
Autonomous Vision-based Landing and Terrain Mapping
Using an MPC-controlled Unmanned Rotorcraft

Todd Templeton, David Hyunchul Shim, Christopher Geyer, and S. Shankar Sastry∗

Abstract

In this paper, we present a vision-based terrain mapping
and analysis system, and a model predictive control (MPC)-
based flight control system, for autonomous landing of
a helicopter-based unmanned aerial vehicle (UAV) in un-
known terrain. The vision system is centered around Geyer
et al.’s Recursive Multi-Frame Planar Parallax algorithm
[1], which accurately estimates 3D structure using geo-
referenced images from a single camera, as well as a modu-
lar and efficient mapping and terrain analysis module. The
vision system determines the best trajectory to cover large
areas of terrain or to perform closer inspection of potential
landing sites, and the flight control system guides the vehi-
cle through the requested flight pattern by tracking the refer-
ence trajectory as computed by a real-time MPC-based op-
timization. This trajectory layer, which uses a constrained
system model, provides an abstraction between the vision
system and the vehicle. Both vision and flight control re-
sults are given from flight tests with an electric UAV.

1 Introduction

The concept of a high-endurance, situation-aware un-
manned aerial vehicle (UAV) demands an onboard system
that will actively sense its surroundings and make intelligent
decisions over an extended period of time to accomplish its
mission, with minimum intervention from remotely located
human operators. In missions such as perch-and-stare re-
connaissance, where a UAV lands at a strategic location and
probes for certain events using its onboard sensors, VTOL-
capable UAVs such as helicopters and tilt-rotor wings offer
many advantages. For such missions, as well as in emer-
gency situations, it is essential for an intelligent UAV to be
able to autonomously locate, and then land at, a suitable
landing site.

∗Todd Templeton and S. Shankar Sastry are with the Dept. of Electri-
cal Engineering and Computer Sciences, University of California, Berke-
ley, Berkeley, CA: {ttemplet,sastry}@eecs.berkeley.edu.
David Shim is with the Dept. of Aerospace Engineering, Ko-
rea Advanced Institute of Science and Technology, Daejeon, South
Korea: hcshim@kaist.ac.kr. Christopher Geyer is with
the Robotics Institute, Carnegie Mellon University, Pittsburgh, PA:
cgeyer@cs.cmu.edu.

Figure 1: An electrically-powered, MPC-controlled UAV
testbed for vision-based landing and terrain mapping.

To execute a safe landing, a UAV first needs to find a
level space that is free of debris. It is usually impossible
or impractical to rely on a preloaded digital elevation map
(DEM) due to its limited resolution and possible inaccuracy
due to obstacle movement. UAVs are typically no larger
than manned helicopters, and even if it could be assumed
that the terrain would not significantly change a DEM ac-
curate enough for such an application would have to have
resolution to within a few inches. It is deemed unlikely
that such an accurate DEM would be available a priori, and,
even if one did exist, that such a DEM large enough to cover
the mission area would be small enough to carry as part of
the avionics. Therefore, it is desired that the UAV builds
a DEM limited to the area of interest on the fly using its
onboard sensors. Given UAVs’ flying accuracy and their
efficiency for the repetitive task of scanning a given area,
aerial mapping using UAVs is also a useful capability in its
own right.

For aerial ranging, laser scanners have been found to be
both reliable and accurate sensors. When ranging at a high
altitude, however, use of a laser scanner would require a
high-energy beam. Such a sensor could be easily detected,
and would impose unreasonable weight and power burdens
on a small vehicle. Therefore, we choose to sense the terrain
passively using cameras; in fact, due to our use of Geyer et
al.’s Recursive Multi-Frame Planar Parallax (RMFPP) algo-
rithm [1], we are able reconstruct terrain using only a single
camera.

1

The vision landing problem has been addressed in many
previous research projects, although many, including [2],
[3], [4], [5], and [6], require an easily-recognizable land-
ing target. No landing target is used in [7], although it is
assumed that the visual axis of the camera is perpendicular
to the ground and that the image contrast is higher at the
boundary of obstacles than anywhere else. The approach
most similar to ours is that of A. Johnson et al. at JPL [8],
although their use of only two images at a time (a wide-
baseline stereo pair over time from a single camera) restricts
their 3D reconstruction accuracy at high altitudes.

When combined with the vision system, the MPC-based
trajectory layer serves as a ‘filter’ to find a plausible trajec-
tory that yields minimal cost from the reference trajectory.
The vision and flight control systems are implemented on a
UAV testbed (see Figure 1) based on a radio-controlled elec-
tric helicopter. Flight tests have shown that components of
the vision-based landing and terrain mapping perform well
when combined with the high-precision flight control sys-
tem.

2 Vision-based Terrain Mapping and
Analysis

The computer vision problem that we address in this project
is one of 3D terrain reconstruction and analysis. In particu-
lar, we are trying to find suitable landing locations, i.e. re-
gions that are large enough to safely land the helicopter that
are flat and free of debris, have a slope of no more than 4 de-
grees, have been confidently mapped, (possibly) are similar
to a desired constant appearance, and (optionally, not used
in the experiments in this paper) contain a distinctive land-
ing target1. Despite the availability of high-accuracy active
technologies such as radar and LIDAR, we use a camera for
this task because it is passive (and hence difficult to detect),
and because such active technologies require high-powered
beams that are energy- and weight-intensive for operation at
high altitude.

The vision system (see Figure 2) consists of a fea-
ture tracking thread, which tracks distinctive image points
through the image sequence and stores them in the feature
repository; a motion stamping thread, which uses GPS/INS
data and feature tracks to estimate the global position and
orientation of the camera when each image was captured
and to estimate the 3D locations of the tracked features
(the latter of which are used to choose the best reference
plane for the Recursive Multi-Frame Planar Parallax algo-
rithm); and the mapping thread, which adds 3D points to
its modular elevation and appearance map using the Re-

1The landing target is only used to enable the operator to choose a spe-
cific location if many locations are suitable—the vision system always en-
sures that all other requirements are satisfied.

External
Interfaces

Elevation
Map

Feature
Tracker

Motion
Stamp

Target
Detector

Trajectory
Planner

Vehicle
State Data

3-Point
Waypoints

Recursive
Parallax

Feature
Tracks

Image

Motion
Stamp

Image
Reference
Image

3D Points +
Appearance

Image

Target
Location

3D Points +
Appearance

Landing
Locs

Figure 2: Vision system architecture. Note that the target
detector is optional and was not used in these experiments.

cursive Multi-Frame Planar Parallax algorithm. The vision
system also includes two interchangeable sets of external
interfaces: in flight mode, it uses a custom Firewire cap-
ture thread, which stores timestamped captured images in
a frame repository, and an external communication thread,
which receives GPS/INS and other vehicle state data from,
and sends desired trajectory information to, the flight con-
trol computer; in simulation/replay mode the Firewire cap-
ture thread is replaced by a custom simulation/replay thread,
and all communication through the external communication
thread is redirected to the simulation/replay thread.

2.1 The Recursive Multi-Frame Planar
Parallax Algorithm

The cornerstone of our approach is Geyer et al.’s Recursive2

Multi-Frame Planar Parallax (RMFPP) algorithm [1]. The
RMFPP algorithm is a direct3 method for obtaining dense4

structure (terrain, in our case) estimates with correspond-
ing appearance online in real time by using a single moving
camera whose motion has been accurately estimated. We
choose to use this single-camera method because of the in-
accuracy inherent in estimating distant terrain using a stereo
camera pair with a baseline that is attainable on the vehi-
cle (see discussion in [1]), while using multiple images as
the camera moves through space allows the RMFPP algo-
rithm to attain expected range error that increases between
linearly and with the square root of the range.

Suppose a camera takes images i = 1, . . . , m of a rigid
scene, where image 1 is the reference view in which range
will be estimated for each pixel. Then the homographies Hi

2The cost of incorporating measurements from a new image depends
only on the number of pixels in the image and does not depend on the
number of images already seen.

3The algorithm expresses a cost function directly in terms of the image
rather than depending on feature matching, and gradients of the cost func-
tion are calculated by linearization of the brightness constancy constraint
(see pro: [9], con: [10]).

4The algorithm provides a depth estimate for every pixel that is within
a sufficiently textured region.

2

that transfer the i-th view to the reference view via a chosen
reference plane are given by:

Hi = K

(

Ri −
1

d
TiN

T

)
−1

K
−1 ∈ R

3×3 , (1)

where (N ∈ R
3, d ∈ R) are the unit normal of the refer-

ence plane in the coordinate system of the first camera and
the perpendicular distance of the first viewpoint from the
reference plane, (Ri ∈ SO(3) , Ti ∈ R

3) are the rotation
and translation from first camera coordinate system to the
i-th one, and K ∈ SL(3) is the constant intrinsic calibration
matrix of the camera.

Suppose that X ∈ R
3 is a point in space in the co-

ordinate system of the first camera. Let pi = (xi, yi)
for i = 1, .., m be the projection of X into each image,
π(x, y, z) = (x/z, y/z), and π∗(x, y) = (x, y, 1). The
quantity

p1 − π (Hi π
∗(pi))

︸ ︷︷ ︸

pi
′

(2)

is called planar parallax, and is zero if X lies on the ref-
erence plane. The RMFPP algorithm uses planar parallax,
which is small for small movements if X is close to the ref-
erence plane and increases with increased camera motion,
to recursively estimate the quantity γ = h/z for each pixel
p1 in the reference image, where z is the range of X in the
first view and h = NT X + d is the signed perpendicular
distance of X from the reference plane. We then recover
the range z using z = −d/(NT

K
−1 π∗(p1) − γ).

2.2 Modular Elevation and Appearance
Map, and Landing Site Quality

The mapping system consumes the filtered (see discussion
in [1]) 3D points generated by the RMFPP terrain recon-
struction algorithm, and creates a consistent map in a world
coordinate system, while simultaneously identifying candi-
date landing sites. The mapping system takes into account
the following requirements: (1) efficient integration of in-
coming points (on the order of 50, 000 points per update,
which occur at 0.375 Hz), each with a corresponding eleva-
tion variance (expected squared error) and appearance; (2)
efficient recalculation of candidate landing sites after each
update; (3) sufficient resolution for evaluating landing sites
while fitting a memory budget and not hampering explo-
ration (e.g. a fixed grid in memory is inadequate); (4) the
ability to integrate and analyze data at a wide range of res-
olutions (due to the expected wide range of altitudes); and
(5) minimal map recentering costs.

To obviate the need for map recentering and to increase
memory efficiency with low overhead, the mapping system

is modular in the sense that a fixed set of blocks are allo-
cated for the map representation, and least recently accessed
blocks are recycled as necessary. We achieve efficiency dur-
ing updates by using weighted (by inverse elevation vari-
ance) sufficient statistics that represent the aggregate data,
and with which we can quickly compute local planar fits and
other metrics to rapidly evaluate candidate landing sites.

To efficiently store and analyze, at a wide range of reso-
lutions, the terrain elevation, terrain elevation variance (ex-
pected squared error), and appearance data available for
each 3D point, the map is represented as a 2D (x, y) grid
with three layers (one for each type of data) at each of mul-
tiple resolutions. All blocks contain all resolutions; since
blocks represent fixed areas of 2D space, higher resolutions
in each block contain more pixels in each layer than lower
resolutions. For operations that require only a single res-
olution, such as calculating landing quality and exporting
maps, each map block independently chooses its highest
resolution where at least a fixed percentage of pixels have
known value (or its lowest resolution if none of its resolu-
tions have enough pixels with known value).

The modular elevation and appearance map is designed
to be robust. Because the scene is likely to change over long
periods of time, blocks are reinitialized when they are revis-
ited after no updates for a fixed period of time. To reduce the
update and creation of blocks due to outliers, a fixed number
of points from a given RMFPP update must be contained in
an existing or potential block for it to be updated or created.
To reduce the number of landing candidates generated by a
suitable region, only block centers are considered as possi-
ble landing sites. To eliminate the trade-off between requir-
ing large landing sites and having many mostly-unexplored
blocks, and to allow more dense possible landing sites, the
landing quality score of a given block is calculated over it-
self and a given radius of its neighbor blocks; this is im-
plemented efficiently for all blocks in the area covered by
a batch of points from the RMFPP algorithm by using in-
tegral images [11] over the sufficient statistics contained in
the blocks.

To allow the efficient retrieval of arbitrary map blocks,
all of the blocks that are in use are maintained in a hash
table over their (x, y) centers; however, during normal op-
eration, most blocks are retrieved using links from one of
their neighbors (in addition to being accessible through the
hash table, each block is bidirectionally linked to each of
its immediate neighbors). All existing blocks that are re-
quired for the given list of 3D terrain and appearance points
produced by the RMFPP algorithm are retrieved immedi-
ately upon determination of the points’ 2D bounding box.
Adding each 3D point to the map involves creating or locat-
ing the proper map block in the prefetched grid and then up-
dating the closest 2D map block pixel at each resolution, i.e.
optimally updating the pixel at each layer based on the exist-

3

ing elevation variance at the pixel and the elevation variance
for the new 3D point as provided by the RMFPP algorithm.
When a 2D pixel is updated in a given block and resolution,
its previous value is subtracted from, and its new value is
added to, each statistic that is maintained for that block and
resolution.

The landing quality score for each modified block (com-
bined with its radius of neighbors) is a linear combination
of the angle of the best-fit plane from horizontal, the plane
fit error, the percentage of grid squares in the block with
unknown value, the difference between the average appear-
ance and a given desired appearance, the appearance vari-
ance, and the average target quality (optional, not used in
the experiments in this paper). A block is considered to be
a landing candidate if it is below given thresholds on each
element of the landing quality equation, and landing can-
didates are maintained in a priority queue so that, all other
things being equal, the better (lower ‘landing quality’ value)
candidates are considered first.

2.3 High-level Planner

Concurrently with the above vision algorithms, the vision
system executes a high-level planner that operates directly
on the vehicle state data. The default plan (when no land-
ing site candidates have been identified within a given
maximum radius of the current location) is an outwardly-
expanding box search centered around the point, and at the
altitude of, where the planner is initially enabled (see Figure
3). When a landing site candidate is identified that is within
the given maximum radius, the planner enters a mode where
it directs a descending spiral toward a point a fixed distance
directly over the candidate site. The candidate site is ex-
amined whenever it is visible during the downward spiral,
and all other visible locations are also examined at closer
range during this process. At any time during the spiral, the
vision system may determine that the site is unsuitable, or
the human operator may signal that the site is unsuitable,
and the planner will switch to a different candidate site (or
return to the default box search plan if there are no nearby
candidate sites). Once the helicopter reaches a point a fixed
distance directly over the candidate site, the human opera-
tor may approve an autonomous landing, at which time the
planner directs a constant-speed vertical descent to a fixed
lower altitude AGL, followed by a slower constant-speed
vertical descent to the ground.

2.4 A Note on Motion Stamping

Although several algorithms, such as Chiuso et al.’s ‘3-D
Motion and Structure from 2-D Motion Causally Integrated
over Time’ [12], are available to estimate camera attitude
and position in real time, the accuracy of these algorithms,

Spiral Descent
(Top View)

Box Search
(Top View)

Final Descent
(Side View)

Figure 3: Plans for the high-level planner.

even when extended to incorporate (noisy) camera attitude
and position measurements from the vehicle state data5, has
thus far proven to be insufficient for our needs. While we
continue to experiment with alternative motion-stamping
methods, for the purposes of this paper we separated the ex-
periment into three phases to showcase the performance of
the other components: In the first phase, the vision high-
level planner directed the helicopter to perform the box
search while it collected image data. In the second phase,
we performed SIFT [13] feature tracking and Sparse Bundle
Adjustment (SBA) [14] for camera localization, which we
initialized using the previous GPS/INS datapoint, followed
by RMFPP running on similar hardware to the helicopter vi-
sion computer in better than real time. In the third phase, we
executed the closer inspection and landing maneuver using
a premade elevation and appearance map.

3 Flight Control System

The flight control system consists of two hierarchical lay-
ers: the trajectory generator and the tracking controller. The
trajectory generator is based on model predictive control
(MPC), which solves for the optimal control input and the
associated vehicle trajectory. The tracking controller guides
the vehicle to follow the given trajectory with minimal error
using the output from the trajectory generation layer.

3.1 MPC-based Trajectory Generation

In [15, 16, 17], it is shown that model predictive control us-
ing penalty functions for state constraints and explicit input
saturation is a viable approach to address the guidance and
control problems of UAVs at a reasonable computational
load for real-time operation. In [16], an MPC-based control
system is shown to have outstanding tracking performance
in the presence of coupled dynamic modes and substantial

5The vehicle state data contains measurements of the GPS/INS attitude
and position, which we adjust by the constant rotation and translation be-
tween the coordinate system of the GPS/INS system and the coordinate
system of the camera. Note that the state data measurement is not synchro-
nized with the imagery.

4

model mismatch. It has also been demonstrated that MPC-
based optimization can be formulated to implement a higher
level of autonomy, such as real-time aerial collision avoid-
ance [15], and obstacle avoidance in an urban environment
using an onboard laser scanner [17]. In [18], an MPC-based
trajectory planner is implemented as the feedforward con-
trol part of a two-degree-of-freedom control system. Here,
as in [18], we use a full vehicle kinodynamic model with
input saturation.

Suppose we are given a time-invariant nonlinear dynamic
system

x(k + 1) = f(x(k) , u(k)) , (3)

where x ∈ X ⊂ R
nx and u ∈ U ⊂ R

nu . The optimal
control sequence over the finite receding horizon N is found
by solving the nonlinear programming problem

V (x, k, u) =

k+N−1∑

i=k

L(x(i), u(i) + F (x(k + N)), (4)

where L is a positive definite cost function term and F is
the terminal cost. When applied to the vision-based land-
ing problem, L contains a term that penalizes the devia-
tion from the desired trajectory. Suppose u∗(x, k) is the
optimal control sequence that minimizes V (x, k, u) such
that V ∗(x, k) = V (x, k, u∗(x, k)), where V ∗(x, k) ≤
V (x, k, u), ∀u ∈ U. With u∗(k), we can find x∗(k),
k = i, · · · , i + N − 1 by recursively solving the given non-
linear dynamics with x(i) = x0(i) as the initial condition.
The obtained {x∗(k), u∗(k)} are used as the reference tra-
jectory and feedforward control input, respectively, in the
following control law:

u(k) = u∗(k) + K(x∗(k) − x(k)). (5)

For the feedback control gain K, a multi-loop
proportional-differential (MLPD) loop is implemented as
depicted in Figure 4, a control strategy similar to that in
[19]. If the dynamic model used for solving the optimiza-
tion problem perfectly matches the actual dynamics and
the initial condition without any disturbance or model mis-
match, there should not be any tracking error. In the real
world, such an assumption cannot be satisfied. Using this
approach, with a tracking feedback controller in the feed-
back loop, the system can track the given trajectory reliably
in the presence of disturbance or modeling error.

In the following subsection, we will show how the MPC-
based trajectory generator is integrated with the high-level
planner.

3.2 Flight Control Strategy for Autonomous
Vision-based Landing

For automatic surveying, the control system should be able
to guide the vehicle through the requested waypoints with

Figure 4: Flight control system architecture with MPC-
based trajectory generator.

minimal deviation while keeping the vehicle within its dy-
namic performance boundary. The flight control should not
induce any excessive vibration or rapid turns that may cause
motion blur in the camera image.

The vision system requests one of three types of flight
patterns as described in Figure 3. During the box search
for coarse DEM construction, the vision system sends way-
points that are the vertices of piecewise linear segments.
The vehicle is expected to fly along the linear segments
with minimal deviation while making bank-to-turn maneu-
vers around each vertex at a constant horizontal cruise speed
and altitude. During the spiral descent, the vision unit sends
a series of waypoints with much finer resolution. In final
descent mode, the vision unit sends the landing coordinates
to the flight control system.

Since the vision system requires a smooth flight for high-
quality image acquisition, the vehicle needs to fly at a con-
stant velocity and a reasonable yaw rate to avoid motion
blur of the image. In particular, in order to achieve a smooth
transition around a waypoint with a constant cruise speed,
we have to know the next waypoint a priori while the ve-
hicle is approaching the current waypoint so that the flight
control system can prepare for the bank-to-turn maneuver
without any abrupt changes in heading or cruise velocity.
Therefore, the trajectory planner needs to know the next
waypoint as well as the current waypoint so that it can plan
ahead around the waypoint. For additional flexibility, the
high-level planner may also specify the previous waypoint,
which is not required to have been the actual previous way-
point; it is merely a point that defines a vector of approach
to the current waypoint. When a new waypoint request is
received from the high level planner, regardless of the flight
mode it requests, the given waypoints are initially connected
with linear segments. The high level planner also speci-
fies the reference horizontal and vertical velocity, which is

5

����������	�
���
��

���������
�
�

����
��	���	�
���
���������������
��

�����

��	�
���
��

���
	�������
���

����
���������
���

���
	�������
���

����
���������
���

����

������

������

�� �������!��"�������

�#
�����
����$����
���

%������!��"������

Figure 5: Three-point waypoint specification and MPC-
based trajectory generation.

used for sampling the reference points over the linear seg-
ments. The resulting reference trajectory is a sequence of
(x, y, z) coordinates associated with the reference heading.
The given reference points are used to compute the cost
function in Equation (4), which is solved in real time us-
ing a highly efficient optimization algorithm [20] at every
sample time. The resulting reference trajectory and the op-
timal control input are sent to the tracking controller (see
Figure 4).

To facilitate the guidance algorithm introduced above,
the vision computer periodically sends the following
to the flight computer over a wired RS-232 channel:
past/current/future waypoints (see Figure 5), horizon-
tal/vertical speed limits, heading rate limit, flight mode
(Abort, Box Search, Spiral, Landing), and a time tag.

Although the MPC-based approach in this paper creates
a heavy numerical load, the algorithm is simple and straight-
forward in principle, and it protects the vehicle from any
infeasible waypoint requests from the higher level planner
that might outherwise push the vehicle beyond its dynamic
capability. With careful design of the multi-process flight
control software, and with careful selection of the horizon
length, iteration gain, and step size of the gradient search
as discussed in [18], the algorithm comfortably runs in real
time on a Pentium III 700MHz machine.

4 System Setup

As described above, the vision system requests appropriate
flight patterns as it performs real-time terrain mapping and
analysis at varying resolutions. The flight control system

���

� �����		
��
������

���

�����	����

������

����������

�������

�
��
��
�
�
�

� �

���	�
������

!��

!�" #

!�" #

!
�
"

#

���
$�	�

�������

� �����		
�������������
$��%&���

'�	���

���(����

����)*

�������"�*

+,-�./

� �����		
��

0���1���

������

'�	���

����������

�������

�(���

����������

2�

$��	3��		

�����

2���
����������

4�%��5��

�������
���

���

���
���5�

�����	

$�����6
���%
���"��
78'
9888��3�

!����5��

0���3�

����������

���(����

:;*
��+87

����
<88�3/

�	������
2��2�
���5�����

!�" #

Figure 6: System architecture of the UAV testbed for vision-
based landing and mapping.

is responsible for guiding the vehicle through the requested
waypoints with an acceptable accuracy. At a constant rate of
10 Hz, the flight control system reports time-stamped navi-
gation data such as position and attitude/heading, which are
necessary to reconstruct the terrain with respect to an iner-
tial reference frame (see Figure 6), to the vision system.

4.1 Vision Processing Unit

The vision-based terrain mapping and analysis system is im-
plemented on a PC104 form factor Pentium M computer
running Linux. The CPU is interfaced with a 2GB Com-
pact Flash drive, a Firewire board, and PCMCIA wireless
Ethernet. As shown in Figure 1, the vision computer is in-
stalled in the nose of the vehicle in a dedicated aluminum
enclosure for modularity and EMI shielding. A Firewire
camera is installed in a forward- and downward-looking di-
rection to capture the ground ahead of and below the vehi-
cle. The vision system receives vehicle state data from, and
sends trajectory commands to, the flight computer through
the RS-232 serial interface.

4.2 UAV Hardware

The testbed used in this research is based on an electri-
cally powered RC helicopter, whose detailed specifications
are given in the Table 1. The DC brushless motor with

6

Base platform Electric Helicopter (Maxi-Joker)
Dimensions 0.26 m (W) x 2.2 m (L) x 0.41 m (H)
Rotor Diameter 1.8 m
Weight 4.5 kg (no onboard electronics)

7.5 kg (fully instrumented)
Powerplant Actro 32-4 motor (1740W max at 75A)

Lithium-Ion-Polymer (10S4P; 40V 8Ah)
Operation Time Up to 15 minutes
Avionics Navigation: DGPS-aided INS

GPS: NovAtel OEM4-MillenRT2
IMU: Inertial Science ISIS-IMU
Flight Computer: PC104 Pentium III

700MHz
Communication: IEEE 802.11b with

RS-232 multiplexing
Vision Computer: PC104 Pentium M

1.6GHz
Autonomy Waypoint navigation with automatic VTOL

Position-tracking servo mode
MPC-enabled dynamic path planning with

collision avoidance
Stability-augmentation system

Table 1: Specification of the UAV testbed.

high-capacity Lithium-polymer batteries allows more than
10 minutes of continuous flight with the ease of fully au-
tomatic start-stop operation. The onboard components are
designed and integrated with an emphasis on weight re-
duction for longer flight time, reliability, and maneuver-
ability. The vehicle is controlled by a PC104 form factor
Pentium III 700MHz CPU with a custom servo interfacing
board, an inertial measurement unit (IMU), a high-precision
carrier-phase differential global positioning system, and an
IEEE 802.11b device (see Figure 6). The flight control sys-
tem communicates with the ground station over the wire-
less channel for receiving commands and sending naviga-
tion status data and system vital signs such as the battery
level and the health of onboard components.

5 Experimental Results

In this section, we present experimental results for the
vision-based landing and terrain mapping experiment. Fig-
ure 7 shows the result of terrain reconstruction using exper-
imental aerial imagery that was geo-registered offline and
then processed using the RMFPP algorithm in real time on
hardware similar to that in the vehicle vision computer. Al-
though much of the left side of the view is flat and unevent-
ful (as it should be), the trees in the middle of the view and
the road on the right are clearly visible.

In order to build the terrain map or investigate a candi-
date landing site, the vision computer commands the vehicle
to perform a box search or closer inspection spiral by re-

Figure 7: Real images vision experiment: The reconstructed
appearance draped over the reconstructed 3D terrain.

questing waypoints following the format defined in Section
4.2. The actual flight trajectory and other navigation states
are presented in Figure 8. The vehicle initially follows the
waypoints in a box pattern, and then, upon discovering a
possible landing zone, the vehicle is commanded to fly in a
spiral pattern at a very low velocity. After completing the
closer inspection, the vision computer commands the vehi-
cle to abort the spiral and resume the box search at normal
flight speed. As shown in the figure, the helicopter follows
this flight sequence with acceptable accuracy.

6 Conclusion

This paper has presented a vision-based terrain mapping
and analysis system, and a hierarchical flight control system
based on the model predictive control (MPC) approach, for
autonomous rotorcraft landing. The algorithms were imple-
mented using COTS components on an electrically-powered
helicopter for experimental validation. We observed that
the RMFPP algorithm required higher camera localization
accuracy than we were able to achieve using existing algo-
rithms, but we were able to show accurate real-time results
for other components of the vision system when the camera
localization was computed offline. The flight control algo-
rithm based on real-time MPC was shown to be a viable ap-
proach for producing plausible trajectories in real time using
the identified vehicle model, and the feedback control law
was shown to provide added protection against disturbance
and model mismatch.

7 Acknowledgement

The authors would like to thank Travis Pynn, Hoam Chung,
Jonathan Sprinkle, and Mikael Eklund for their the contri-
butions in support on the experiments in this paper. This
work was funded by the following grants: ARO DAAD 19-
02-1-0383 and Boeing SEC BAI-Z40705R.

7

30 40 50 60 70 80 90
20

30

40

50

60

70

80

x [m]

−
y

[m
]

P1

 P2
 P3

 P4 P5

Spiral Search

Wave−off

resume search

0 20 40 60 80 100 120
−5

0

5

time [s]

ve
lo

ci
ty

 [
m

/s
]

v
n

v
e

v
d

0 20 40 60 80 100 120
−20

0

20

time [s]

a
tt

itu
d

e
[d

e
g

] pitch
roll

0 20 40 60 80 100 120
−200

0

200

time [s]

h
e

a
d

in
g

 [
d

e
g

]

0 20 40 60 80 100 120
−0.1

0

0.1

time [s]

P
W

M
 [

m
s] u

a1s

u
b1s

uθ

M
uθ

T

�� �� �� �� �� ��	
��������� ��������

Figure 8: Flight test result for terrain reconstruction.

References
[1] C. Geyer, T. Templeton, M. Meingast, and S. Sastry, “The re-

cursive multi-frame planar parallax algorithm,” in Proceed-
ings of Third International Symposium on 3D Data Process-
ing, Visualization and Transmission, 2006.

[2] O. Shakernia, Y. Ma, T. Koo, and S. Sastry, “Landing an
unmanned air vehicle: Vision based motion estimation and
nonlinear control,” 1999.

[3] S. Saripalli, J. F. Montgomery, and G. S. Sukhatme,
“Visually-guided landing of an unmanned aerial vehicle,”
IEEE Transactions on Robotics and Automation, vol. 19,
pp. 371–381, Jun 2003.

[4] S. Saripalli and G. S. Sukhatme, “Landing on a moving tar-
get using an autonomous helicopter,” in Proceedings of the
International Conference on Field and Service Robotics, Jul
2003.

[5] S. Saripalli, G. S. Sukhatme, and J. F. Montgomery, “An ex-
perimental study of the autonomous helicopter landing prob-

lem,” in Proceedings, International Symposium on Experi-
mental Robotics, (Sant’Angelo d’Ischia, Italy), 2002.

[6] S. Saripalli, J. F. Montgomery, and G. S. Sukhatme, “Vision-
based autonomous landing of an unmanned aerial vehicle,” in
IEEE International Conference on Robotics and Automation,
pp. 2799–2804, 2002.

[7] P. J. Garcia-Pardo, G. S. Sukhatme, and J. F. Montgomery,
“Towards vision-based safe landing for an autonomous he-
licopter,” Robotics and Autonomous Systems, vol. 38, no. 1,
pp. 19–29, 2001.

[8] A. Johnson, J. Montgomery, and L. Matthies, “Vision guided
landing of an autonomous helicopter in hazardous terrain,” in
Proceedings of IEEE International Conference on Robotics
and Automation, 2005.

[9] M. Irani and P. Anandan, “About direct methods,” in Proc.
International Workshop on Vision Algorithms, September
1999.

[10] P. H. S. Torr and A. Zisserman, “Feature based methods
for structure and motion estimation,” in Proc. International
Workshop on Vision Algorithms, September 1999.

[11] P. Viola and M. Jones, “Rapid object detection using a
boosted cascade of simple features,” in Proceedings of Com-
puter Vision and Pattern Recognition, 2001.

[12] A. Chiuso, P. Favaro, H. Jin, and S. Soatto, “3-d motion and
structure from 2-d motion causally integrated over time: Im-
plementation,” in Proceedings of European Conference on
Computer Vision, June 2000.

[13] D. G. Lowe, “Distinctive image features from scale-
invariant keypoints,” International Journal of Computer Vi-
sion, vol. 60, no. 2, 2004.

[14] M. Lourakis and A. Argyros, “The design and imple-
mentation of a generic sparse bundle adjustment software
package based on the Levenberg-Marquardt algorithm,”
Tech. Rep. 340, Institute of Computer Science - FORTH,
Heraklion, Crete, Greece, Aug. 2004. Available from
http://www.ics.forth.gr/˜lourakis/sba.

[15] D. H. Shim, H. J. Kim, and S. Sastry, “Decentralized non-
linear model predictive control of multiple flying robots,” in
IEEE Conference on Decision and Control, December 2003.

[16] D. H. Shim, H. J. Kim, and S. Sastry, “Nonlinear model pre-
dictive tracking control for rotorcraft-based unmanned aerial
vehicles,” in American Control Conference, May 2002.

[17] D. H. Shim, H. Chung, and S. Sastry, “Conflict-free navi-
gation in unknown urban environments,” IEEE Robotics and
Automation Magazine, vol. 13, pp. 27–33, September 2006.

[18] D. H. Shim and S. Sastry, “A situation-aware flight con-
trol system design using real-time model predictive control
for unmanned autonomous helicopters,” in AIAA Guidance,
Navigation, and Control Conference, August 2006.

[19] D. H. Shim, Hierarchical Control System Synthesis for
Rotorcraft-based Unmanned Aerial Vehicles. PhD thesis,
University of California, Berkeley, 2000.

[20] G. J. Sutton and R. R. Bitmead, “Computational implemen-
tation of NMPC to nonlinear submarine,” Nonlinear Model
Predictive Control, pp. 461–471, 2000.

8

