U.C. Berkeley — CS270: Algorithms Lecture 8
Professor Vazirani and Professor Rao Scribe: Anupam
Last revised

Lecture 8

1 The Perceptron Algorithm

In this lecture we study the classical problem of online learning of halfspaces. The on-
line learning algorithm is given a sequence of m labeled examples (z;,I(z;)) where z; €
R™ I(x;) = £1 and there exists halfspace w through the origin such that I(z;) = sign(w-x).
The objective of the online algorithm is to minimize the number of classification mistakes.
The assumption that the separating halfspace is of the form w.z can be made wlog as a
non zero threshold I(z;) = sign(}_ w;x; + w) can be simulated by padding the inputs with
an extra coordinate that is always equal to 1.

Let w* be the unit vector in the direction w, wlog we assume that the x; are unit vectors
as scaling x; does not change sign(w.x) = I(z;). The mistake bound for the perceptron
algorithm is 1/42 where v is the angular margin with which hyperplane w*.z separates the
points x;. An angular margin of v means that a point x; must be rotated about the origin
by an angle at least 2 arccos(y) to change its label.

v = min |z;.w"| (1)
i€[m]

1.1 Perceptron algorithm
1. Initialize w; = 0.
2. Predict sign(w; - x) for example z;.
3. If incorrect, update w;11 = w; + I(z;)x; else w11 = wj.

Cram 1
The perceptron algorithm makes at most 1/v? mistakes for points x; that are separated
with angular margin -y.

PROOF: The proof relies on upper and lower bounds on the potential function ¢(i) = w;.w*.
Initially ¢(0) = 0 and if ¢(¢) = |w;|, then the classifier predicts all points x; correctly.
The potential function increases by at least v each time the algorithm makes a mistake,

wit1-w* = (w; + U(x;)x;) w* > wiw™ + (2)

The classifier is correct if ¢(i) = |w;| and the potential function ¢ increases by at least
for each mistake. It suffices to bound |w;| to count the number of mistakes made by the
algorithm. The following invariant maintained during updates: w; — w; + I(z;)x; where
the unit vector I(z;)z; makes an obtuse angle with wy;,

lwit1]® = [w; + U(z)2;[* < |wi® + 1 (3)

Notes for Lecture 8: Scribe: Anupam 2

If the total number of mistakes made by the algorithm is M combining equations (2) and
(3) we have,
VM > |wp| > wp.w* >~v.M (4)

It follows that the number of mistakes M made by the perceptron algorithm is at most
1/42. O

The general case: The analysis of the perceptron algorithm assumed there was a hyper-
plane w*.x > 0 separating points x; with angular margin . The notion of the hinge loss
TD., is introduced to handle the more general case. The hinge loss T'D is the minimum
total distance through which the points x; must be moved in order to make them separable
by an angular margin ~.

For the general case where the points x; are not separated by a hyperplane, the lower
bound for the potential function (2) at the end of the process changes to,

W w* >yM —TD,

The upper bound (3) continues to hold so the inequality v M > yM —T D, holds. Squaring
and dropping the positive term TD% on the right hand side,

1 2TD
M272M2—27MTD7:>?+ S 4

> M (5)

The number of mistakes made by the perceptron algorithm can be bounded in terms of the
hinge loss.

Finding hyperplanes with large margins: Consider the variant of the perceptron algo-
rithm that carries out updates when the current hypothesis fails to separate x; with margin
more than /2. The number of mistakes made by the modified perceptron algorithm is at
most 8/~2.

Each update increases the value of the potential function by v as in (2) as points z; are
separated by an angular margin 7. We showed that |w;1]? < |wi|?+1 = |wi11] < \w¢|+ﬁ
assuming that for all updates x; makes an obtuse angle with w;.

For updates made by the modified algorithm, moving z; by distance /2 perpendicular
to w* produces a vector making an obtuse angle with w;. The triangle inequality yields

wis1] < [wil + g7 + 3, for [wi] > 2/y we have |wit1] < fw;| + 3.
2 3yM 8
My < wn| <=+ 5 5 M < = (6)
v 4 g

The kernel trick: There are good algorithms for classifying data separated by halfspaces.
If the data is not separated by a halfspace, the kernel trick described in the homework is
a general method to reduce to the classification problem to learning halfspaces in some
implicit high dimensonal space.

