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Lecture 16

1 Load balancing, Cuckoo hashing

Consider the problem of placing m balls in n bins with the objective of minimizing the
maximum load in a bin. The abstract setting of balls and bins models several concrete
problems like distributing jobs over machines and hashing items to avoid collisions.

1.1 Randomized load balancing

The simplest randomized strategy for load balancing is to assign each ball to a randomly
chosen bin. For simplicity, we analyze the case where the number of balls and bins is equal
to n. At several points in the analysis we will use the following approximation for binomial
coefficients, (n
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Let Xi denote the number of balls in the i-th bin at the end of the process. There are(
n
k

)
sets of k elements, and the probability that all the k elements in a set are assigned to

bin i is (1/n)k. Applying the union bound we can bound the probability that bin i contains
at least k balls,
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If k is chosen so that Pr[Xi ≥ k] ≤ 1/n2, then applying the union bound we have
Pr[∃i s.t. Xi ≥ k] ≤ 1/n. The probability that the maximum load in the bins exceeds
k is at most 1

n .
A suitable value of k satisfies 2 log n ≤ log k! ≈ k log k−k, clearly choosing k = O(log n)

suffices, in fact we could have choosen k = O(log n/ log log n). The bounds is stated for
k = O(log n) for simplicity,

Pr[∀i Xi ≤ c log n] ≥ 1− 1

poly(n)
(3)

The probability of some bin having load more than O(log n) is 1/poly(n) for the simple
randomized load balancing strategy.
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1.2 Power of two choices:

The two choice strategy chooses two bins uniformly at random for every ball and places
the ball into the bin with the smaller load. The maximum load for the two choice strategy
is O(log log n) with probability 1 − 1

poly(n)
, an exponential improvement over the simple

randomized strategy.
We analyze the two choice strategy with n/8 balls and n bins, the constant 8 is chosen

because 8 is the smallest integer greater than e2. The process is modeled by a graph with
bins as vertices, and edges between each pair of bins that was chosen by a ball during the
process. All vertices start with a count of zero, a uniformly random edge is chosen in each
step and the end point with the lower value of count gets incremented. The maximum load
for the two choice strategy is equal to the maximum count over vertex in the graph at the
end of the process.

An example to gain intuition for the process is a tree of depth k where the nodes at
depth i are connected to k− i nodes at depth i+ 1. The number of nodes in the tree is 2k!.
Suppose the process introduces the edges of the tree in a bottom up manner, with edges at
higher depth being added first. In the worst case, the two choice process can assign k − i
balls to a node at depth i. The root of the tree is assigned k balls, the example shows that
if we have a connected component of size 2k! it is possible to have a maximum load of k.

The analysis of the two choice strategy depends on two observations: (i) The size of
the largest connected component is O(log n) with high probability. (ii) For a connected
component of size k the maximum count can be at most O(log k), combining with part (i)
we have the O(log log n) bound on the maximum load.

Claim 1
The size of the largest connected component in a random graph with n vertices and n/8
edges is O(log n) with probability at least 1− 1

poly(n)
.

Proof: Suppose the size of the largest connected component C in G is at least k. The
induced subgraph for some subset of C of size k has at least k − 1 edges incident on it.
By the union bound, the probability that there is a connected component of size k can be
bounded by,
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The first term chooses the a subset of k vertices, the second chooses the k − 1 incident
edges while the third term is the probability that both the end points of the edges lie in
the subset. It is convenient to treat k − 1 as k as a difference of 1 does not change the
asymptotic calculation.
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Choosing k = O(log n) the probability of the size of the largest connected component being
larger than k is at most 1

poly(n)
. 2
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Bounds on the induced degree: The induced degree of S ⊂ V is the number of edges
with both the end points in S. We show that for all S ⊂ V the induced degree is S is at
most 8|S| with probability 1 − 1/n2. The probability that some subset with |S| = k has
induced degree more than 8k can be bounded by,

Pr[|S| = k, deg(S) ≥ 8k] ≤
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The first term counts the number of ways of choosing a subset S of size k, if the induced
degree is more than 8 then at least 4k edges must be incident on S hence the second term,
while the third term is the probability that both the end points of the 4k edges lie in S.
The inequality follows using the approximation (??) for the binomial coefficients.

The union bound is used to show that with probability 1 − 1
n2 the induced degree for

all S ⊂ V is at most 8|S|. A subset with induced degree more than 8|S| can have size at
most n/32 as there are n/8 edges.
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The maximum asymptotic contribution to the above sum comes from the term correspond-
ing to k = 1.

Conditioning : The rest of the argument is conditioned on the largest connected compo-
nent in G having size Θ(log n) and the induced degree of all the subsets of G being at most
8, both these events happen with probability at least 1− 1

n2 from claim 1 and the preceding
argument.

An iterative decomposition of G: The analysis of maximum count depends on an iterative
decomposition of G, let A1 be the set of vertices in G that have degree at most 16, in general
define Ai to be the set of vertices that have degree at most 16 in the induced subgraph with
vertex set G \ ∪j∈[i−1]Aj .

The average degree of every induced subgraph of G is at most 8, at most half the nodes
can have more than twice the average degree, so each round of the iterative decomposition
reduces the number of nodes in a connected component by at least half. The number of
nodes in a connected component is O(log n) so the total number of iterations is O(log log n).

The following claim completes the analysis of the two choice strategy:

Claim 2
The maximum count for a vertex is at most 16t + 1 where t is the number of the iteration
in which it was removed from the graph.

Proof: The proof is by induction on the number of iterations, the base case is true as
for vertices in A1 have degree at most 16 and the count for a vertex does not exceed the
degree. The count for a vertex v ∈ Ai does not increase by more than 16 when the edges
in Ai are removed, so it suffices to show that the count for v before iteration i begins is at
most 16(t− 1) + 1.

If v has count more than 16(t− 1) + 1 consider the edge (v, w) was used when the count
of v was last incremented. The count of w must be at least 16(t−1)+1 otherwise the count
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of w would have been incremented instead of v. The vertex w ∈ ∪j∈[i−1]Aj and has a count
more than 16(t− 1) + 1 contradicting the inductive hypothesis. 2

Remark: The proofs would go through if instead of choosing bins uniformly at random,
each ball chose h(x), h(y) where h is drawn from a family of O(log n) universal hash func-
tions, as we need independence over k = O(log n) distinct points. A hash function family
is t universal if the knowledge of h(x) at t − 1 distinct points reveals nothing about the
function, an example of a t wise independent hash function family is p(x) mod p mod B
where p(x) is a polynomial of degree t.

1.3 Cuckoo Hashing

The two choice strategy can be applied to hashing, an element x is hashed to the bucket
out of h1(x), h2(x) having a smaller load, where h1 and h2 are independent hash functions.
The length of the hash lists will be O(log log n) if O(n) elements are hashed. Is it possible
to have O(1) insertion and lookup times?

The cuckoo hashing strategy is the following: Insert x into the positions h1(x) or h2(x)
if either of these positions are empty. If both the positions are occupied select y = hi(x)
uniformly at random, replace y by x and run the insertion algorithm with input y. If the
depth of the recursion exceeds a certain threshold without completing the insertion, declare
failure and rebuild the table using a different pair of hash functions.

The cuckoo hash algorithm fails if there is a cycle in the corresponding random graph.
For example consider the case of five elements where element i can hash to slot i or i + 1
mod 5, and a new element that hashes to slots 1 and 4 needs to be inserted, the cuckoo
hash algorithm runs into an infinite loop and the table needs to be rebuilt.

The probability of the existence of cycles can be bounded in a manner similar to the
bound on the size of the connected component (??) in the analysis of the two choice strategy.
For a cycle of length l we need to select l + 1 out of m = n/8 edges, l out of n vertices and
each of the 2(l + 1) end points must be in a set of size l,
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