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Lecture 17

1 Measure concentration and Johnson Lindenstrauss lemma

The phenomenon of measure concentration is one reason that high dimensional data can
often be compressed to low dimensional data while preserving the essential features of the
problem. The geometric information about a set of high dimensional point set x1, x2, · · · , xn ∈
Rd is captured by the pairwise distances between them. For example, the points could be
feature vectors and distances between them could be measures of similarity. The Johnson
Lindenstrauss lemma shows that projecting the data points on to a random low dimensional
subspace approximately preserves the distance between them.

Lemma 1
If yi are the projections of the xi ∈ Rd onto a random k = c logn

ε2
dimensional subspace then

with probability 1− 1
nc−2 ,

(1− ε)
√
k

d
|xi − xj |2 ≤ |yi − yj |2 ≤ (1 + ε)

√
k

d
|xi − xj |2 (1)

i.e. projecting and scaling by
√

d
k preserves all pairwise distances within a factor of 1 + ε.

The notion of a random subspace: A k dimensional subspace can be specified as the span
of k orthonormal unit vectors v1, v2, · · · , vk. A random k dimensional subspace is obtained
by choosing v1 to be a uniformly random unit vector and recursively choosing vi to be
a uniformly random unit vector from the d − i + 1 dimensional subspace orthogonal to
v1, v2, · · · , vi−1.

Alternatively we can select k uniformly random unit vectors v1, v2, · · · , vk ∈ Rd and
apply the Gram Schmidt process to the k × d matrix V that has vectors vi as the rows, to
obtain a set of k random orthonormal vectors.

One of the goals of this lecture is to understand the notion of a uniformly random unit
vector, we will see that a random unit vector can be obtained by sampling from the n
dimensional normal distribution and normalizing to unit length.

A picture of random projections: Multipliying by the matrix V projects x ∈ Rd onto
the k dimensional subspace spanned by v1, v2, · · · , vk,

V x =


v11 v12 . . . v1d
v21 v22 . . . v2d
...

...
. . .

...
vk1 vk2 . . . vkd



x1
x2
...
...
xd

 =


y1
y2
...
yk

 (2)
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A random projection of x ∈ Rd is equivalent to taking the inner product of x with k
uniformly random mutually orthogonal unit vectors.

Inverting the perspective: Inner products are invariant under rotations, so the distribu-
tion of the length of the projection of a fixed vector onto a random k dimensional subspace
is the same as the distribution of the projection of a random vector z onto the subspace
spanned by the standard basis vectors e1, e2, · · · , ek.

More formally, we can chose an orthogonal matrix U that maps vi → ei and is extended
arbitrarily on the remaining space and reason as follows,

yi = 〈vi|x〉 = 〈Uvi|Ux〉 = 〈ei|Ux〉 = 〈ei|z〉 (3)

The inverse of U maps the standard basis ei to the random orthonormal basis vi and
therefore is a random orthogonal transformation. Hence, the vector z = Ux is uniformly
distributed on the d dimensional unit sphere for all x ∈ Rd.

Using the alternative view of a random projection we can compute the expected values
of the coordinates yi. As z is a unit vector E[

∑
i∈[d] z

2
i ] = 1, by symmetry the zi are

identically distributed we have,

E[
∑
i∈[k]

z2i ] =
k

d
(4)

The expected length of the projection of a unit vector x ∈ Rd onto a random k dimen-

sional subspace is
√

k
d . The Johnson Lindenstrauss lemma states that the length of the

projection of x is sharply concentrated around the expectated value, we will prove a weaker
concentration bound below.

Almost all the volume of the d dimensional sphere lies close to the equator, the measure
(volume) of the sphere is thus concentrated close to the origin.

Claim 2
If z is a uniformly random unit vector from the d dimensional unit sphere,

Pr[|z1| >
t√
d

] ≤ e−t2/2 (5)

Proof: The probability that |z1| is greater than t√
d

is equal to the ratio of the surface area

of two spherical caps of radius r =
√

1− t2

d to the surface area of the d dimensional sphere.

We will provide an argument that illustrates the idea while avoiding explicit calculations.
The area of two spherical caps of radius r is less that the area of a sphere of the same

radius. In d dimensions the surface area of a sphere radius R scales as c.Rd−1 where c is
some constant that we do not state explicitly.

The claim follows by comparing the area of the sphere c.1d to the area of the spherical

caps which is at most c.
(

1− t2

d

)d/2
≤ e−t2/2 using the approximation 1− x ≤ e−x. 2

The claim tells us that for a random unit vector in Rd, with overwhelming probability
one coordinate is at most log d times bigger than another. The Johnson Lindenstrauss
lemma follows from the following stronger concentration bound that we will not prove,
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Pr[

∣∣∣∣∣√z21 + z22 + · · ·+ z2k −
√
k

d

∣∣∣∣∣ > t] ≤ e−t2d (6)

Substituting t = ε
√

k
d where k = c logn

ε2
we have,

Pr[

∣∣∣∣∣√z21 + z22 + · · ·+ z2k −
√
k

d

∣∣∣∣∣ > ε

√
k

d
] ≤ e−ε2k = e−c logn =

1

nc
(7)

Proof of Lemma 1 : The lemma asserts that all the
(
n
2

)
pairwise distances |xi − xj |

are preserved by random projection. Equation (3) shows that it is suffices to bound the

probability that the length of the projection of a random unit vector lies in (1 ± ε)
√

k
d to

show that the distance |xi − xj | is preserved. Equation (7) shows that the projection of a

random unit vector fails to lie in (1± ε)
√

k
d with probability 1

nc . Using the union bound we

conclude that the probability of some pairwise distance not being preserved is bounded by
(n2)
nc = 1

nc−2 .

1.1 Locality preserving hashing

One application of the Johnson Lindenstrauss lemma is locality preserving hashing. Given
geometric data we want to hash the data such that points that are close in Euclidean
distance have the same hash value. The setting makes sense for applications where data
points are noisy and a hash function should map x and x+ δ to the same bucket. The idea
is to project onto a random low dimensional space and divide the low dimensional space
into cells defined by a grid with h(x) being the label of the cell into which the projection
of x falls.

The distances between points are preserved approximately so far off points are not
hashed to the same bucket. Data can be hashed with multiple hash functions to boost
accuracy.

1.2 Implementing Johnson Lindenstrauss

The method for choosing a random k dimensional subspace required a large number of
random bits, it is natural to ask if a random projection can be implemented with a smaller
amount of randomness. Instead of choosing a random k dimensional subspace we choose
k random ±1 vectors from the hypercube {−1, 1}d, we do not care about orthogonality as
random vectors are close to orthogonal. The argument will be sketched below, refer to [?]
for details.

Consider the random variable C1 = 1√
d

∑
i∈d bizi representing the inner product of a

unit vector z with uniformly random vector b from the hypercube {−1, 1}d. The expec-
tation E[C2

1 ] = 1
d as the coordinates of b are independent random variables. The ex-

pected length of the projection of z onto the span of k vectors from the hypercube is
E[C] := E[

∑
i∈[k]C

2
i ] = k/d, and a concentration result similar to (6) would suffice to prove
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the the Johnson Lindenstrauss lemma,

Pr

[
|C − k

d
| ≥ εk

d

]
≤ e−ε2k (8)

The Chernoff bounds are a popular method for establishing concentration results for
sums of independent random variables,

Theorem 3
Chernoff bound: If X1, X2, · · · , Xn are independent random variables such that 0 ≤ Xi ≤ 1,
X =

∑
iXi and E[X] = µ,

Pr[|X − µ| ≥ εµ] ≤ e−ε2µ/3 (9)

Applying the Chernoff bound for the sum of k independent random variables
∑

i∈[k]C
2
i

we have,

Pr[C ≥ k

d
(1± ε)] ≤ e−ε2k/3d (10)

The concentration result obtained using the Chernoff bound depends on d and does not
establish the Johnson Lindenstrauss lemma. Concentration bounds (6) and (8) follow from
analogs of tail bounds on the χ2 distribution, while the Chernoff bounds are an analog of
tail bounds for the normal distribution.


