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Lecture 12

1 The hard side of Cheeger’s inequality

We introduced the notions of edge expansion and the spectral gap and proved the easy
direction of Cheeger’s inequality connecting the edge expansion to the spectral gap. It
remains to prove the hard direction of the Cheeger bound,

1− λ2
2

≤ h(G) ≤
√

2(1− λ2) (1)

Easy direction recap: The left side of Cheeger’s inequality was proved by observing that
the scaled characteristic vector of a cut (S, S) is orthogonal to ~1 and has Rayleigh quotient
at least 1− 2h(S), thus yielding a lower bound on λ2.

Hard direction overview: The proof of the hard side of the inequality does the reverse,
it is a spectral partitioning algorithm that constructs a sparse cut starting from a vector v
with high Rayleigh quotient.

1. Sort the coordinates of v in ascending order to obtain the sequence v1 ≤ v2 ≤ · · · ≤ vn.

2. A sweep cut is a cut separating the first k vertices in the sorted order from the
remaining n−k vertices. Compute the expansion of all the sweep cuts and output the
sweep cut with the minimum edge expansion. Denote the expansion of the sparsest
sweep cut by hs.

For simplicity we will analyze the spectral partitioning algorithm with the input v being
the second eigenvector. It is possible to perform a more general analysis, but analyzing the
algorithm on v2 suffices to prove Cheeger’s inequality.

Claim 1
If hs is the output of the spectral partitioning algorithm with input v = v2 then,

hs ≤
√

2(1− λ2) (2)

Remark: The claim shows that hs approximates h(G) up to a quadratic factor as hs ≤√
2(1− λ2) =

√
4 (1−λ2)

2 ≤ 2
√
h(G) by the easy side of Cheeger’s inequality.

h(G) ≤ hs ≤ 2
√
h(G) (3)

Proof: We prove the slightly weaker statement hs ≤
√

16(1− λ2) , a more careful analysis
yields the correct constant.

The coordinates of the second eigenvector v2 are denoted by ei, as v2 is normalized to
have unit length we have

∑
e2i = |v2|2 = 1. The proof strategy is to apply one step of
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the lazy random walk M+I
2 to v2 and show that its squared Euclidean norm decreases by a

factor related to hs, ∣∣∣∣M + I

2
v2

∣∣∣∣2 =

(
1 + λ2

2

)2

≤ 1− h2s
16

(4)

Completing the square on the right hand side of the above inequality we have,(
1 + λ2

2

)2

≤ 1− h2s
16
≤
(

1− h2s
32

)2

Taking square roots and rearranging, we have the statement in the claim,

1 + λ2
2

≤ 1− h2s
32
⇒ (1− λ2) ≥

h2s
16

(5)

Why does the squared Euclidean norm of v2 decrease when one step of the lazy random
walk M+I

2 is applied? The following observation is central for quantifying the reduction in
the squared norm.

Observation: If the tuple (x, y) is replaced by the average tuple ((x + y)/2, (x + y)/2)
the squared Euclidean norm decreases from (x2 + y2) to 2.(x+y2 )2 = (x + y)2/2. The net
decrease in the squared Euclidean norm over the averaging operation is x2+y2−(x+y)2/2 =
(x− y)2/2.

Bounding the decrease in squared norm: The squared norm of v2 can be expressed as a
sum over the edges using the fact that G is a d regular graph.

1 = |v2|2 =
∑
i∈V

e2i =
1

d

∑
(i,j)∈E

(e2i + e2j ) (6)

It is useful to think of the evolution of the lazy random walk matrix M+I
2 v2 from step

0 to step 1 as a composition of the following operations: (i) At step 0 replace the ei at the
vertex by tuples (ei, ej) over edges as in equation (6). (ii) At step 1/2 average across the

edges replacing the tuple (ei, ej) by the average tuple (
ei+ej

2 ,
ei+ej

2 ). (iii) At step 1 average

across vertices replacing the tuples for edges incident at vertex i by the average
∑

j∼i ei+ej
2d .

The drop ∆ in the squared norm for step (ii) of averaging across the edges can be
quantified using the main observation,

∆ =
1

d

∑
i∼j

(ei − ej)2

2
(7)

It suffices to consider the drop ∆ to establish Cheeger’s bound, all we need about step (iii)
is that the squared norm does not increase if we average across vertices. Averaging always
decreases the squared norm as the sum of the squares of d numbers having a fixed sum is
minimum when all the numbers are equal. The squared norm of M+I

2 v2 is therefore less
than 1−∆,

∣∣∣∣M + I

2
v2

∣∣∣∣2 ≤ 1− 1

2d

∑
i∼j

(ei − ej)2 (8)
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The remaining part of the proof is to show that ∆ = 1
2d

∑
(i,j)∈E(ei − ej)2 ≥ h2s

16 .

First Attempt: In order to write ∆ as a sum over sweep cuts we could write (ei−ej)2 as
the telescoping sum ((ei − ei+1) + · · ·+ (ej−1 − ej))2 ≥

∑
i≤k<j(ek − ek+1)

2. This approach

yields the bound ∆ ≥
∑
E(k, V \ k)(ek − ek+1)

2 in terms of the number of edges crossing
the k-th sweep cut. However, the telescoping sum bound is not tight and loses a factor of
the length of the edge |j − i|, losing a factor of n for long edges. There are several long
edges crossing the sweep cuts, the number of edges of length at most k can be at most kd
due to d regularity.

We need a bound that is not sensitive to the subdivision of edges across sweep cuts, the
following somewhat ‘magical’ application of the Cauchy Schwarz inequality (

∑
a2i ).(

∑
bi)

2 ≥
(
∑
aibi)

2 achieves this,

1

2d

∑
(i,j)∈E

(ei − ej)2.
∑

(i,j)∈E(ei + ej)
2∑

(i,j)∈E(ei + ej)2
≥ 1

4d2

 ∑
(i,j)∈E

(ei − ej)(ei + ej)

2

=

(∑
(i,j)∈E e

2
i − e2j

2d

)2

(9)

The denominator was bounded as follows,
∑

(i,j)(ei+ej)
2 ≤

∑
(i,j) 2e2i +2e2j = 2d

∑
i e

2
i = 2d

using the d regularity of the graph. The right hand side of (9) can now be expressed in
terms of the sweep cuts as follows,(∑

(i,j)∈E e
2
i − e2j

2d

)2

≥

(∑
k∈[n/2] dkhs(e

2
k − e2k+1)

2d

)2

=
1

4

 ∑
k∈[n/2]

khse
2
k − (k − 1)hse

2
k


=

1

4

 ∑
k∈[n/2]

hse
2
k

2

≥ h2s
16

(10)

Remark: The definition of edge expansion applies to the smaller side of the cut do for all
k ≤ n/2 there must be at least kdhs edges crossing the k-th sweep cut. Wlog we assume
that

∑
i∈[n/2] e

2
k is greater than 1/2, else we can change signs and work with −v2. 2


