
U.C. Berkeley — CS270: Algorithms Lecture 8
Professor Vazirani and Professor Rao Scribe: Anupam

Last revised

Lecture 8

1 The Perceptron Algorithm

In this lecture we study the classical problem of online learning of halfspaces. The on-
line learning algorithm is given a sequence of m labeled examples (xi, l(xi)) where xi ∈
Rn, l(xi) = ±1 and there exists halfspace w through the origin such that l(xi) = sign(w ·x).
The objective of the online algorithm is to minimize the number of classification mistakes.
The assumption that the separating halfspace is of the form w.x can be made wlog as a
non zero threshold l(xi) = sign(

∑
wixi + w) can be simulated by padding the inputs with

an extra coordinate that is always equal to 1.
Let w∗ be the unit vector in the direction w, wlog we assume that the xi are unit vectors

as scaling xi does not change sign(w.x) = l(xi). The mistake bound for the perceptron
algorithm is 1/γ2 where γ is the angular margin with which hyperplane w∗.x separates the
points xi. An angular margin of γ means that a point xi must be rotated about the origin
by an angle at least 2 arccos(γ) to change its label.

γ = min
i∈[m]

|xi.w∗| (1)

1.1 Perceptron algorithm

1. Initialize w1 = 0.

2. Predict sign(wi · x) for example xi.

3. If incorrect, update wi+1 = wi + l(xi)xi else wi+1 = wi.

Claim 1
The perceptron algorithm makes at most 1/γ2 mistakes for points xi that are separated
with angular margin γ.

Proof: The proof relies on upper and lower bounds on the potential function φ(i) = wi.w
∗.

Initially φ(0) = 0 and if φ(i) = |wi|, then the classifier predicts all points xi correctly.
The potential function increases by at least γ each time the algorithm makes a mistake,

wi+1.w
∗ = (wi + l(xi)xi).w∗ ≥ wi.w∗ + γ (2)

The classifier is correct if φ(i) = |wi| and the potential function φ increases by at least γ
for each mistake. It suffices to bound |wi| to count the number of mistakes made by the
algorithm. The following invariant maintained during updates: wi → wi + l(xi)xi where
the unit vector l(xi)xi makes an obtuse angle with wi,

|wi+1|2 = |wi + l(xi)xi|2 ≤ |wi|2 + 1 (3)

Notes for Lecture 8: Scribe: Anupam 2

If the total number of mistakes made by the algorithm is M combining equations (2) and
(3) we have, √

M ≥ |wm| ≥ wm.w∗ ≥ γ.M (4)

It follows that the number of mistakes M made by the perceptron algorithm is at most
1/γ2. 2

The general case: The analysis of the perceptron algorithm assumed there was a hyper-
plane w∗.x ≥ 0 separating points xi with angular margin γ. The notion of the hinge loss
TDγ is introduced to handle the more general case. The hinge loss TDγ is the minimum
total distance through which the points xi must be moved in order to make them separable
by an angular margin γ.

For the general case where the points xi are not separated by a hyperplane, the lower
bound for the potential function (2) at the end of the process changes to,

wm.w
∗ ≥ γM − TDγ

The upper bound (3) continues to hold so the inequality
√
M ≥ γM−TDγ holds. Squaring

and dropping the positive term TD2
γ on the right hand side,

M ≥ γ2M2 − 2γMTDγ ⇒
1
γ2

+
2TDγ

γ
≥M (5)

The number of mistakes made by the perceptron algorithm can be bounded in terms of the
hinge loss.

Finding hyperplanes with large margins: Consider the variant of the perceptron algo-
rithm that carries out updates when the current hypothesis fails to separate xi with margin
more than γ/2. The number of mistakes made by the modified perceptron algorithm is at
most 8/γ2.

Each update increases the value of the potential function by γ as in (2) as points xi are
separated by an angular margin γ. We showed that |wi+1|2 ≤ |wi|2+1⇒ |wi+1| ≤ |wi|+ 1

2|wi|
assuming that for all updates xi makes an obtuse angle with wi.

For updates made by the modified algorithm, moving xi by distance γ/2 perpendicular
to w∗ produces a vector making an obtuse angle with wi. The triangle inequality yields
|wi+1| ≤ |wi|+ 1

2|wi| + γ
2 , for |wi| ≥ 2/γ we have |wi+1| ≤ |wi|+ 3γ

4 .

Mγ ≤ |wm| ≤
2
γ

+
3γM

4
⇒M ≤ 8

γ2
(6)

The kernel trick: There are good algorithms for classifying data separated by halfspaces.
If the data is not separated by a halfspace, the kernel trick described in the homework is
a general method to reduce to the classification problem to learning halfspaces in some
implicit high dimensonal space.

