object with openings. I also learned about various different kinds

of triangulations, including Delaunay and constrained Delaunay, and about how

triangulations can be intersected in order to create a smooth transition from one shape

to another. Before settling on the compatible triangulation method, I explored various

methods of distorting a texture inside an arbitrary polygon, and it wasn't nearly as easy

as I thought it would be. Unfortunately, I ran into several problems (namely, the inability

to perform a compatible triangulation reliably after one iteration) and was unable to

finish the project as I had specified it. However, I created a good framework for

continuing to whittle away at this problem, and I intend to continue working on it over

the next semester.

Manual:



* In order to run this script, you will need Python 2.4 installed, as well PyOpenGL,

ctypes, numpy, PyImage, and CGAL for Python -- all for version 2.4.

* Run the program by running " "[Python Directory]\python.exe" texture-distort.py

image text ", where image is the name of a square texture, and text is a text file

representing the regular map.

* Format of the text file: "x1: n, c1 c2" for each line, where x is either v (for vertex) or e

(for edge), n is a name for the vertex or edge, and c1 and c2 are either the x and y

coordinates for the veretx, or the numbered vertices for the edge.

* Move the vertices around by dragging them with your mouse.

* To move the temporary (blue) vertices, Shift+drag them.

* In order to transform the current shape into the temporary shape using compatible

triangulation, press "i".

* In order to triangulate the current shape, press "t".

* In order to map the current shape onto an n-gon, press "m".

* In order to map the temporary vertices onto an n-gon, press "M".

Examples:








