Lecture 15

1 Streaming Algorithms: Frequent Items

Recall the streaming setting where we have a data stream $x_{1}, x_{2}, \cdots, x_{n}$ with $x_{i} \in[m]$, the available memory is $O\left(\log ^{c} n\right)$. Today we will see algorithms for finding frequent items in a stream. We first present a deterministic algorithm that approximates frequencies for the top k items. We then introduce more efficient randomized algorithms that can handle insertions as well as deletions.

1.1 Deterministic algorithm

The following algorithm estimates item frequencies f_{j} within an additive error of n / k using with $O(k \log n)$ memory,

1. Maintain set S of k counters, initialize to 0 . For each element x_{i} in stream:
2. If $x_{i} \in S$ increment the counter for x_{i}.
3. If $x_{i} \notin S$ add x_{i} to S if space is available, else decrement all counters in S.

An item in S whose count falls to 0 can be removed, the space requirement for storing k counters is $k \log n$ and the update time per item is $O(k)$. The algorithm estimates the count of an item as the value of its counter or zero if it has no counter.
Claim 1
The frequency estimate n_{j} produced by the algorithm satisfies $f_{j}-n / k \leq n_{j} \leq f_{j}$.
Proof: Clearly, n_{j} is less than the true frequency f_{j}. Differences between f_{j} and the value of the estimate are caused by one of the two scenarios: (i) The item $j \notin S$, each counter in S gets decremented, this is the case when x_{j} occurs in the stream but the counter for j is not incremented. (ii) The counter for j gets decremented due to an element j^{\prime} that is not contained in S.

Both scenarios result in k counters getting decremented hence they can occur at most n / k times, showing that $n_{j} \geq f_{j}-n / k$.

1.2 Count min sketch

The turnstile model allows both additions and deletions of items in the stream. The stream consists of pairs $\left(i, c_{i}\right)$, where the $i \in[m]$ is an item and c_{i} is the number of items to be added or deleted. The count of an item can not be negative at any stage, the frequency f_{j} of item j is $f_{j}=\sum c_{j}$.

The following algorithm estimates frequencies of all items up to an additive error of $\epsilon|f|_{1}$ with probability $1-\delta$, the ℓ_{1} norm $|f|_{1}$ is the number of items present in the data set. The two parameters k and t in the algorithm are chosen to be $\left(\frac{2}{\epsilon}, \log (1 / \delta)\right)$.

1. Maintain t arrays $A[i]$ each having k counters, hash function $h_{i}: U \rightarrow[k]$ drawn from a 2 -wise independent family \mathcal{H} is associated to array $A[i]$.
2. For element $\left(j, c_{j}\right)$ in the stream, update counters as follows:

$$
A\left[i, h_{i}(j)\right] \leftarrow A\left[i, h_{i}(j)\right]+c_{j} \quad \forall i \in[t]
$$

3. The frequency estimate for item j is $\min _{i \in[t]} A[i, h(j)]$.

The output estimate is always more than the true value of f_{j} as the count of all the items in the stream is non negative.

1.2.1 Analysis

To bound the error in the estimate for f_{j} we need to analyze the excess X where $A\left[1, h_{1}(j)\right]=$ $f_{j}+X$. The excess X can be expressed as a sum of random variables $X=\sum_{i} Y_{i}$ where the indicator random variable $Y_{i}=f_{i}$ if $h_{1}(j)=h_{1}(i)$ and 0 otherwise. As $h_{1} \in \mathcal{H}$ is chosen uniformly at random from a 2-wise independent hash function family, $E\left[Y_{i}\right]=f_{i} / k$.

$$
E[X]=\frac{|f|_{1}}{k}=\frac{\epsilon|f|_{1}}{2}
$$

Applying Markov's inequality, we have

$$
\operatorname{Pr}\left[X>\epsilon|f|_{1}\right] \leq \frac{1}{2}
$$

The probability that all the excesses at $A\left[i, h_{i}\left(x_{j}\right]\right.$ are greater than $\epsilon|f|_{1}$ is at most $1 / 2^{t} \leq \delta$ as t was chosen to be $\log (1 / \delta)$. The algorithm estimates the frequency of item x_{j} up to an additive error $\epsilon|f|_{1}$ with probability $1-\delta$.

The memory required for the algorithm is the sum of the space for the array and the hash functions, $O(k t \log n+t \log m)=O\left(\frac{1}{\epsilon} \log (1 / \delta) \log n\right)$. The update time per item in the stream is $O\left(\log \frac{1}{\delta}\right)$.

1.3 Count Sketch

We present another sketch algorithm with error in terms of the ℓ_{2} norm $|f|_{2}=\sqrt{\sum_{j} f_{j}^{2}}$. The relation between the ℓ_{1} and ℓ_{2} norms is $\frac{1}{\sqrt{n}}|f|_{1} \leq|f|_{2} \leq|f|_{1}$, the ℓ_{2} norm is less than the ℓ_{1} norm so the guarantee for this algorithm is better than that for the previous one.

1. Maintain t arrays $A[i]$ each having k counters, hash functions $g_{i}: U \rightarrow\{-1,1\}$ and $h_{i}: U \rightarrow[k]$ drawn uniformly at random from a 2 -wise independent families are associated to array $A[i]$.
2. For element $\left(j, c_{j}\right)$ in the stream, update counters as follows:

$$
A\left[i, h_{i}(j)\right] \leftarrow A\left[i, h_{i}(j)\right]+g_{i}(j) c_{j} \quad \forall i \in[t]
$$

3. The frequency estimate for item j is the median over the t arrays of $g_{i}\left(x_{j}\right) A[i, h(j)]$.

1.3.1 Analysis

Again, the entry $A\left[1, h_{1}(j)\right]=g_{1}(j) f_{j}+X$, we examine the contribution X from the other items by writing $X=\sum_{i} Y_{i}$ where the indicator variable Y_{i} is $\pm f_{i}$ if $h_{1}(i)=h_{1}(j)$ and 0 otherwise. Note that $E\left[Y_{j}\right]=0$, so the expected value of $g_{1}(j) A[1, h(j)]$ is f_{j}.

The random variables Y_{i} are pairwise independent as h_{1} is a 2-wise independent hash function, so the variance of X can be expressed as,

$$
\operatorname{Var}(X)=\sum_{i \in[m]} \operatorname{Var}\left(Y_{i}\right)=\sum_{i \in[m]} \frac{f_{i}^{2}}{k}=\frac{|f|_{2}^{2}}{k}
$$

We will use Chebyshev's inequality to bound the deviation of X from its expected value,

$$
\operatorname{Pr}[|X-\mu|>\Delta] \leq \frac{\operatorname{Var}(X)}{\Delta^{2}}
$$

The mean $\mu=f_{j}$ and the variance is $\frac{|f|_{2}^{2}}{k}$, choosing $\delta=\epsilon|f|_{2}$ and $k=4 / \epsilon^{2}$ we have,

$$
\operatorname{Pr}\left[|X-\mu|>\epsilon|f|_{2}\right] \leq \frac{1}{\epsilon^{2} k} \leq \frac{1}{4}
$$

For $t=\theta(\log (1 / \delta))$, the probability that the median value deviates from μ by more than $\epsilon|f|_{2}$ is less than δ by a Chernoff bound. That is, the probability that there are fewer than $t / 2$ success in a series of t tosses of a coin with success probability $3 / 4$ is smaller than δ for $t=O(\log (1 / \delta))$.

Arguing as in the count min sketch the space required is $O\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta} \log n\right)$ and the update time per item is $O\left(\log \frac{1}{\delta}\right)$.

1.4 Remarks

The count sketch approximates f_{j} within $\epsilon|f|_{2}$ but requires $\widetilde{O}\left(\frac{1}{\epsilon^{2}}\right)$ space, while the count min sketch approximates f_{j} within $\epsilon|f|_{1}$ and requires $\widetilde{O}\left(\frac{1}{\epsilon}\right)$ space. The approximation provided by the sketch algorithms is meaningful only for items that occur with high frequency.

