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Abstract

Full Stack engineering in Robot Open Autonomous Racing

by

Michael Wu

Masters of Electrical Engineering and Computer Science in Electrical Engineering and
Computer Science

University of California, Berkeley

Professor Shankar Sastry, Chair

Autonomous Driving is a research topic that daunts many generations of engineers. With
the advancement of AI and computing power, academia and industry has made significant
progress in recent decade. However, high fragmentation, incompatibility across fields, and
high initial cost still poses a tall barrier to entry prevents junior engineers such as student
researcher or even grade school learners to get started, not even so to contribute to real
world problems.

The purpose of this paper is to introduce my contributions in the development of the novel
system ROAR [23] that attempts to address the problem of fragmentation, incompatibility,
and high cost in the autonomous driving industry. ROAR, name originally created for
Robot Open Autonomous Racing, is a competition that encourages young students to get
their first experience with engineering, allow researchers to advance their project without
spending years on infrastructure, and a platform where extra components can be added with
ease.

This paper first will go over the high level design principles and rationals in the Introduc-
tion section. Then it will go into details, touch upon a wide variety of technical topics,
including 3D design, electrical engineering, vehicle dynamics, embedded systems, wireless
communications, software architectures, advanced algorithms, and much more. This paper
will outline the engineering effort in ROAR from design to actual implementation and the
eventual verification and testing.
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Forwards

This paper introduces my approaches and thoughts in designing and implementing the ROAR
platform and all of its associations. There might not be much ground-breaking new discov-
eries, but will have details on the roadblocks and solutions discovered during my journey in
all engineering parts of a product. This paper’s goal is to encourage more researches to get
first person view into what is it like to be ”Full Stack” in the field and avoid some pitfalls
that I might have encountered.

Summary of My Contribution

It would be difficult to itemize my contributions since I worked on almost all aspects of
ROAR’s design from hardware to software. I have started working on the ROAR project
since the summer of my Sophomore to Junior year in college – it has been almost 3 years
since I worked on the project.

Initially joining the project in effort to bring up a simulation to satisfy research need
during the COVID pandemic, I gradually expanded my role into the software architecture
design of the entire system that unifies the data types, pipelines and processes. And then got
my hands dirty with actual hardware and the embedded systems, personally leading over two
iterations of hardware major renovations and a complete rewrite of the embedded systems. I
also created a robust, lo-latency communication systems for the different components battle
tested by dozens of other students. And lastly I contributed several modules to the Perception
and Controls stack, with light breezes in the Plannings field.
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Chapter 1

Introduction

Ralph Teetor introduced Cruise Control in 1948; 50 years later, in 1995, GPS was introduced
US manufactured cars; fast forward now after the boom of AI, 5G and other technologies,
we are on the verge of achieving level 5 autonomy. One major problem is the difficulty in
accessing corner cases in complex real life scenarios. And that problem root itself in the fact
that the development of autonomous driving technology is Fragmented, incompatibilities
across ecosystems, high cost for entry.

Figure 1.1: Comparisons of low end platofmrs
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1.1 Motivation

In recent decades, organizations and events such as the DARPA Grand Challenge [27], the
Indy Autonomous Challenege [14] provided many hypes and hopes around when would level
5 capabilities finally come. There are a variety of companies leading the development of
level 4 or 5 capabilities such as Tesla, Cruise, Waymo, Baidu, and et cetera. The core issue
is that there needs to be more qualified engineer who can uncover all the edge cases and
make the technology safe. Unfortunately the road to from academia research to real world
application is a very Fragmented. Figure 1.1 demonstrates some popular platforms that
people uses. RACECAR and F1tenth both are rooted from autonomous driving research
at MIT and UPenn, respectively. Their goals are most similar to those of ours. However,
employing Nvidia TX2 and Hokuyo LIDAR makes these cars a lot more heavy, power-hungry,
and expensive. For example, a single Hokuyo 10LX LIDAR itself would be three times as
expensive as the BOM cost of ROAR reference design.

When evaluating these scale model AI car platforms, we concluded that none of the exist-
ing platforms is an ideal platform to develop the EIR curriculum at Berkeley. For example,
Duckiebot and Donkey use very low-cost chassis (1/16 or smaller) and low-end compute
systems (Raspberry Pi plus a webcam).AWS Deepracer is a proprietary platform that is
difficult to expand beyond its single webcam setup. The system prioritizes to perform most
deep learning tasks on the AWS cloud, hence is not suitable to pursue extreme performance
and extreme compatibility.

On a cheaper end, many Arduino or ESP based vehicles such as Freenove Smart Car
[12] also emerged with cost typically under 100 dollars, unfortunately, most of those vehicles
are differential drive, which is very different from the Ackermann drive mechanism that real
vehicle uses.

The ROAR reference design is designed to pair with a variety of 1/10 scale RC car chassis.
The 1/10 scale was chosen to have sufficient onboard space to later integrate DL-compatible
compute modules and VR-compatible sensing and streaming modules. In our development,
we have chosen Traxxas 4-Tec RC platform, which can be configured very flexibly to use a
brushed motor to reach 35 mph or a brushless motor to reach 70 mph speed (the choice also
affects its price to be either $226 or $376). Other similar RC car chassis at even lower prices
can also be adopted to pair with ROAR reference design, such as Traxxas Rustler 2WD at
$179 and Hosim Cross-Country truck at even lower $110.

Therefore the original ROAR platform came out of the need for a platform where starting
up is easy, learning curve is gradual and not dependent on previous experience, and advanced
research and add-ons are possible.

ROAR Junior emerged out of the finding that much of what ROAR do are in the software.
Our design made it difficult for users to alter the embedded system’s behaviors, and that
is not what we’d like to see in an education experience. Therefore, we studied closely some
Arduino based robots on the market and created our custom version where incremental
updates is possible, thus lowering the learning curve and add interest and joy in the user
experience. Since the majority of the disucssion in this paper will be centered around ROAR,
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Figure 1.2: Coursera Self Driving Car Specialization Autonomous Driving pipeline

details of ROAR Junior will be moved to the Appendix section.
Lastly the collaboration with University of Hawaii (UHI) and University of California,

San Diego (UCSD) let us realize that more complex software solutions require a common
middleware, and it seems like ROS2 is the future direction to go [6]. We advanced on
development of the ROAR-ROS2-Bridge that made our softwares compatible and made
progress in further developments under the ROS2 middleware.

1.2 Related Work

In this section, I will go over briefly the entire pipeline of autonomous driving and what
inspired me to dig deeper and try out certain algorithms. This section is meant to cover
on a high level the algorithms that I’ve looked into. More detailed discussion is available in
later chapters.

Autonomous Driving Life Cycle

Coursera’s Self Driving Car Specialization Course [34] is probably one of the most famous
courses that teach beginners about the whole lifecycle of self driving. One of the main
knowledge that they proposed is the autonomous driving data pipeline which I will summarize
in Figure 1.2. Similar pipeline is also proposed by Betz et.al in the paper Autonomous
Vehicles on the Edge: A Survey on Autonomous Vehicle Racing [1], a figure of is attached in
1.3. The overall designs are very similar where sensors capture environmental data, which
passes into perception for Localization and Detection modules; the output then is fed into
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Figure 1.3: Betz et. al Autonomous Vehicles on the Edge: A Survey on Autonomous Vehicle
Racing Autonomous driving pipeline including both hardware and software that provides
the categorization for the survey in the field of autonomous racing

the planning modules for prediction and motion control; and lastly is fed into a Controls
module that will eventually actuate the motor and steering.

Perception

Perception is a general terminology related to two major tasks:

• Detecting & Tracking obstacles

• Localization

For detecting and tracking obstacles, a neural net is most often being used. Author Ankit
Sachan detailed the variety of object tracking methods in his article Zero to Hero [37], and
stated that the difficulties may include Occlusion, Identity Switches, Motion Blur, ViewPoint
variation, Scale Change, Background Clutters, Illumination Variation, and Low Resolution.
He further proposed that a Yolo + Long Short Term Memory (LSTM) + CNN based neural
net is very popular for the task of detecting and Tracking obstacles. The image pipeline is
demonstrated in Figure 1.4. DeepSORT, on another hand, is also a pipeline popular for the
Detection and Tracking task. Originally proposed by Wojke et. al, DeepSORT [35] is an
extension on Simple Online Realtime Tracking for multiple object detection with an addition
of a deep association metric for more accuracy. Ritesh Kanjee gave a really great beginner’s
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Figure 1.4: Yolo with LSTM diagram

Figure 1.5: DeepSORT algorithm

introduction on the algorithm [8]. An summary of DeepSORT will be explained later and
the algorithm figure is attached in Figure 1.5

For our application, we are going to be mostly indoors, Biswas et. al’s Depth Camera
Based Indoor Mobile Robot Localization and Navigation [2] looked particularly interesting.
Their approach proved to us that using depth camera might be sufficient for our need. At
the same time, we also looked into Intel’s T265 Tracking Camera [30] to see if we can get a
solution ”out-of-box”. However the easiest and the most reliable solution would be one that
is ”out-side-in”. Similar how GPS would work, there will be base stations placed around
a room that can detect some sort of trackers that is attached to the vehicle. Kunhoth et.
al wrote a survey on Indoor Positioning and wayfinding systems [17] that introduced the
variety indoor localization methods.
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Figure 1.6: Edward Fang Person behind Car Scenario Hybrid A*

Planning

Path planning for vehicles is a robotic decision making problem. Mincheul Kim reviewed
the major path planning algorithms in his thesis quite well [16], Edward Fang experimented
the variety of algorithms and their possible enhancements in his paper Dynamic Deadlines
in Motion Planning for Autonomous Driving Systems [11]. An example of the trajectory he
generated with in the Carla simulator is shown in Figure 1.6.

Behind all these algorithms lies the deep question of data structure. How do I represent
my world in an efficient way such that I can both easily update and also execute computation
using the data structure. Katrakazas et. al did a survey on Real-time motion planning
methods for autonomous on-road driving: State-of-the-art and future research directions
[15]. They listed a set of generic algorithms and their pros and cons as demonstrated in
Figure 1.7

Furthermore, many examples with code on both representation and path planning algo-
rithms are available on AtsushiSakai’s github [24].
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Figure 1.7: Map Representation Comparisons
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Controls

Controls has been a long studied problem in the field. I want to introduce a Medium Article
by Yan Ding [29] that compared three popular controls algorithms: Pure Pursuit, Stanley,
and MPC. All of these algorithms are similar in that they have a model of the vehicle
trajectory and is trying to fit or solve that optimization problem. At the same time, there
is another very generic controls scheme named PID controls that also proven useful in a
autonomous vehicles [19]
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Chapter 2

ROAR

The purpose of Robot Open Autonomous Racing (ROAR) is to bring autonomous driving
techniques and ideas to more audience, lowering the barrier to entry. Since I joined the
project, there has been two major updates of the hardware and software solutions. In
this chapter, I will first go over chronologically our advancements and then go into details
regarding our current setup. An overview of the system architecture can be found in Figure
2.1

2.1 ROAR with Jetson Nano

The design of the original ROAR is heavily influenced by the F 1/10 racer vehicles. Our
hardwares include

• Jetson Nano for on-board computing

• Vive Tracker for localization

• Arduino Nano for embedded systems communicating from computing unit to hardwares

• Traxxas 4-tec Chassis, motor, and Servo

• Intel RealSense D435i camera

• Custom designed upper chassis

• Arduino Cam for back camera

• 2 x 7.2V LiPo battery to power the ESC and the Jetson Nano seperately

Figure 2.2 and 2.3 demonstrate the full setup of the original ROAR vehicle.
This setup is on the expensive side: one vehicle of this setup will cost upward of $1500

dollars and the assembly time will be over 3 hours, not counting the 12 hour plus 3D printing
time for the custom designed chassis. However, this setup does prove to be simple to debug
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Figure 2.1: System diagram of ROAR Software Virtualization architecture. Through a care-
fully designed virtualization layer, learners who may not have skills or access to vehicle
hardware can still effectively learn and practice in Python, and test and deploy their exper-
iments on either graphics simulator or reinforcement learning gym environments.

Figure 2.2: Original ROAR vehicle design with Vive Tracker
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Figure 2.3: Original ROAR vehicle design with Vive Tracker

since all components work seperate from another and that the computation of autonomous
driving features happens onboard in Jetson Nano, which means that there will be little,
if none at all, in transmission delay. However, this setup is on-par, if not better than the
F1/10th setup due to better localization accuracy and computation power. We can do better
by further reducing the cost and assembly time for achieving the goal of reduced cost.

The Github for the ROAR Jetson repo can be found at this link: ROAR Jetson but is
currently deprecated.

2.2 ROAR with iPhone

Apple announced that all iPhones are going to have Lidar cameras on it starting from iPhone
12 Pro. That’s when we started considering the possibility of simplifying our hardware to
just using an iPhone because it has a depth sensor, a RGB camera, an IMU on-board, and
iPhone itself is a really strong computing unit with GPU support. And most likely, users
might have their own iPhone such that it does not add toward the overall cost of the vehicle.

Therefore, we designed our first generation iPhone mount as demonstrated in Figure 2.4.
This design significantly shortend the assembly time from several hours to minutes. and the
complexity of the system. The user simply need do four steps to get the vehicle up and
running:

1. Download the ROAR application

2. Wire the Arduino

https://github.com/augcog/ROAR_Jetson
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Figure 2.4: ROAR Car with iPhone mount

3. Install the iPhone mount

4. Plug the iPhone into the mount

And furthermore, the overall cost was reduced 75% from over $1500 to around $400
dollars excluding the cost of iPhone.

However, naturally, there will be pros and cons of this modification and the specifics will
be discussed in the Hardware section in this chapter.

2.3 ROAR Overall Design

The core design philosophies for the ROAR architecture are Simple, Versatile, and Extensi-
ble. It is meant to be a platform where first-time users have a pleasant time on-boarding,
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Figure 2.5: ROAR Car with iPhone mount

researchers have the ability to carry out in-depth studies in their particular interest, and
further add-ons can be easily integrated. Therefore, we have produced a system architecture
as shown in Figure 2.5.

We gave the pipeline that process the environment and output an actuation the name
ROAR Autonomous Systems. The ROAR Autonomous Systems will talk to various environ-
ment, be a simulation or an actual vehicle via a dedicated Bridge. For simulation, we have
chosen the Carla Simulator [10], and for Actuation, it could be either the Jetson version of
the ROAR vehicle or the iPhone version.

Furthermore, our code base will reflect this design principle using submodules. The
ROAR Autonomous System code base can be found at augcog/ROAR while its dependen-
cies to other environments can be found as a submodule such as ROAR Sim. The main
autonomous driving logic will be all in the main repo inside the ROAR directory which
further split out into agent module,control module,perception module,planning module, and
various other supporting modules that user can choose to combine for their specific use
cases. And to run the ROAR system, user simply need to interact with a runner xxx.py file
where xxx represent different platform (jetson, iOS, or sim)

This methodology of exposing only a runner script in the outer most layer introduce
abstraction barriers that exposes a short and easy-to-understand runner script for first time
user, lowering the on-boarding technical barrier. The design of using submodules creates
abstraction barriers so that high level engineers don’t need to worry about the cumber-

https://github.com/augcog/ROAR
https://github.com/augcog/ROAR_Sim/tree/2a42bab54a3f7c19a6253ed890f43be190863ec1
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Figure 2.6: Signal Wiring for ROAR with iPhone

some pipeline that sends their signal to the motors. And the distinct divide in Perception,
Plannning and Controls module encourage researchers to focus on their area while simply
conforming their input and output to the existing working code.

However, as we later found out, there are downsides in designing this entire pipeline
as well. Although this design proves to be easy to get-started, it is hard to implement
parallelism, and the core culprit is due to Python’s Global Interpreter Lock (GIL) [9]. And
this is one of the reason why we started working on a ROS2 Bridge integration which will
be discussed later in the chapter.

2.4 Hardware

As previously discussed, iPhone replaced our old setup of using multiple individual com-
ponents and the impact this design change led to are reduced assembly time and system
complexity.

The only wiring the user needs to do would be to wire up the signal outputs from the
Arduino to the Servo and Electronic Speed Control (ESC) as demonstrated in Figure 2.6
and also in Table 2.4. One can safely disregard D3 and D4 if remote control is not needed
at all.

Aside from wiring, the iPhone mount was easy to put on but comes at some disadvantages
as we expanded the program and had more students to test it.
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Arduino Pin Destination Pin Description
D3 Receiver Ch2 Remote control Steering
D4 Receiver Ch1 Remote control Throttle
D5 ESC Signal Throttle command from Arduino
D6 Servo Signal Steering command from Arduino

Table 2.1: Arduino Wiring Table

Figure 2.7: New iPhone mount with more structural integrity

The first disadvantage is that because the iPhone is placed in the very front, user’s can’t
actually see the front of the car and therefore lost sense of ”depth”, and led to difficulty in
manual control in some cases.

The second disadvantage relate to impact absorbance of the iPhone mount. We have
taken extreme precaution when designing the iPhone protector. However, when impact
happens, very often the iPhone is fine, but the mount is broken in two. And after extensive
testing, we found that it is due to the fact that the iPhone sits at 90 degrees in the front
of the vehicle, when experiencing impact, all the forces will turn into torque and be exerted
onto the middle of the iPhone mount, which is simply a 3D printed 5 mm thick PLA plastic
that will easily break. Our solution is to move the iPhone more toward the back so we let
the vehicle’s front bumper to absorb more impact and also to design a triangular support
structure such that the mount itself is more structurally in-tact as seen in Figure 2.7



CHAPTER 2. ROAR 16

2.5 Embedded Systems

The embedded side of the ROAR system is relatively simple. In the original ROAR where we
have Jetson Nano communicating to Aruidno via a Serial connection, we had the message to
be in the format of (THROTTLE, STEERING). And after switching to iPhone, we decided
to use Bluetooth Low Energy (BLE) [3] as our communication scheme, but keeps our message
format.

We later switched from Arduino to ESP32-Cam since they can be substituted with a
84% decrease in cost from $30 to $6. In this paper, will refer to both Arduino and ESP32
as Arduino since it is a more commonly used chip, but note that in actual implementation,
ESP32 is used. A picture of both chip can be found in Figure 2.8

As demonstrated in Figure 2.9, we utilize Arduino’s Servo [26] library to issue commands
from the board to the ESC. 2000 represent full throttle forward, or full right in steering. 1500
represent neutral in throttle, or roughly straight in steering (in reality, the steering rod might
not be attached to the center of the servo, and therefore, the reading is not accurate. The
steering rod itself would require tuning to be straight); 1000 represent full throttle backward,
or full left in steering.

According to the Traxxas documentation [20], the braking function is enabled if the
ESC is in the training mode and will be activated when user suddenly shift from forward
to backward mode. This is an un-desired behavior because the higher level algorithm is
going to expect that when it issues a backward command, the vehicle will execute as is,
and not having any extra steps to overwrite it. Therefore, it is critical to do so in the
embedded systems to hide it from higher level algorithms. As demonstrated in Figure 2.9,
the ensure smooth transition function’s job is to ensure the execution of the Finite State
Machine. If the vehicle transit from the Forward state to the Reverse state, the transition
will involve an execution of neutral, slight reverse, and neutral in order and each of 10 ms.

2.6 Communication Pipeline

There are two main communication that happens in real time: the communication between
iPhone and the Arduino; and the communication between the iPhone and the PC.

The communication between the iPhone and the Arduino is carried out via Bluetooth
Low Energy. In BLE, a message is of length 20 bytes or less. Fortunately, our scheme of
(THROTTLE, STEERING) is gauranteed 11 bytes long because ”(”, ”,” and ”)” takes 3
bytes, and throttle and steering are 4 byte char from 1000 to 2000. Therefore 4+4+3 = 11
bytes.

It is indeed not the optimal approach in sending data – the best approach should be to
send it as a concatenated 8 byte Integer. However, at this point, we had many vehicles on
the ground already and the parsing of string seems to be trivial in computation time and
therefore we decided to follow the idiom ”if it isn’t broken, don’t fix it”.

The Arduino code can be found here: ROAR ios arduino.

https://github.com/wuxiaohua1011/ROAR_iOS/blob/main/arduino/nano_ble_33/nano_ble_33.ino
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Figure 2.8: Left is ESP-32 Cam, Right is Arduino Nano BLE Sense
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Figure 2.9: Embedded system Ensure Smooth Transition

The first version of communication between the iPhone and the PC was implemented
using WebSockets [28]. WebSockets are easy to use and get started. Unfortunately, in
the back end, it uses TCP communication, which guarantees delivery but not speed and
therefore in reality, we often see lagged frames. And this phenomenon was not discovered
during development, where signal noise was minimized, and communication was near perfect
with no lost packets. However, when more students started using the application in Cory
Hall, where wireless signals are very crowded, we start seeing bad behaviors.

We attempted to look into Google’s WebRTC, Apple’s HTTP Live Stream, or GStreamer,
but unfortunately, they are either too complicated to setup, not a real time (latency ¡ 10
ms) solution, or just don’t have sufficient ecosystems for us to start development.

Our conclusion is that we need to start off with the UDP protocol and design a trans-
mission algorithm on top of that. A visual figure of the algorithm can be found in Table 2.2,
2.3, 2.4.
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It is assumed that reader knows the difference between UDP and TCP and the charac-
teristics of UDP. A good summary of the UDP protocol can be found on Wikipedia [32].

The general idea of our algorithm is that the Server (iPhone) will receive a request to
send data. And the server will then chunk and send over the data with each chunk containing
a header for later decoding purpose. Now there are three cases that we need to consider:

1. No packet loss 2.2

2. ACK packet is lost (The client sent request but the server did not receive it) 2.3

3. Content loss (There is a content packet lost in transmission) 2.4

For normal sequence where no packet is dropped, the client (PC) will first send an ACK
to the iPhone, and wait within Ttimeout to hear back from the server. The message will be
in the format of

xxxyyyzzzDATA

where xxx represent the current chunk counter, yyy represent the total number of chunks,
and zzz is temporarily left as a placeholder, and DATA will have a maximum length of 9000
(since Mac has a default UDP packet size of 9216, if we want all systems to be compatible
by default, we have to choose a lower bound).

Take RGB image as a concrete example, assume that the RGB image, along with the
camera intrinsics needs to be sent over. The RGB data needs to be sliced into 10 chunks.
Therefore, the number of chunks required for an RGB image will be maximum 11 (10 for
sliced up RGB data, 1 for intrinsics). Then it will look like the following:

’|’ is a delimeter for visual explanation purpose

001|011|000|INTRINSICS_DATA|RGB_DATA1 --> Chunk 1

002|011|000|RGB_DATA2 --> Chunk 2

003|011|000|RGB_DATA3 --> Chunk 3

...

011|011|000|RGB_DATA10 --> Chunk 11

As for the client side, we not only need to decode the content correctly, but also needs to
find a good balance of Ttimeout so that we are not simply discarding all of our messages due
to long waits, or are not just waiting for a message that was lost in transmission. A good
Ttimeout with some experiment turned out to be 0.1 seconds. And it makes sense because it
implies that the algorithm can lag for at most 10 frame per second and still be useful. This
number can be further tuned if wireless environment is known to be not congested.

The code for the client can be found ROAR iOS and the code for the iPhone server can
be found ROAR xcode iOS

https://github.com/wuxiaohua1011/ROAR_iOS/blob/main/udp_receiver.py
https://github.com/wuxiaohua1011/ROAR_iOS_xcode/tree/main/ROAR
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Time A B
1 Send Ack
2 Recv Ack and send data 0 with header
3 data 1
4 data 2

... ...
n data n

Table 2.2: No packet drop UDP communication

Time A B
1 Send Ack
2 did not receive ACK
3 TImeout, send ACK again
4 Recv Ack and send data 0 with header
5 data 1
6 data 2

... ...
n data n

Table 2.3: Send Ack dropped UDP Sequence example

Time A B
1 Send Ack
2 Recv Ack and send data 0 with header
3 data 2
4

... ...
n data n

data drop discovered, abandon

Table 2.4: Content Drop UDP Communication Example
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2.7 Software (Python)

About Entry points

As previously discussed, one of the design philosophy is to allow easy on-boarding for new
users. Therefore, all the entry points for the program are easily identified as runner xxx.py.
As of now, we support runner sim.py and runner ios.py and have deprecated the support for
runner jetson.py.

About Connection to environments

Here, let’s define environment to be the downstream pipeline that supplies ROAR the data
it needs, and takes the throttle and steering it outputs.

For each runner (or environment), there is a respective xxx runner.py file in the submod-
ule that supports the connection between the higher level algorithms to the actual environ-
ment. For example, the carla runner.py in the ROAR sim repository supports the connection
of ROAR against the Carla environment. And similarly, ios runner in the ROAR ios repo
will support the connection for iOS environment.

Every runner will follow similar format with PyGame [22] as the main driver for display
and parse user inputs:

func setup() // setup environment & connections

func start() // run an infinite loop that drives the game

func finish() // safely tears down connections

About Abstractions and Hierarchy

The purpose of Abstractions and Hierarchy is to encourage researchers to focus more on the
algorithm rather than the infrastructure that ties together the algorithms into the system.

Most classes in ROAR conforms to a Module where it defines

func init() // safely initialize the class

func run_in_series() // the step function

func shutdown() // safely tears down

func save() // called every step for saving data

The run in series function defines what should this particular module do on every step.
For example, if the user were to implement an object detection algorithm, they will need to
implement the run in series and don’t need to worry about how to run it in parallel from
the other modules. We also have a generic definition of Agent, where a predefined method
for sensor initialization, recording and tear down is implemented so that user don’t have to
dig deep into the infrastructure.

For all the data types, we have a predefined data structure models implemented on top of
the library Pydantic [21]. Pydantic is a great library for data validation and the usage for us

https://github.com/augcog/ROAR_Sim/blob/master/carla_client/carla_runner.py
https://github.com/wuxiaohua1011/ROAR_iOS/blob/main/ios_runner.py
https://github.com/augcog/ROAR/blob/main/ROAR/utilities_module/module.py
https://github.com/augcog/ROAR/blob/main/ROAR/agent_module/agent.py
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is to ensure that the data types entering ROAR is compatible across different platforms. For
example, the Depth data entering the ROAR system via the simulator and the real world
should be at least similar in their shape and format.

2.8 Simulation

The need for simulation rose out of the COVID pandemic, when the research group decided
that it was unfeasible to build and ship everyone an individual vehicle and maintain the
inventory. We wanted a simulator that can provide the same type of sensor data as the
actual sensors in the world, namely, Depth data, Front and back RGB data, GPS signal,
and the ability to customize track and environment such that we can test on a variety of
scenarios.

Carla [10] is a simulation that satisfy all those criteria with a massive open sourced
ecosystem. Furthermore, Carla has a very well documented Python API and ROS bridge
that will help us to get started quickly.

CARLA has been developed by both industrial stakeholders such as Intel and Toyota and
other individual contributors. Using Unreal 4 engine, the simulator can simulate multiple
vehicles driving in urban environments (including programmable traffic lights and added
pedestrians), and provide ground truth vehicle localization and RGB and depth camera
data. The system is implemented in a client/server architecture, where multiple vehicle
agents can be connected as clients to a common simulated driving environment controlled
by a CARLA server. The software supports Python programming of the client algorithm
and further uses pygame module to render the simulated environment, as shown in Figure
2.10

Carla uses a Server-Client model as seen in Figure 2.11 the server is the actual game, and
developers can use a client to talk to the server and thus controls the actors in the server.
Carla is built on Unreal Engine, which is renown for its ability to produce photo-realistic
rendering, computation of physics and much more. A more complete description of Carla
can be found on their official documentation.

After looking through some example files in Carla, we decided to fit it all into the ROAR
Infrastructure model by creating a Simulation submodule. The specific implementation will
be left for the reader to explore in the code, here is an overview of what the submodule
contains:

1. carla runner.py that allows ROAR to interact with Carla

2. *.egg files that represents the compiled Python API corresponding to each Server
release

3. camera manager.py that manages the different cameras

4. world.py that manages the interaction with the Carla World

https://carla.readthedocs.io/en/latest/start_introduction/
https://github.com/augcog/ROAR_Sim/tree/master
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Figure 2.10: A screenshot of the CARLA simulator environment. The red car is controlled by
a ROAR Python agent. Other vehicles can also be added to follow certain pre-programmed
waypoints that share the same road. The simulator can also generate common vehicle sensor
data, which is not shown here.

Figure 2.11: Carla Server and Client model
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Figure 2.12: Berkeley Minor in Carla

5. sensors.py that creates definites for sensors

6. hud.py that manages the display shown to user

With this set of API, we are able to stream the data from Carla Server, conform it to
what ROAR expect and use the simulation as our alternative to actual vehicles.

Map making in Carla

Besides setting up the connection, we also attempted to create our own map in Carla. Figure
2.12 showcase Berkeley Minor that we constructed in Carla.

We took 4 steps in generating this map:

1. Go to Google Map to find out the rough outline of the map

2. Use RoadRunner to import the map in OpenStreetMap format

3. Create the building assets in 3D modeling software such as Maya or TinkerCAD

4. Import the xodr file generated from RoadRunner into Carla and drag and drop the 3D
assets onto the map.

https://carla.readthedocs.io/en/latest/tuto_M_generate_map/
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Figure 2.13: Model Based RL Pipeline

This method of generating map does not give Carla the information of semantic segmenta-
tion and therefore of course in the downstream pipeline, ground truth semantic segmentation
will return meaningless data. However, sensors such as depth sensor, Lidar, etc still works as
intended. We found that for racing purpose, we don’t really need to do fine grained semantic
segmentation and therefore this did not yield significant roadblock for us.

2.9 ROAR Gym Integration

OpenAI Gym [5] is a framwork that supports a variety of Reinforcement Learning algorithms.
In order to support continuous development in a common infrastructure for RL, we decided
to implement a bridge between ROAR and the OpenAI Gym environment.

In essence, a gym environment is a framework that outlines the neccesary steps for
reinforcement learning. Figure 2.13 demonstrate a model based RL pipeline. The role that
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Figure 2.14: ROAR ROS2 transform hierarchy and message pipeline

the OpenAI Gym play in this particular diagram is to define pipeline for model and policy
and upstream user can implement the exact data types of the input and output.

Below are some functions that user can choose to implement

def __init__() // initialize the Gym environment

def reset() // function called when reset of the environment is triggered

def step(action) // function called when stepping in the environment

def is_terminate() // function called to decide whether an episode has ended

The ROAR Gym package interact with ROAR Sim to help user define a set framework
for re-initializing the Carla environment and fetching the correct output from the simulation.
A more detailed example of RL based PID control and a model based end-to-end agent will
be discussed in later chapter.

2.10 ROS2 Integration

As our system expand, we found that the Python Global Interpreter Lock (GIL) [9] really
limit what we can do.

For example, out algorithm for ground plane detection will work at a maximum of 10
FPS, however, the will impact our down stream controller to run slower as well. This
causes significant problem in the parallelism of the system despite having Multi Threading
implemented.

Furthermore, the need for more advanced and ready-to-use solutions for planning is also
on the rise. ROS2’s Nav2 [18] package served as a great example of the package that we
wanted to try.

Figure 2.14 and 2.15 demonstrate our setup of the ROAR vehicle. The link between
iPhone and all other components on the vehicle such as the wheels, base, and iPhone mount
are all statically defined. The transform sent from the iPhone will be used to define the
transform between the odometry frame and the iPhone Link frame.

https://github.com/augcog/ROAR_gym
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Figure 2.15: ROS2 Robot Model Display

2.11 Virtual Reality Integration

Virtual Reality can provide a safe yet low-cost alternative for testing autonomous driving
features and customer experience. VR based test platforms can reduce cost, accelerate
development, and mitigate the risk of testing autonomous vehicles on the road [36]. VR
allows the users to drive the vehicle and supervise the autopilot in a safe manner, and the
immersive environment can engage drivers deeply.

Our system is based on the Unity platform using Oculus Rift S as our headset. Our
software contain three major modules: control, display, and data streaming. An example is
shown in Figure 2.16 and also a video of the demo can be found in youtube.

Figure 2.17 demonstrate a overview of how all the components tie together
The requirement for data streaming is that it has to be low latency. We decided that

since we still wanted to use Python as our decision making pipeline, and use Unity simply
as a display, we are going to run a UDP server on Python to stream out the data that it
received from iPhone. But at the same time, this pipeline can also directly skip Python to
have the Unity to directly control the vehicle as well. Therefore, we ensured that Python
will encode information the exact same way that the iPhone encodes it. The code for Unity
can be found at this link. We are able to achieve over 25 FPS, and that does satisfy our
requirement for real-time, low-latency streaming service.

The display and control modules in our system take image and vehicle status as input
and gather user control as output. The image streamer receives encoded RGB images and
then decodes them into original images. The image then is converted to texture in the virtual

https://www.youtube.com/watch?v=yPlHICnEAyk
https://github.com/wuxiaohua1011/cs_294_final_proj/blob/main/Assets/Script/UDP_receiver.cs
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Figure 2.16: ROAR VR Demonstration. Also available on Youtube

3D environment. The up-to-date driving environment will be displayed in the Oculus Rift
headset for the user. The control module takes input from the VR controller and maps them
into control signals, throttle and steering. The throttle is determined by the trigger on the
controller and has a larger magnitude when the trigger is pulled tighter. The steering can be
controlled by the joystick and rotation of the controller. Using the rotation of the controller
provides more freedom to precisely control steering.

In our virtual driving environment, users can control the vehicles manually or supervise
the autopilot, which is semi-autonomous driving. Users sit in a simulated vehicle with
realistic car interiors. The steering wheel represents the control steering and the dashboard
with indicators shows the speed. When the car is moving, the car itself maintains stability
and only the outside environment, the streaming RGB image, is changing. By this manner,
our VR system can reduce discomfort associated with intensive locomotion.

The VR Integration is part of the Berkeley CS 294 Augmented Reality and Virtual Reality
final course project [7]. The final paper can be found on this link and we also have a website
on behance

https://www.youtube.com/watch?v=yPlHICnEAyk
https://docs.google.com/document/d/1AoSBnu_8Un99gK_JZdPl6loAoctyg3x_gBlyoG3dOgk/edit?usp=sharing
https://www.behance.net/gallery/132784211/CS-294-ROAR?tracking_source=search_projects_recommended%7CCS294-137
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Figure 2.17: System Diagram for ROAR with Virtual Reality integration
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2.12 Miscellaneous Discussions

Visual Odometry SLAM accuracy and precision on iOS

Visual Inertia SLAM, as the name suggest, is to combine the use of visual elements, or RGB
image, and Odometry information, or IMU, to produce a localization estimate.

For our purpose, we needed the localization to be precise, but not necessarily accurate.
The reason behind is that the data can deviate from actual ground truth, but between each
run, they should deviate with the same amount. For example, if all data are drifted by 5
meters, that is fine. But if Trial 1 drift by 5 meters, trial 2 by 2 meters, then there will be
a problem.

We decided to take advantage of Apple’s AR Kit’s World Tracking feature to help us
achieve Visual Odometry SLAM. Apple’s Understanding World Tracking [31] has a great
description of the feature. We have found that although this is a great technique in most
scenarios, it does not always work.

This technique does not work outdoors, especially where there is direct sunlight exposure,
uneven ground, and non-distinguishable features. We have tested in an outdoor parking lot.
The result was discouraging – the ARKit returned us data that are very noisy and does not
look like the track that we intended to drive on. And looking from the camera’s perspective,
due to the asphalt ground, we see that the phone vibrates a lot, which probably introduced
extensive noise into the IMU. Furthermore, the featureless scene and the differences in sun
exposure further deteriorate the performance of such system. Therefore, for small outdoor
space, an outside-in localization system such as RTKGPS localization system is still preferred
over the inside-out SLAM.

When we moved indoor, the amount of features and the ability for loop closure still
play an important role in obtaining accurate localization data. We have done an extensive
experiment to understand the kind of environment we need.

We divided SLAM into distinct two parts – Calibration and Localization. In the Cali-
bration phase, we drove the vehicle 4 laps around the same track, attempting the have the
iPhone ”remember” the passive features of the track and thus build a map. Then, we will
do 3 more runs, recording the x, y coordinates in which the iPhone reported, and plot it out.

For our controls group, we will have a scene where there is only one active Anchor point
– the world center. In the testing group, we will place active Anchor points at strategic
locations, such as places where turns, up and down ramp, or other movement that can
unstablize the iPhone.

Figure 2.18 demonstrate the result of our controls group with only single image anchor.
It is clear to see that although the general shape of the trajectories are similar, their precision
is very low. And also, as time goes on (the vehicle start at roughly (1,0) on the right hand
side, and then goes down toward (1,-8) in the lower right hand side, the deviation becomes
more severe. There are sometimes drops in data, and that might be caused by both jumps
in actual localization output or due to UDP transmission losses. These are all expected –
as more vibration and noise are accumulated without seeing another calibration marker, the
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Figure 2.18: Single Image Anchor. Left is individual run; Right is three run overlapped.
Clear deviation as time goes on and low precision between the runs.

Visual Odometry SLAM is doomed to experience deviation.
Figure 2.19 demonstrate the result of our testing group with multiple image anchors

placed at strategic locations. It is clear to see that the precision increased dramatically al-
though there are still some minor differences, and also as time goes on, the effect of drifting
starts to appear. We attribute some of the drifting due to the fact that the vehicles were
driven by hand and that there might be manual error introduced in the trajectory. Further-
more, we found that the more laps we drive, the more accurate it is. This might be because
when we are driving, the image is not that stable, and by driving lots of time, ARKit is able
to build a better represenation of the world using feature points collected from each trial.
And we can see that happening because on Lap 1, when the vehicle has driven a lap in the
real world, in the localization data plot, we can see that it was still pretty far away from
the starting point – an effect of drifting. But as we drive more in the same scenario, in the
localized data plot, the vehicle begin to close the loop.

From comparing the result of this experiment, we can conclude the following:

• Multiple image anchors can enhance localization accuracy, but ONLY of calibration is
done right

• Image anchors must be placed at strategic locations, such as turns and up or down
ramp, and must be clearly visible.

• Calibration is successful if the world center AR marker sticks in the origin when driven
a lap around.
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Figure 2.19: Multi Image Anchor. Left is individual run; Right is three run overlapped.
Deviation is lower, precision is higher.

• Visual Inertia SLAM suffer from drifting IMU and blurry image readings, therefore we
need to stabilize iPhone at all cost and have a very robust calibration map.
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Chapter 3

Autonomous Driving Algorithms

My work during my 5th year master was mostly on infrastructure. However, I have also
touched upon some interesting autonomous algorithms. Here are a list of them that I wanted
to talk deeper about.

3.1 Perception

DeepSORT

DeepSORT, proposed by Wojke et. al [35] is an improvement upon Simple Online and
Realtime Tracking (SORT) algorithm featuring using a Deep Association Metric.

To understand the problem, we need to understand what are the traditional methods’
pitfall, and how did DeepSORT solve it.

Mean shift and Optical flow are two traditional methods for object tracking.
Mean shift operate using a similarity function to figure out the best chunk of pixels

or features in the next frame. For example, in Frame 1, the detector found an object
of interest, the in Fame 2, we will start searching in a bigger area of interest, and use
that similarity function to compute the smallest bounding area that minimize our similarity
function. Unfortunately, this method, although simple, has the pitfall that it is potentially
computationally intensive and will lose tracking during times of occlusion.

Optical Flow is another technique that looks at the motion of features due to the relative
motion across frames. If the object of interest is moving in a certain constant velocity, then
we will be able to track, even predict the object in the next frame. However, the major
downside is that this method is prone to noise, and the motion of the object has to stay
relatively stable.

Simple Online Sort Realtime Tracking (SORT) is an algorithm that can mitigate issues
mentioned above. SORT operate in four steps:

1. Detection

2. Estimation
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Figure 3.1: IOU Visual Diagram

3. Association

4. Track identity creation and destruction

For detection, there are many options to choose from. Neural nets such as Yolo, FRCNN,
and many more can produce great results. However, the quality of detection plays a big role
in tracking performance. And the output of this module is bounding boxes and confidence
ratings.

For the estimation step, we need to propagate the detections from the current frame to the
next using a linear constant velocity model with Kalman Filter. If a detection is associated to
a target, then its velocity model will be updated via the Kalman Filter framework. However,
if no detection is associated to the target, it is simply predicted without correction to its
linear model. We would assign detections to existing targets by using a cost matrix computed
using intersection-over-union (IOU) distance. The assignment is solved optimally using the
Hungarian Algorithm [25]. Figure 3.1 demonstrate visually what an IOU is.

Now lastly, Track Identity Life Cycle is a process where we assign and destroy each
identity. We consider any detection with IOU greater than IOUmin to trigger the existence
of an untracked object. The tracker is initialized with velocity covariance being infinity since
at frame 0, the tracker just initialized and does not have an velocity estimate. Furthermore,
the new tracker will undergo a probation period tracker init time where target associate
with detection to accumulate enough evidence that tracking a false positive. For destruction,
if a tracker is lost for Tlost frames, we deem it lost and destroy the identity.

The Deep association metrics aims to resolve the issue that SORT still experiences prob-
lems during times of occlusion and different view points. We will build an Appearance
Description Vector by training a classifier until it reached good result and strip away the
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Figure 3.2: Appearance Descriptor Vector

final classification layer. The dense layer will produce a single feature vector. Figure 3.2
demonstrate the Appearance Descriptor Vector. Now, we use Mahalanobis distance as op-
posed to Euclidean distance for Measurement-to-track association (MTA) for determining
the relation between a measurement and an existing track.

Figure 3.3 demonstrate the end result. The code is available here.

Traffic Cone Detection

Obstacle Detection Via Ground Plane Detection

For a racing environment, we found that most of the view is going to be ground, with only
occasionally other vehicles in-sight.

The pipeline that we designed is to transform a depth image into a point cloud and then
find all the ground points in the point cloud and project it back onto a free space map. The
inverse of that free map would be simply the “occupancy map”. To simply the language, we
will be referring to the free space map interchangeably with the occupancy map. We utilized
the package OpenCV [4] and Open3D [38] to help us to process images and point cloud data
efficiently.

The equation s ∗ [u, v]T = K@[R, T ]@[x, y, z] states the relationship of coordinate trans-

https://github.com/wuxiaohua1011/deep_sort_ros2
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Figure 3.3: DeepSort Example. Full video available here

formation from depth images to world coordinate. s represent the scale, or the depth reading
at pixel u, v. R, T represent the Rotation matrix and the Translation vector from the camera
coordinate to the world coordinate, respectively. Krepresent the intrinsics matrices of the
camera, which is being streamed over with each depth image. X, Y, Z are the coordinates of
points in the world frame of reference. Unfortunately, the readings for R and T are not that
reliable – we suspect it is due to SLAM’s drifting and vehicle’s significant vibration leading
to unstable sensor reading – causing the data transformed into the world coordinate system
to be unstable. Therefore, we decided that we are going to do use the data in the camera
frame of reference, thus the equation simply becomes s ∗ [u, v]T = K@[x, y, z]

We are interested in the x and z coordinates. However, notice that x is in the range of
[-DEPTH, DEPTH]and z is in the range of (0, DEPTH]. Therefore, we need to do an affine
transformation of Coordoccu = SCALE * Coordcamera + SHIFT where we define SCALE
and SHIFTaccording to the desired occupancy map size and maximum depth. The resulting
image can be seen in Figure 3.4

https://www.youtube.com/watch?v=D64inL-MQp0
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Figure 3.4: Obstacle detection in the camera frame with LiDAR sensor. On the upper left
is Point Cloud, on the lower left is ground plane detection with three regions of interest

3.2 Planning

Waypoint Following

Figure 3.5 provides a visualization of the planning waypoint following plannint algorithm.
It will be assumed that this module will receive a list of waypoints at the start, and

will keep receiving updates for vehicle position. Furthermore, the list of waypoint will be
ordered, meaning the it will be A, B, C, D in sequence of contact during collection.

In classical waypoint following methods, in order to mitigate the issue brought forward
by messy GPS readings, engineers often calculate an average of the next n waypoints to
account for jitterness in the short term movements.

For ROAR, we found it more effective to revise this algorithm and base it off of distance
where r is a radius of next waypoints that we are going to skip. For example, point A in
Figure 3.5 is going to skipped, and the first point outside of searching radius point B is going
to be set as our target waypoint to follow in our controller.

Here is the pseudo code for the algorithm. The actual code can be found in the Loop-
SimpleWaypointFollowingLocalPlanner class

There are two values for users to adjust:

https://github.com/wuxiaohua1011/ROAR/blob/main/ROAR/planning_module/local_planner/loop_simple_waypoint_following_local_planner.py
https://github.com/wuxiaohua1011/ROAR/blob/main/ROAR/planning_module/local_planner/loop_simple_waypoint_following_local_planner.py
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Figure 3.5: Waypoint Following Example. r = searching radius. Red dots are waypoints.
Triangle is ego vehicle

• NUM TO SKIP = threshold value for number of waypoints to skip in the beginning.
This is to prevent the vehicle from turning in circle for trying to follow a point right
on top of it self.

• CLOSENESS THRESHOLD = the search radius r for how close the next waypoint
should be.

func find_next_waypoint():

closest_dist = inf

while True:

if current_waypoint_index == len(waypoints_queue):

# loop through from the start

current_waypoint_index = 0 + NUM_TO_SKIP

curr_dist = find_dist(waypoints_queue[current_waypoint_index]

if curr_dist < closest_dist:

# enter on first iteration only

curr_closest_dist = curr_dist

else if curr_dist < CLOSENESS_THRESHOLD:

# skip close waypoints

current_waypoint_index += 1

else:

# found waypoint that is far enough away

break

target_waypoint = waypoints_queue[current_waypoint_index]

return target_waypoint
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Figure 3.6: Lane Mask Example. Full video can be found at this link

Figure 3.7: Lane Following Finite State Machine

Lane Following

Lane Following is implemented in a Finite State Machine format. The input are RGB Image
for lane segmentation and to produce steering, and vehicle velocity for throttle control.

For detecting the lane, we used OpenCV’s thresholding function and applied a erode and
dilate mask for further refinement of the threshold mask. Furthermore, in certain scenarios
with significant light reflections that distort RGB colors, we also lay down two colored lanes
to ensure that we can reliably detect the lane. A video can be found at this link.

From obtaining a mask, we now want to compute the cost of deviation and translate that
to a steering command. It is not hard to imagine that the optimal line to follow should be
at the dead center of the image. And deviation on either the right or the left means that

https://youtu.be/i5oEIXyVCXU
https://youtu.be/i5oEIXyVCXU
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Figure 3.8: Vehicle Platooning using ARUCO Marker. Full video can be found here

the vehicle has deviated to either direction. To increase efficiency of the algorithm, we took
3 samples – one close, one mid distance, and one far. We scan, from the starting line, where
did we find the lane first on the masked image, and lastly, we take the priority in using the
pixel difference produced by the longest distance. Then we feed this error number into a
PID controller to find the steering output. The code can be accessed here.

However, it is very likely that at some point, the vehicle is going to miss the lane –
either because there is a sharp turn (for example, a 180 degree turn) or simply because the
underlying controller is not well tuned such that the PID steering does not perform well.
Figure 3.7 demonstrate the finite state diagram transitions

Platooning

One of the core issue in Platooning is communication. One way of communicating is by
attaching ARUCO markers on the rear end of the vehicle so that the follower can see how
much apart are the two vehicles.

A demonstration video can be found in Figure 3.8.
But there are significant limitations with this method:

1. If the two vehicles are too far apart, ARUCO marker will not be visible

2. On tight turns, the lead vehicle will turn a lot, causing the follower to lose sight of the
ARUCO easily

3. At high speed where the RGB image is unclear, ARUCO detection might be problem-
atic.

Therefore, we need a Vehicle to Vehicle (V2V) [33] communication method. We decided
to use UDP Multicast to simulate the V2V communication.

Multicast is a communication technique where data transmission is addressed to a group
of destination computers simultaneously. Multicast can be one-to-many or many-to-many
in form factor. In our specific application, we have enabled a many-to-many communication
despite having only 2 vehicles on hand to test with.

https://youtu.be/eTe7SQt9VB4
https://github.com/wuxiaohua1011/ROAR/blob/main/ROAR/agent_module/line_following_agent_2.py
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Figure 3.9: PID Controller Output example

With this method, the two vehicles can now transmit their locations to each other.
Our algorithm for platooning is relatively simple: The follower will simply move to a

certain distance D away from the lead vehicle and stop. It does not consider the vehicle
dynamics or any path planning components. However, this simple algorithm will demonstrate
the simple vehicle platooning scheme. A demonstration video can be found in Figure 3.12

3.3 Control

PID Controller

Proportional, Integral, and Derivative Controller is one of the most classical and widely
adapted controller for its simplicity.

To understand PID control, I think the easiest way is to look at its formula, and apply
it into a real example.

The PID Equation is as follows:

u(t) = Kpe(t) +Ki

∫
e(t) dx+Ke

de

dt
(3.1)

Where e(t) defines the error, Kp, Ki, andKe represent three gains. Put it into the context
of longitudinal controller, we can see that we would like to use the PID controller to adjust
our speed. For example, if our target speed (Vtarget) is 1 m/s. We can find out the error by
simply finding out e(t) = V (t)− Vtarget

And if we define some good Kp, Ki, and Ke after experimentation and plug it back into
the equation, we should get a plot that roughly looks like Figure 3.9.

PID can also be allied to steering. We can simply define the error as the angular difference
between the actual heading and the desired heading. Namely the following code snippet
demonstrate the purpose:
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Figure 3.10: Pure Pursuit Geometric Relationship Diagram

v_begin = self.transform.location.to_array()

direction_vector = [-sin(yaw), 0, -np.cos(yaw)]

v_end = v_begin + direction_vector

v_vec = [(v_end[0] - v_begin[0]), 0, (v_end[2] - v_begin[2])]

# calculate error projection

w_vec =

[

next_waypoint.x - v_begin[0],

0,

next_waypoint.z - v_begin[2],

]

)

v_vec_normed = v_vec / np.linalg.norm(v_vec)

w_vec_normed = w_vec / np.linalg.norm(w_vec)

error = np.arccos(v_vec_normed @ w_vec_normed.T)

_cross = np.cross(v_vec_normed, w_vec_normed)

if _cross[1] > 0:

error *= -1

The code for PID can be found here and the video link of PID working on a ROAR
vehicle can be found here.

https://github.com/wuxiaohua1011/ROAR/blob/main/ROAR/control_module/pid_controller.py?fbclid=IwAR2FvSHhgStReKUQU9mnrzmXtdz9N4yPmzxAe9JsKTrqmJkjsjODyrCQIK0
https://youtu.be/yzhcIlWTB_Y
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Pure Pursuit Controller

Pure Pursuit Controller, as explained by Coulter in his paper Implementation of Pure Pursuit
Path Tracking Algorithm [13] using only the geometry of the vehicle kinematics and the
reference path. Ding Yan [29] also did a great job in explaining it in a visual way. Using a
fixed distance look-ahead point, we can find steering angle δ by the following equation:

δ = arctan(
2Lsin(α)

ld
) (3.2)

where L is the distance between the wheel base, α is the current heading, and ld is the
distance to the look ahead waypoint. Figure 3.10 showcase the geometric relationship.

Now as vehicle dynamics is different under different speed, we would want to introduce
a varied look ahead distance as speed changes, therefore, the equation would be modified to
be:

δ = arctan(
2Lsin(α)

Kdd ∗ V
) (3.3)

where Kdd is the gain for user to tune for the term velocity(V )

Brake

Traxxas 4-tec, the standard vehicle we use, does not have physical brake. According to
Traxxas documentation [20], the braking function is enabled if the ESC is in the training
mode and will be activated when user suddenly shift from forward to backward mode. From
an autonomous driving perspective, having brakes does not equate to sudden shift from
forward to backward mode, it would be very confusing to the higher level algorithm engineer.
Therefore, as indicated in Chapter 2, the decision was to overwrite the ESC’s default braking
function in the embedded systems level, and we have to create customized algorithm at higher
level for faking the braking effect.

The method we decided to pursue is outlined as below.

Keep a queue of the past N frames of the throttle executed

When Brake is issued

# if we are going at low speed, no need to brake, friction will do the trick

if current_speed < SPEED_THRESHOLD:

return 0

# this must be a positive number since we are using speed as our error

output_throttle = Run a PID on the current speed reading as error

if the sum of the past N frames of throttle is positive:

output_throttle = -1 * output_throttle
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Figure 3.11: Finite State Machine for Lead vehicle and follower

return output_throttle

Surprisingly, this simple logic worked quite well in reality. A Youtube video demonstrat-
ing different level of PID gains is available here.

System Integration on Lane Following, Obstacle Avoidance and
Platooning

Previous sections described the implementation of the Lane Following, Obstacle Avoidance,
and Platooning functionalities individually. This section’s goal is to use a Finite State
Machine to connect these individual functions together. A complete demo video cam be
found in Figure 3.12

System FSM can be found in Figure 3.11
Code can be found at this github

https://youtu.be/bSFQjS8E6uk
https://github.com/wuxiaohua1011/ROAR/tree/follow
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Figure 3.12: System Integration of Lane Following, Obstacle Avoidance, and Platooning.
The Lead vehicle is doing Lane Following and obstacle Avoidance. The following vehicle
is doing obstacle avoidance and following the lead vehicle. Complete video available in
demonstration video

https://youtu.be/tyq9rtgQfGU
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Chapter 4

Appendix

4.1 ROAR Junior

The purpose of ROAR Junior is to even lower the barrier of entry into the autonomous driving
world by providing a solution that has a overall cost of under $100 dollars. Furthermore,
this platform will also have the capability for expansion so that complex maneuvers and
algorithms can be realized via higher level algorithms and add-on hardwares. The end goal
is to teach algorithms and principles in a low cost manner and having a flexible platform
that can adjust to the different requirements.

ROAR Junior Overall Design

As demonstrated in Figure 4.1 ROAR Junior consist of a 3D printed chassis, ESP32 CAM,
ultrasonic sensor, two 9V batteries, L298N motor controller, and four DC motors with wheels.
The design principle for the chassis is one that is simple yet extensible in layers. For ex-

Figure 4.1: ROAR Junior
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Name num Total Price num per pack Individual Price
3D printed Chassis 1 $2.00 1 $2.00
L298N + motor + wheels 1 $15.00 1 $15.00
ESP32 Cam 1 $36.00 6 $6.00
9V battery 2 $20.00 2 $20.00
9V battery plug 2 $6.00 10 $1.20
ultrasonic sensor 1 $15.00 5 $3.00
small breadboard 1 $12.00 12 $1.00
Total $48.20

Table 4.1: Bill of Material (BOM) of the ROAR Junior base layer

ample, user can choose to mount a second layer for installation of robotic arm without any
interference of the lower level, or user can choose to mount a bulldozer shovel in the front
for a game of obstacle removal. The program burnt on the chip is designed to be as simple
as possible so that the complex logic would go at user’s computer. This way, we not only
ensure that user can use a more friendly language such as Python to write higher level logic,
but also to have a method of remotely controlling the vehicle for faster debugging sessions.

Hardware

One of the key requirement is that the robot has to be of low cost. Table 4.1 list out the
price of each component at the time of writing this paper. The price is under $50 dollars if
user simply want to experience with the basic, yet there’s a lot that can be taught already:

• How does DC motor work

• How does ultrasonic sensor work

• How to process RGB image feeds

• How to implement a Bang Bang controller

For more advanced learners, tasks such as visual SLAM is possible because the ESP32
is not the main computing unit, client side’s computer can take the heavy lift of running a
visual SLAM algorithm for localization.

Embedded Systems

The core functionality of the embedded ESP32 Chip is to

1. Drive the vehicle by sending correct ENA, IN1,IN2,IN3, IN4, ENB signals
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Figure 4.2: L298N motor driver

2. Asynchronously receive and process HTTP GET command for vehicle control

3. Asynchronously manage camera captures and data stream

4. Asynchronously poll the Ultrasonic distance sensor

As Figure 4.2 shows, the input signals to the L298N motor are ENA, IN1,IN2, IN3, IN4,
and ENB.

For ROAR Junior, users would connect the two motors on the left to OUT1 and OUT2,
and the two on the right to OUT3 and OUT4. User would supply power to the motor
driving unit by placing 9V battery’s positive into +12V and Ground into GND. Although
it is possible to use the regulated 5V output for the ESP, it is not recommended for ROAR
Junior because in our testing, we found that in scenario where voltage drop is significant,
such as when motor needs to spin from forward to backward direction immediately, L298N
will have short second of short circuiting and causing the +5V to be not stable, thus shutting
down anything connected to it.

The ENA and ENB are for the PWM signals for MotorA and MotorB respectively. IN1,
IN2, IN3, and IN4 are to control the direction of the motor. Combining all these, users are
able to control the direction of each side of the differential drive, and also the magnitude of
the force exerted onto the drive train.

Communication Pipeline

For The Asynchronous HTTP server, we decided to use the ESPAsyncWebServer package.
Below is a list of routes being published:

/forward -> set IN pins such that the vehicle is driving forward

/backward -> set IN pins such that the vehicle is driving backward

/left -> set IN pins such that the vehicle is driving left

/right -> set IN pins such that the vehicle is driving right

https://github.com/me-no-dev/ESPAsyncWebServer
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/left_spd -> left RPM (from 0 - 255)

/right_spd -> right RPM (from 0 - 255)

On the client side, user will simply need to send a HTTP GET request with parameters
as data. For example, here is a message that will tell the car to go forward:

#!/usr/bin/python

import requests

requests.get("http://192.168.1.24:81",

params={"forward":True,

"left_spd":1,

"right_spd":1})

Software (Python)

Now the ROAR platform originally only considered Ackermann control. Therefore, we need
to map Ackermann Control signals from ROAR to Differential commands.

In Ackermann control, we have steering and throttle. In differential control, we can
control the speed and direction of each side of the drivetrain.

Therefore, the conversion will be as the follow logic:

ackerman_to_diff_gain = A_NUMBER_BY_TEST_AND_TRIAL

message = {}

if throttle == 0:

message["stop"] = True

elif throttle > 0:

message["forward"] = True

else:

message["backward"] = True

if steering == 0:

msg["left_spd"] = 1

msg["right_spd"] = 1

elif steering < 0:

# turning left

msg["left_spd"] = 0

msg["right_spd] = ackerman_to_diff_gain * steering

else:

msg["right_spd"] = 0

msg["left_spd] = ackerman_to_diff_gain * steering

We will conform to the logic mentioned in the previous chapter regarding ROAR’s architec-
ture, where we have a setup(),start game loop(), and finish() function.
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In the setup function, we will setup the PyGame and read in all the configs.
In the start game loop function, we will

1. fetch user input from pygame

2. fetch the newest sensor data (for the base version, just the RGB and the distance
sensor reading)

3. run an agent step (this is where user can write their autonomous driving code)

4. transform the Ackermann control to differential command

5. send the differential command to the ROAR Junior vehicle.

And in the finish function, we will send calls to stop the vehicle and shut down any other
threads running.
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