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Abstract—Simultaneous Localization and Mapping (SLAM)
algorithms perform visual-inertial estimation via filtering or
batch optimization methods. Empirical evidence suggests that
filtering algorithms are computationally faster, while optimization
methods are more accurate. This work presents an optimization-
based framework that unifies these approaches, and allows users
to flexibly implement different design choices, e.g., the number
and types of variables maintained in the algorithm at each time.
We prove that filtering methods correspond to specific design
choices in our generalized framework. We then reformulate the
Multi-State Constrained Kalman Filter (MSCKF) and contrast
its performance with that of sliding-window based filters. Our
approach modularizes state-of-the-art SLAM algorithms to allow
for adaptation to various scenarios. Experiments on the EuRoC
MAV dataset verify that our implementations of these algorithms
are competitive with the performance of off-the-shelf implementa-
tions in the literature. Using these results, we explain the relative
performance characteristics of filtering and batch-optimization
based algorithms in the context of our framework. We illustrate
that under different design choices, our empirical performance
interpolates between those of state-of-the-art approaches.

Index Terms—SLAM, estimation, control, computer vision

I. INTRODUCTION

In Simultaneous Localization and Mapping (SLAM), a
robotic agent maps its uncharted environment while locating
itself in the constructed map [1]. Applications include military
map construction, search-and-rescue missions, augmented and
virtual reality, and 3D scene capture [2–4].

Typical modern SLAM algorithms consist of front and
back ends. The front end performs feature extraction, data
association, and outlier rejection on raw sensor data. The back
end then uses dynamics and measurement models for infer-
ence over the processed data, and produce compatible state
estimates. Back end algorithms are often considered one of
two classes—Gaussian filtering or batch optimization based.
Filtering methods iteratively refine the distribution of recent
states under a Gaussian prior [5–7], while optimization meth-
ods iteratively estimate states as solutions to an optimization
problem, with objective constructed from inertial measurement
unit (IMU) and image reprojection error terms. In particular,
factor graph-based approaches efficiently solve optimization
problems over past variables via factorization schemes that
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maintain the sparsity of the underlying least squares prob-
lem [8–11]. Keyframe-based methods are optimization-based
approaches that retain only a small subset of maximally
informative frames (“keyframes”) in the optimization window
arbitrarily spaced apart in time, while dropping all other
poses [12]. Empirically, both classes of algorithms attain state-
of-the-art performance, though the latter often attain higher
accuracy at the cost of longer compute times [2, 12, 13].

Prior literature contrasted theoretical and empirical proper-
ties of filtering and batch optimization algorithms. Scaramuzza
and Fraundorfer compared filtering and bundle adjustment-
based methods for visual odometry [14, 15]. Frese et al.
surveyed the use of grid-based and pose graph-based SLAM
algorithms from a practitioner’s perspective [16]. Huang and
Dissanyake conducted a theoretical study of the consistency,
accuracy, and computational speed of filtering, optimization-
based, and pose-graph SLAM [17]. Khosoussi et al. exploited
sparsity in SLAM problems by conditioning on estimates of
robot orientations [18]. Strasdat et al. conducted Monte Carlo
experiments on visual SLAM algorithms [19], revealed that
including more features in the back end increased accuracy
more (compared to including more frames), and concluded that
bundle adjustment outperforms filtering, since its computation
time increases less drastically with the number of features.

In this work, we build upon prior literature by formulating
a unified optimization-based framework for the SLAM back
end that encompasses a large class of existing, state-of-the-art
SLAM algorithms. We use this unified framework to recast
the Extended Kalman Filter (EKF), Multi-State Constrained
Kalman Filter (MSCKF), and Open Keyframe Visual-Inertial
SLAM algorithm (OKVIS) as optimization-based back-end
algorithms, and compare the empirical performance of the re-
formulated MSCKF with that of sliding-window optimization-
based back-end algorithms, including the keyframe-based ap-
proach of Open Keyframe Visual-Inertial SLAM [12]. Some-
what surprisingly, the MSCKF outperforms sliding window
filters of comparable sizes on several datasets, despite not
performing multiple Gauss-Newton updates. We use our gen-
eralized framework to analyze these empirical findings.

II. SLAM: FORMULATION ON EUCLIDEAN SPACES

A. SLAM on Euclidean Spaces

SLAM estimates two types of variables: states and fea-
tures. The state at each time t, denoted xt ∈ Rdx , encodes
information describing the robot, e.g., camera positions and
orientations (poses). Feature positions available at time t in
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a global frame, denoted {ft,j |j = 1, · · · , p} ⊂ Rdf , can be
obtained by analyzing information from image measurements
{zt,j |j = 1, · · · , p} ⊂ Rdz and state estimates; these describe
the relative position of the robot in its environment. States and
features are described by an infinitely differentiable (i.e., C∞)
dynamics map g : Rdx → Rdx and a C∞ measurement map
h : Rdx × Rdf → Rdz , via additive noise models:

xt+1 = g(xt) + wt, wt ∼ N (0,Σw), (1)
zt,j = h(xt, ft,j) + vt,j , vt,j ∼ N (0,Σv), (2)

where Σw ∈ Rdx×dx ,Σw � 0 and Σv ∈ Rdz×dz ,Σv � 0.
For localization and mapping, SLAM algorithms main-

tain a full state (vector) xt ∈ Rd, in which a number
of past states and feature positions are concatenated. The
exact number and time stamps of these states and features
vary with the design choice of each SLAM algorithm. For
example, sliding-window filters define the full state xt :=
(xt−n+1, · · · , xt, ft,p−q+1, · · · , ft,p) ∈ Rd, with d := dxn +
dfq, to be a sliding window of the most recent n states,
consisting of one pose each, and the most recent estimates, at
time t, of a collection of q features [5, 6]. Batch optimization
methods, on the other hand, maintain all states and features
encountered in the problem up to the current time [8–11].

Equations (1) and (2) do not involve overparameterized state
variables, e.g., quaternion representations for poses, which are
discussed in Section III.

B. SLAM as an Optimization Problem on Euclidean Spaces

SLAM estimates state and feature positions that best enforce
constraints posed by given dynamics and measurement mod-
els, as well as noisy state and feature measurements collected
over time. This is formulated as the minimization of the
sum of weighted residual terms representing these constraints.
For example, weighted residuals associated with the prior
distribution over xt ∈ Rd, the dynamics constraints between
states xi, xi+1 ∈ Rdx , and the reprojection error of feature
fj ∈ Rdf corresponding to the state xi ∈ Rdx and image mea-
surement zt,j ∈ Rdz , may be given by Σ

−1/2
0 (xt − µ0) ∈ Rd,

Σ
−1/2
w

(
xi+1 − g(xi)

)
∈ Rdx , and Σ

−1/2
v

(
zi,j − h(xi, ft,j)

)
∈

Rdz , respectively (here, 1 ≤ i ≤ n − 1, 1 ≤ j ≤ q). We
define the running cost, c : Rdxn+dfq → R, as the sum of
weighted norm squares of these residuals. For example, for a
sliding-window filtering algorithm for SLAM:

c(xt) := ‖xt − µ0‖2Σ−1
0

+

t−1∑
i=t−n+1

‖xi+1 − g(xi)‖2Σ−1
w

(3)

+

p∑
j=p−q+1

t∑
i=t−n+1

‖zi,j − h(xi, ft,j)‖2Σ−1
v
,

where ‖v‖2A := v>Av for any real vector v and real matrix A
of compatible dimension.

To formulate SLAM as a nonlinear least-squares problem,
we stack all residual terms into one residual vector C(xt). For
example, for the sliding-window filter given above:

C(xt) :=
[(

Σ
−1/2
0 (xt − µ0)

)>

(
Σ−1/2
w (xt−n+1 − g(xt−n))

)> · · · (Σ−1/2
w (xt − g(xt−1))

)>(
Σ−1/2
v (zt−n+1,p−q+1 − h(xt−n+1, ft,p−q+1))

)> · · ·(
Σ−1/2
v (zt−n+1,p − h(xt−n+1, ft,p))

)> · · ·(
Σ−1/2
v (zt,p−q+1 − h(xt, ft,p−q+1))

)> · · ·(
Σ−1/2
v (zt,p − h(xt, ft,p))

)>]> ∈ R(2n−1)dx+nqdz .

Thus, c(xt) = C(xt)
>C(xt), and the SLAM problem is now

reduced to the nonlinear least squares problem below:

min
xt

.c(xt) = min
xt

.C(xt)
>C(xt) (4)

Section IV introduces the main algorithmic submodules used
to find an approximate solution to (4).

III. SLAM: FORMULATION ON MANIFOLDS

Here, we generalize the SLAM formulation in Section II
to the case where dynamical states are defined on smooth
manifolds rather than Euclidean spaces. SLAM often involves
the orientations of rigid bodies, which evolve on a smooth
manifold embedded in an ambient space, e.g., rotation matrices
expressed as unit quaternions. In such situations, we use
boxplus (�) and boxminus (�) operators, defined below, to
perform composition and difference operations in the iterative
algorithm presented in Section IV, while enforcing constraints
imposed by the manifold’s geometric structure.

Suppose the full state x evolves on a smooth manifold M,
with dim(M) = n. For each x ∈ M, let πx : Ux → Vx be
a diffeomorphic chart from an open neighborhood Ux ⊂ M
of x ∈ M to an open neighborhood Vx ⊂ Rn of 0 ∈ Rn.
Without loss of generality, suppose πx(x) = 0. The operators
� : Ux × Vx → Ux and � : Ux × Ux → Vx are defined by:

x� δ = π−1
x (δ) (5)

y � x = πx(y) (6)

In essence, � adds a perturbation δ ∈ Rn, in local coordinates,
to a state x ∈ M, while � extracts the difference δ ∈ Rn, in
local coordinates, between states x, x′ ∈ M covered by the
same chart. Below, “δ” often describes an error or increment
to a nominal state on the manifold.

A. Manifold Examples

This subsection gives examples of the �, � and π operators
for manifolds that occur widely in SLAM: the set of unit
quaternions, Hu, and the set of rotation matrices, SO(3).

Each q ∈ Hu is expressed as q = (qu, ~qv) where qu ∈ R
and ~qv ∈ R3 denote the scalar and vector (imaginary) parts,
respectively, with ‖q‖ =

√
q2
u + ‖~qv‖22 = 1 (JPL convention).

Here, the coordinate map π : Hu → R3 is defined as the Log
map on Hu; its inverse π−1 is the Exp map. Specifically, we
write each q ∈ Hu as q =

(
cos( θ2 ), sin( θ2 )~ω

)
for some θ ∈

[0, π], ~ω ∈ R3 with ‖~ω‖ = 1, i.e., the quaternion q implements
a rotation about the axis ~ω by θ radians counterclockwise.
Then, π : Hu → R3 and π−1 : Bπ(0) → Hu are defined by:
(Bπ(0) := {x ∈ R3 : ‖x‖2 < π} denotes the image of π)

π(q) = Log(q) = θ~ω,



π−1(θ~ω) = Exp(θ~ω) = (cos(θ/2), sin(θ/2)~ω).

The � and � maps are then implemented via the standard
quaternion product ? : Hu ×Hu → Hu:

qa � ~ω = qa ? Exp(~ω)

qa � qb = Log(q−1
b ? qa)

For SO(3), we define � and � similarly, i.e.,

Ra � ~ω = Ra Exp(~ω)

Ra �Rb = Log(RTb Ra)

Often, the full state in a SLAM problem exists in the
Cartesian product of a finite collection of manifolds, since
it contains poses and features on their own manifolds. For a
product manifold M1 ×M2, with projection, increment, and
difference maps already defined on M1 and M2, we define
� and � on M1 ×M2 by:

(g1, g2) � (ξ1, ξ2) = (g1 � ξ1, g2 � ξ2)

(g1, g2) � (h1, h2) = (g1 � h1, g2 � h2)

B. SLAM as an Optimization Problem on Manifolds

The SLAM problem can be formulated on manifolds using
modified cost functions, where plus and minus operations are
replaced with � and � when necessary. (Appendix A1).

IV. MAIN ALGORITHM

A. Algorithm Overview

This section details submodules for a general SLAM algo-
rithm, using state variables and cost terms defined in Sections
II and III. We first introduce a formulation on Euclidean
spaces. Below, denote the state and concatenated cost vector
by xt ∈ Rd and C : Rd → RdC , respectively. (e.g., the sliding
window filter in Section II would correspond to d = dxn+dfq
and dC = (2n − 1)dx + nqdz). The SLAM problem is then
equivalent to solving the nonlinear least-squares problem (4),
reproduced below:

min
xt

.c(xt) = min
xt

.‖C(xt)‖22.

B. Gauss-Newton Descent

Gauss-Newton descent minimizes c(xt) via Gauss-Newton
steps (Alg. 3), by iteratively approximating c(xt) about a given
linearization point xt? as a linear least-squares cost term, i.e.,

min
xt

.c(xt) = min
xt

.‖xt − µt‖2Σ−1
t

+ o(xt − xt?) (7)

for some µt ∈ Rd and Σt ∈ Rd×d. The theorem below de-
scribes the linearization procedure required to obtain µt ∈ Rd
and Σt ∈ Rd×d, and the approximation involved.

Theorem 4.1: (Gauss-Newton Step) Let xt? ∈ Rd be a
given linearization point, and suppose J := ∂C

∂xt
∈ RdC×d has

full column rank. Applying a Gauss-Newton step (Alg. 3) to
the cost c(xt), about xt? ∈ Rd yields the new cost:

c(xt) = ‖xt − µt‖2Σ−1
t

+ o(xt − xt?),

where µt ∈ Rd and Σt ∈ Rd×d are given by:

Σt ← (J>J)−1,

µt ← xt
? − (J>J)−1J>C(xt

?).

Proof: See Appendix (Section B2).

C. Marginalization of States

The marginalization step (Alg. 4) reduces the size of the
SLAM problem by removing states that are no longer relevant,
thus improving computational efficiency. First, we partition
the overall state xt ∈ Rd = RdM+dK into a marginalized
component xt,M ∈ RdM , to be discarded from xt, and
a non-marginalized component xt,K ∈ RdK , to be kept.
Then, we partition c(xt) into two cost terms: c1(xt,K), which
depends only on non-marginalized state components, and
c2(xt,K , xt,M ) which depends on both marginalized and non-
marginalized state components:

c(xt) = c(xK , xM ) = c1(xK) + c2(xK , xM )

= ‖C1(xK)‖22 + ‖C2(xK , xM )‖22.

Here, C1(xK) ∈ RdC,1 and C2(xK , xM ) ∈ RdC,2 denote
the concatenation of residuals associated with c1(xK) and
c2(xK , xM ) (with dC = dC,1 +dC,2). To remove xt,M ∈ RdM
from the optimization problem, observe that:

min
xt

c(xt) = min
xt,K ,xt,M

(
c1(xt,K) + c2(xt,K , xt,M )

)
= min

xt,K

(
‖C1(xt,K)‖22 + min

xt,M

‖C2(xt,K , xt,M )‖22
)
.

To remove xt,M , we approximate the solution to the inner
minimization problem by a linear least-squares cost, i.e.:

min
xt,M

‖C2(xt,K , xt,M )‖22 ≈ ‖xt,K − µt,K‖2Σ−1
t,K

for some µt,K ∈ RdK and Σt,K ∈ RdK×dK . Since
‖C2(xt,K , xt,M )‖22 is in general non-convex, we obtain µt,K
and Σt,K by minimizing the first-order Taylor expansion
of ‖C2(xt,K , xt,M )‖22 about some linearization point. Below,
Theorem 4.2 details the derivation of µt,K and Σt,K . (For the
proof, see Appendix B3).

Theorem 4.2 (Marginalization Step): Let xt? ∈ Rd be a
given linearization point, and suppose J := ∂C

∂xt
∈ RdC×d has

full column rank. Define JK := ∂C
∂xt,K

∈ RdC×dK , JM :=
∂C

∂xt,M
∈ RdC×dM . If C(xt,M , xt,K) were a linear function

of xt = (xt,M , xt,K), then applying a Marginalization step
(Alg. 4) to the cost c(xt), about the linearization point xt? =
(x?t,K , x

?
t,M ) ∈ Rd, yields:

min
xt

c(xt,K , xt,M ) = min
xt,K

.
(
c1(xt,K) + min

xt,M

c2(xt,K , xt,M )
)
,

(8)

where Σt,K ∈ RdK×dK and µt,K ∈ RdK are given by:

Σt,K :=
(
J>K
[
I − JM (J>MJM )−1J>M

]
JK
)−1

, (9)

µt,K := x?t,K − Σt,KJ
>
K

[
I − JM (J>MJM )−1J>M

]
C2(x?t ).

(10)



D. Main Algorithm on Manifolds

The Euclidean-space framework above can be directly ex-
tended to a formulation on manifolds, by using concepts in
Section III to modify the dynamics and measurement maps
in Section II, as well as the cost functions, Gauss-Newton
steps, and marginalization steps in Sections IV-B, IV-C. When
appropriate, plus and minus operations must be replaced with
� and � (Appendix A2).

V. EQUIVALENCE OF FILTERING AND OPTIMIZATION
APPROACHES

Here, we demonstrate the equivalence of filtering and batch
optimization-based SLAM algorithms, using the Extended
Kalman Filter (EKF, in Section V-A) and Multi-State Con-
strained Kalman Filter (MSCKF, in Section V-B), as examples.
Although similar results exist in the optimization literature,
they do not analyze algorithmic submodules unique to SLAM,
e.g., feature incorporation and discarding [20]. For an intro-
duction to the classical formulations of EKF and MSCKF
SLAM, please see Appendices C2, C4.

A. Extended Kalman Filter (EKF), on Euclidean Spaces

At each time t, the EKF SLAM algorithm on Eu-
clidean spaces maintains the full state vector x̃t :=
(xt, ft,1, · · · , ft,p) ∈ Rdx+pdf , consisting of the most recent
state xt ∈ Rdx and feature position estimates ft,1, · · · , ft,p ∈
Rdf . At initialization (t = 0), no feature has been detected
(p = 0), and the EKF full state is simply the initial state
x̃0 = x0 ∈ Rdx , with mean µ0 ∈ Rdx and covariance
Σ0 ∈ Rdx×dx . Suppose, at the current time t, the running
cost cEKF,t,0 : Rdx+pdf → Rdx+pdf is:

cEKF,t,0 = ‖x̃t − µt‖2Σ−1
t
,

where x̃t := (xt, ft,1, · · · , ft,p) ∈ Rdx+pdf denotes the
EKF full state at time t, with mean µt ∈ Rdx+pdf and
covariance Σt ∈ R(dx+pdf )×(dx+pdf ). First, the feature aug-
mentation step appends position estimates of new features
fp+1, · · · , fp+p′ ∈ Rdf to the EKF full state x̃t, and updates
its mean and covariance. In particular, feature measurements
zt,p+1, · · · , zt,p+p′ ∈ Rdz are incorporated by adding mea-
surement residual terms to the current running cost cEKF,t,0,
creating a new cost cEKF,t,1 : Rdx+(p+p′)df → R:

cEKF,t,1(x̃t, ft,p+1, · · · , ft,p+p′)

:=‖x̃t − µt‖2Σ−1
t

+

p+p′∑
k=p+1

‖zt,k − h(xt, ft,k)‖2
Σ−1

v
.

In effect, cEKF,t,1 appends positions of new features to x̃t,
and constrains it using feature measurements residuals.

Next, the feature update step uses measurements of features
contained in x̃t to update the mean and covariance of x̃t. More
precisely, feature measurements zt,1:p := (zt,1, · · · , zt,p) ∈
Rpdz , of the p features f1, · · · , fp included in x̃t, are in-
troduced by incorporating associated measurement residuals

to the running cost cEKF,t,0, creating a new cost cEKF,t,2 :
Rdx+pdf → R:

cEKF,t,2(x̃t) := ‖x̃t − µt‖2Σ−1
t

+

p∑
k=1

‖zt,k − h(xt, ft,k)‖2
Σ−1

v
.

A Gauss-Newton step then constructs an updated mean µt ∈
Rdx+pdf and covariance Σt ∈ R(dx+pdf )×(dx+pdf ) for x̃t,
creating a new cost cEKF,t,3 : Rdx+pdf → R:

cEKF,t,3(x̃t) := ‖x̃t − µt‖2Σ−1
t

,

which returns the running cost to the form of cEKF,t,0.
The state propagation step propagates the EKF full state

forward by one time step, via the EKF state propagation map
g : Rdx+pdf → Rdx+pdf . To propagate x̃t forward in time, we
incorporate the dynamics residual to the running cost cEKF,t,0
to create a new cost cEKF,t,4 : R2dx+pdf → R:

cEKF,t,4(x̃t, xt+1) := ‖x̃t − µt‖2Σ−1
t

+ ‖xt+1 − g(xt)‖2Σ−1
w
.

In effect, cEKF,t,4 appends the new state xt+1 ∈ Rdx
to x̃t, while adding a new constraint posed by the dy-
namics residuals. A marginalization step, with x̃t,K :=
(xt+1, ft,1, · · · , ft,p) ∈ Rdx+pdf and x̃t,M := xt ∈ Rdx ,
then removes the previous state xt ∈ Rdx from the running
cost. This step produces a mean µt+1 ∈ Rdx+pdf and a
covariance Σt+1 ∈ R(dx+pdf )×(dx+pdf ) for the new EKF
full state, x̃t+1 := x̃t,K . The running cost is updated to
cEKF,t+1,0 : Rdx+pdf → R:

cEKF,t+1,0(x̃t+1) := ‖x̃t+1 − µt+1‖2Σ−1
t+1

,

which returns the running cost to the form of cEKF,t,0.
The theorems below establish that the feature augmenta-

tion, feature update, and state propagation steps of the EKF,
presented above in our optimization framework, correspond
precisely to those presented in the standard EKF SLAM
algorithm (Alg. 5) [5, 21]. (For proofs, see Appendix C3).

Theorem 5.1: The feature augmentation step of standard
EKF SLAM (Alg. 6) is equivalent to applying a Gauss-Newton
step to cEKF,t,1 : R(dx+pdf )+p′df → R, with:

cEKF,t,1(x̃t, ft,p+1, · · · , ft,p+p′)

=‖x̃t − µt‖2Σ−1
t

+

p+p′∑
k=p+1

‖zt,k − h(xt, ft,k)‖2
Σ̃−1

v
.

Theorem 5.2: The feature update step of standard EKF
SLAM (Alg. 7) is equivalent to applying a Gauss-Newton step
on cEKF,t,2 : Rdx+pdf → R, with:

cEKF,t,2(x̃t) :=‖x̃t − µt‖2Σ−1
t

+

p∑
k=1

‖zt,k − h(xt, ft,k)‖2
Σ−1

v
.

Theorem 5.3: The state propagation step of standard EKF
SLAM (Alg. 8) is equivalent to applying a Marginalization
step to cEKF,t,4 : R2dx+pdf → R, with:

cEKF,t,4(x̃t, xt+1) :=‖x̃t − µt‖2Σ−1
t

+ ‖xt+1 − g(xt)‖2Σ−1
w
.

where x̃t,K := (xt+1, ft,1, · · · , ft,p) ∈ Rdx+pdf and x̃t,M =
xt ∈ Rd.

Remark 5.1: In practice, Gauss-Newton steps for pose aug-
mentation can be delayed and done with feature updates.



Algorithm 1: EKF SLAM on Euclidean spaces, as an
iterative optimization problem.

Data: Prior N (µ0,Σ0) on x0 ∈ Rdx , noise covariances Σw,
Σv , dynamics map g, measurement map h, time
horizon T .

Result: Estimates x̂t ∈ Rdx , ∀ t ∈ {1, · · · , T}.

1 f0(x)← ‖x0 − µ0‖2Σ−1
0

2 p← 0.

3 for t = 0, 1, · · ·T do
4 (zt,p+1, · · · , zt,p+p′)← Measurements of new features.
5 costt ← costt +

∑p+p′

k=p+1 ‖zt,k − h(xt, fk)‖2
Σ−1

v

6 µ̄t ←
(
µ̄t, `(xt, zt,p+1), · · · , `(xt, zt,p+p′)

)
∈

Rdx+(p+p′)df .
7 µ̄t, Σ̄t, costt ← 1 Gauss-Newton step on costt, about µt

(Alg. 3).
8 p← p+ p′

9 (zt,1, · · · , zt,p)← Measurements of existing features.
10 costt ← costt +

∑p
k=1 ‖zt,k − h(xt, fk)‖2

Σ−1
v

11 µ̄t, Σ̄t, costt ← 1 Gauss-Newton step on costt, about µt,
(Alg. 3).

12 x̂t ← µ̄t ∈ Rdx+pdf .
13 if t < T then
14 costt ← costt + ‖xt+1 − g(xt)‖2Σ−1

w

15 µt+1,Σt+1, costt ← 1 Marginalization step on
costt+1 with xM = xt, about (µt, g(µt)) (Alg. 4).

16 costt+1 ← ‖xt+1 − µt+1‖2Σ−1
t+1

17 end
18 end
19 return x̂0, · · · , x̂T

B. Multi-State Constrained Kalman Filter (MSCKF), on Man-
ifolds

The MSCKF algorithm maintains a full state, x̃t ∈ XIMU ×
(Xp)n, containing the most recent IMU state, xIMU ∈ XIMU
and n recent poses, (x1, · · · , xn) ∈ (Xp)n:

x̃t := (xt,IMU, x1, · · · , xn) ∈ XIMU × (Xp)n,

with mean µt ∈ XIMU × (Xp)n and covariance Σt ∈
R(dIMU+ndx)×(dIMU+ndx). As new poses are introduced, old
poses are discarded, and features are marginalized to update
x̃t, the mean µt, covariance Σt, and n ∈ N accordingly.

At initialization (t = 0), no pose has yet been recorded
(n = 0), and the full state x̃0 is the initial IMU state x̃0,IMU ∈
XIMU, with mean µ0 ∈ XIMU and covariance Σ0 ∈ RdIMU×dIMU .
Thus, x̃0 = µ0 optimizes the initial running cost cMSCKF,0 :
XIMU → R in our algorithm:

cMSCKF,0,0(x̃0) = ‖x̃0 � µ0‖2Σ−1
0
.

Suppose that, at the current time t, the running cost
cMSCKF,t,0 : XIMU × (Xp)n → XIMU × (Xp)n is:

cMSCKF,t,0(x̃t) = ‖x̃t � µt‖2Σ−1
t
,

where µt ∈ XIMU × (Xp)n and Σt ∈ R(dIMU+ndx)×(dIMU+ndx)

denote the mean and covariance of the full state x̃t :=
(xt,IMU, x1, · · · , xn) ∈ XIMU × (Xp)n at time t, consisting
of the current IMU state and n poses. When a new image
is received, the pose augmentation step adds a new pose

xn+1 ∈ Xp (global frame) to x̃t, derived from xIMU
n+1 ∈ XIMU,

the IMU position estimate in the global frame, via the map
ψ : XIMU × (Xp)n ×XIMU → Xp, i.e.,

xn+1 := ψ(x̃t, x
IMU
n+1) ∈ Xp.

The feature update step uses features measurements to
update the mean and covariance of x̃t. In MSCKF, features
are discarded if (A) unobserved in the current pose, or (B)
n ≥ Nmax, a specified upper bound, in which case bNmaxc/3
of the n poses, evenly spaced in time, are dropped after
features common to these poses are marginalized. Let Sz,1
and Sz,2 denote sets of pose-feature pairs (xi, fj) from cases
(A) and (B) above, respectively, and let Sf denote the set
of features to be marginalized (Alg. 9). These constraints are
then incorporated into the running cost, creating a new cost
cMSCKF,t,2 : XIMU × (Xp)n → R:

cMSCKF,t,2(x̃t)

:=‖x̃t � µt‖2Σ−1
t

+
∑

(xi,fj)∈Sz,1∪Sz,2

‖zi,j � h(xi, fj)‖2Σ−1
v
,

where zi,j ∈ Rdz denotes the feature measurement of feature
j observed from pose xi ∈ Xp. By using Gauss-Newton
linearization, we leverage constraints posed by the measure-
ment residuals to construct an updated mean for x̃t, denoted
µt ∈ XIMU×(Xp)n, and an updated covariance for x̃t, denoted
Σt ∈ R(dIMU+ndx)×(dIMU+ndx). As a result, our cost will be
updated to cMSCKF,t,3 : XIMU × (Xp)n → R:

cMSCKF,t,3(x̃t) := ‖x̃t � µt‖2Σ−1
t

,

which assumes the form of cMSCKF,t,0.
The state propagation step propagates the full state by incor-

porating dynamics residuals into the running cost cMSCKF,t,0,
creating a new cost cMSCKF,t,4 : XIMU× (Xp)n×XIMU → R:

cMSCKF,t,4(x̃t, xt+1,IMU)

:=‖x̃t � µt‖2Σ−1
t

+ ‖xt+1,IMU � gIMU(xt,IMU)‖2
Σ−1

t
.

In effect, cMSCKF,t,4 appends the new IMU variable
xt+1,IMU ∈ XIMU to the current full state x̃t ∈ XIMU × (Xp)n,
and constrains this new full state via the dynamics residuals. A
marginalization step, with x̃t,K := (xt+1,IMU, x1, · · · , xn) ∈
XIMU × (Xp)n and x̃t,M := xt,IMU ∈ XIMU, then removes
the previous IMU state, xt,IMU, from the running cost. This
produces a mean µt+1 ∈ XIMU × (Xp)n and a covariance
Σt+1 ∈ R(dIMU+ndx)×(dIMU+ndx) for the new MSCKF full state,
x̃t+1 := x̃t,K = (xt+1,IMU, x1, · · · , xn) ∈ XIMU × (Xp)n. The
running cost is updated to cMSCKF,t+1,0 : XIMU×(Xp)n → R:

cMSCKF,t+1,0(x̃t+1) := ‖x̃t+1 � µt+1‖2Σ−1
t+1

,

which returns the running cost to the form of cMSCKF,t,0.
The theorems below establish that the feature augmentation,

feature update, and state propagation steps of the MSCKF,
presented above in our optimization framework, correspond
precisely to those presented in the standard MSCKF (Alg. 9)
[6]. (For proofs, see Appendix C5).



Algorithm 2: Multi-State Constrained Kalman Filter
(MSCKF) on manifolds, as iterative optimization.

Data: Prior N (µ0,Σ0) on xIMU,0 ∈ XIMU, noise covariances
Σw, Σv , dynamics gIMU, measurement map h, time
horizon T , Pose transform ψ (IMU → global) , ε > 0.

Result: Estimates x̂t for all desired timesteps
t ∈ {1, · · · , T} .

1 costt ← ‖x0 � µ0‖2Σ0
. (Initialize objective function).

2 Sz, Sx, Sz,1, Sz,2 ← φ
3 (n, p)← (0, 0)
4 for t = 0, · · · , T do
5 while new pose xn+1 ∈ Xp recorded, new IMU

measurement not received do
6 costt ← costt + ε−1‖xn+1 � ψ(x̃t, x

IMU
n+1)‖22.

7 µt,Σt, costt ← 1 Gauss-Newton costt (Alg. 3),
about (µt, ψ(µt, x

IMU
n+1)) with ε→ 0.

8 {zn+1,j} ← Feature measurements at xn+1

9 Sz ← Sz ∪
{

(xn+1, fj)|fj observed at n+ 1
}

10 n← n+ 1
11 if n ≥ Nmax − 1 then
12 Sx ← {xi|i mod 3 = 2, and 1 ≤ i ≤ n.}
13 Sz,1 ←

{
(xi, fj) ∈ Sz

∣∣xi ∈
Sx, feature j observed at each pose in Sx

}
14 end
15 Sz,2 ←

{
(xi, fj) ∈ Sz|fj not observed at xn

}
.

16 costt ←
costt +

∑
(xi,fj)∈Sz,1∪Sz,2

‖zi,j � h(xi, ft,j)‖Σ−1
v

17 µt, Σt, costt ← 1 Gauss-Newton step on costt,
about µt (Alg. 3)

18 x̂t ← µt ∈ XIMU × (Xp)n.
19 Sz ← Sz\(Sz,1 ∪ {(xi, fj)|xi ∈ Sx})
20 Reindex poses and features in ascending order.
21 (p, n)← (p− |Sf |, n− |Sx|)
22 end
23 if t < T then
24 costt ← costt + ‖xt+1,IMU � gIMU(xt,IMU)‖2

Σ−1
w

.
25 µt+1,Σt+1, costt ← 1 Marginalization step on costt,

about (µt, g(µt,IMU)) (Alg. 4)
26 end
27 end
28 return x̂0, · · · x̂T ∈ XIMU × (Xp)n

Theorem 5.4: The pose augmentation step of the standard
MSCKF (Alg. 10) is equivalent to applying a Gauss-Newton
step to cMSCKF,t,1 : XIMU × (Xp)n ×XIMU → R, with:

cMSCKF,t,1(x̃t, xn+1)

=‖x̃t � µt‖2Σ−1
t

+ ε−1‖xn+1 � ψ(x̃t, x
IMU
n+1)‖22,

and taking ε → 0 in the resulting (augmented) mean µt and
covariance Σt.

Theorem 5.5: The feature update step of the standard
MSCKF (Alg. 11) is equivalent to applying a Marginalization
step to cMSCKF,t,2 : XIMU × (Xp)n × R|Sf |df → R, with:

cMSCKF,t,2(x̃t, fSf
)

:=‖x̃t � µt‖2Σ−1
t

+
∑

(xi,fj)∈Sz,1∪Sz,2

‖zi,j � h(xi, fj)‖2Σ−1
v
,

where fSf
∈ R|Sf |df denotes the stacked vector of all feature

positions in Sf (see Alg. 9).
Theorem 5.6: The state propagation step of the standard

MSCKF (Alg. 12) is equivalent to applying a Marginalization

step to cMSCKF,t,4 : XIMU × (Xp)n ×XIMU → R, with:

cMSCKF,t,4(x̃t, xt+1,IMU)

:=‖x̃t � µt‖2Σ−1
t

+ ‖xt+1,IMU � gIMU(xt,IMU)‖2
Σ−1

t
.

with x̃t,K := (xt+1,IMU, x1, · · · , xn) ∈ XIMU × (Xp)n and
x̃t,M = xt,IMU ∈ XIMU.

C. State-of-the-Art SLAM Algorithms

Our framework balances the need for computational ef-
ficiency, estimation accuracy, and map precision, tradeoffs
observed in design choices of existing SLAM algorithms.
• Extended Kalman Filter (EKF) [5, 21, 22] –The EKF

iteratively updates position estimates of the current pose
and all observed features; all past poses are marginalized.
This design favors computational speed over localization
precision. A variant, the iterated Extended Kalman Fil-
ter (iEKF), takes multiple Gauss-Newton steps before
marginalization to tune the linearization point. This im-
proves mapping and localization accuracy but increases
computation time.

• Multi-State Constrained Kalman Filter [6, 7, 23]—The
MSCKF iteratively updates a full state, with the current
IMU state and n past poses; here n ≤ Nmax, a specified
upper bound that trades off accuracy and computational
speed. Features are stored separately.

• Sliding Window Smoother, Fixed-Lag Smoother [10,
24, 25]—The fixed-lag smoother resembles the MSCKF,
but performs multiple steps of Gauss-Newton descent
before the marginalization step, to tune the linearization
point. This improves mapping and localization accuracies
at the cost of increasing computation time.

• Open Keyframe Visual-Inertial SLAM (OKVIS)
[12]—OKVIS updates a sliding window of “keyframes”,
poses deemed most informative, which may be arbitrarily
spaced in time. Keyframe poses leaving the sliding win-
dow, and associated landmarks, are marginalized. This
design aims to improve estimation accuracy by maxi-
mizing information encoded by the stored poses, without
increasing computation time.

• GraphSLAM and Bundle Adjustment [21, 26] –
These algorithms solve the full SLAM problem, with
no marginalization. Their state estimation can be more
accurate than the above algorithms, but also far slower.

VI. EXPERIMENTS

This section describes the empirical performance of differ-
ent marginalization schemes on pose tracking of real-world
data. We examine the MSCKF [6], a standard sliding window
filter, and the keyframe-based OKVIS algorithm [12], each
implemented as an incremental optimization algorithm of the
form presented in this paper.

A. Simulation Settings

Experiments are performed on the EuRoC MAV dataset of
stereo image sequences and IMU data [27]. We standardize the
front-end across all experiments and implementations, using



Fig. 1. Localization on Vicon Room 2 (medium). Drift from ground-truth is
plotted against the distance traveled along the ground-truth trajectory, sampled
at 5 meter intervals. (Note: MSCKF and iMSCKF curves almost overlap). We
apply trajectory alignment as in [30].

BRISK keypoint features with brute-force matching. Outlier
rejection between the two cameras in the stereo setup is
performed using a simple epipolar constraint test, and outlier
rejection between stereo frames taken at subsequent timesteps
is performed with reprojection distance test using the latest
estimate of the feature position and camera pose. We use
GTSAM in C++ in the back-end to construct and update
costs, compute Jacobians, and implement Gauss-Newton and
marginalization steps [8, 28]. To construct dynamics and
measurement maps, we collect on-board IMU odometry mea-
surements, and apply the IMU pre-integration scheme in [29].
(Appendix D). We apply trajectory alignment as in [30].

B. Results and Discussion

Localization root-mean-squared error on Vicon Room and
Machine Hall sequences from the Euroc MAV dataset are
presented in Table I. Due to space constraints, only the
estimator drift on the V2 02 sequence is plotted (Fig 1). First,
we analyze standard sliding window filters of window size
n = 5, 10, 20 frames. Features are marginalized when they are
only visible in the oldest frame in the optimization window.
EKF and iEKF are also included, and are implemented as
sliding window filters with window size 1. For the former,
only 1 Gauss-Newton step is taken, and in the latter, steps
are taken until convergence. Next, we implement MSCKF
as an incremental optimization algorithm (Section V-B), with
window size n = 5, and with two optimization schemes:
(1) the standard formulation, with one Gauss-Newton step
after marginalization, and (2) a version that takes multiple
Gauss-Newton steps until convergence (“Iterated MSCKF,” or
iMSCKF). Finally, we implement OKVIS with IMU window
size n = 3, 10, keyframe window size k = 5, and marginal-
ization and keyframe selection schemes identical to those in
Leutenegger et al. [12].

Our experiments show that, overall, OKVIS outperforms
baseline sliding window filters, even when the latter has a

larger window size. Moreover, our MSCKF implementation
outperforms sliding window filters and OKVIS, even under
challenging camera motions, despite the latter maintaining
nonlinear constraints between camera poses and landmarks,
and taking multiple Gauss-Newton steps per iteration. This
persists even for sliding window filters with larger window
sizes. Taking multiple Gauss-Newton steps in the iMSCKF
estimator did not noticeably improve performance over the
standard MSCKF, as illustrated in Figure 1.

In contrast with sliding window filter and OKVis implemen-
tations of comparable sizes, the MSCKF recovers better from
localization errors, by employing a marginalization scheme
that always maintains poses arbitrarily far in the past. This
is because older poses represent higher baselines and thus
supply better localization information [7]. For instance, the
MSCKF maintains the first pose in the estimator for a long
time, rendering subsequent estimates more consistent with
the initial pose, and thus minimizing drift at the start of
the trajectory. In contrast, although OKVIS allows keyframes
to be maintained arbitrarily far in the past, keyframes are
usually roughly evenly spaced and form a sliding temporal
window in camera motions. Thus, earlier poses are quickly
marginalized, causing estimates to drift more at the start of
the trajectory. Furthermore, the MSCKF includes features in
the optimization window only after they have matured, and
thus maximally utilizes localization information with fewer
updates. Finally, incorporating only matured features ensures
that each feature is always initialized through multiple-view
triangulation instead of merely stereo triangulation. This min-
imizes the linearization error when features are marginalized.

VII. CONCLUSION

This paper presents a framework formulating and analyzing
optimization and filtering-based SLAM approaches as the
iterative application of key algorithm submodules, and proves
that it encompasses state-of-the-art filtering algorithms as
special cases. Experimental analysis indicate our formulation
is useful for analyzing various design choices inherent in
these existing SLAM algorithms, and implementing them in
a modular fashion for a wide range of robotics applications,
which we are eager to test on hardware.

As future work, we wish to apply our analysis to the dy-
namic SLAM problem, which concerns highly mobile features
[2, 31] in practical multi-agent interactions, e.g., real-life traf-
fic scenarios [32], by designing marginalization strategies for
estimators that jointly track moving and stationary landmarks.
We expect good performance on the dynamic SLAM problem,
since it enables flexible user-selected design choices.
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The following supplementary material includes the ap-
pendix, which contains proofs and figures omitted in the main
paper due to space limitations.

A. Appendix for Section III

1) SLAM on Manifolds: Dynamics and Measurement Maps
To formulate SLAM on a manifold, we must alter our

definitions of the state variables, features, image positions,
dynamics map, and measurement map. Let X be a smooth
manifold of dimension dx, on which the system state are
defined. Similarly, let F be a smooth manifold of dimension
df , on which features are defined, and let Z be the smooth
manifold of dimension dz , on which image measurements are
defined (Often, F = Rdf and Z ∈ Rdz , e.g., with df = 3 and
dz = 2). We then have:

xt+1 = g(xt) � wt, wt ∼ N (0,Σw),

zt,j = h(xt, ft,j) � vt,j , vt,j ∼ N (0,Σv).

where xt ∈ X denotes the state at time t, g : X → X denotes
the discrete-time dynamics map, and wt ∈ Rdx denotes the
dynamics noise, with covariance Σw ∈ Rdx×dx , Σw � 0.
Moreover, ft,j ∈ F denotes feature position j estimated
at the camera pose at time t, zt,j ∈ Z denotes the image
measurement of feature j measured from the camera pose at
time t, h : X × F → Z denotes the measurement map, and
vt ∈ Rdz denotes the measurement noise, with covariance
Σv ∈ Rdz×dz , Σv � 0.

As before, SLAM concerns an optimization problem over a
collection of poses and features, e.g., a sliding window of the
most recent poses in the states {xi ∈ X |i = t−n+ 1, · · · , t}
and features {ft,j ∈ F|j = p− q + 1, · · · , p}:

xt := (xt−n+1, · · · , xt, ft,p−q+1, · · · , ft,p)
∈ Xn ×Fq.

We assume that xt is associated with a prior distribu-
tion with mean µ0 ∈ Xn × Fq and covariance Σ0 ∈
R(ndx+qdf )×(ndx+qdf ).

2) SLAM as an Optimization Problem on Manifolds
In this subsection, we interpret the SLAM problem on man-

ifolds as the optimization of a cost function c : Xn×Fq → R,
constructed from residual terms of the same dimension of
the minimal coordinates of xt, xt and zt. In particular, we
must generalize (3) to the case where the states, dynamics
and measurement maps are defined on and between manifolds.
This involves replacing + and - operators with � and �
operators, when necessary. For example, the sliding-window
filter window presented in Section II, would be associated with
the cost c : Xn ×Fq → R, given by:

c(xt) = ‖xt � µ0‖2Σ−1
0

+

t−1∑
i=t−n+1

‖xi+1 � g(xi)‖2Σ−1
w

(xi+1 � g(xi))

+

p∑
j=p−q+1

t∑
i=t−n+1

‖zij � h(xi, ft,j)‖2Σ−1
v

Similar to Section II, we stack all residual terms into a single
residual vector C(xt). For example, for the sliding-window
filter above, we have:

C(xt) :=
[(

Σ
−1/2
0 (x̃t � µ0)

)>(
Σ−1/2
w (xt−n+1 � g(xt−n))

)> · · · (Σ−1/2
w (xt � g(xt−1))

)>(
Σ−1/2
v (zt−n+1,p−q+1 � h(xt−n+1, ft,p−q+1))

)> · · ·(
Σ−1/2
v (zt−n+1,p � h(xt−n+1, ft,p))

)> · · ·(
Σ−1/2
v (zt,p−q+1 � h(xt, ft,p−q+1))

)> · · ·(
Σ−1/2
v (zt,p � h(xt, ft,p))

)>]>
∈ R(2n−1)dx+pdf+nqdz .

As a result, c(xt) = C(xt)
>C(xt), and the SLAM problem is

now reduced to the following nonlinear least squares problem:

min
xt

.c(xt) = min
xt

.C(xt)
>C(xt) (11)

Section B4 introduces the main algorithmic submodules used
to find an approximate solution to (11).

3) Jacobians Under Box Operators
In subsequent proofs, we require the following results

regarding the behavior of Jacobian matrices under the � and
� operators. In particular, we will focus on the case where
the box operator acts on elements of SO(3), since SO(3) is
the non-Euclidean-space Lie group that appears most often in
this paper.

Definition A.1 (Jacobian on SO(3)): We say that f :
SO(3) → SO(3) is differentiable at R ∈ SO(3), with
Jacobian denoted by:

∂

∂θ
f(R) ∈ R3×3,

if the following equality holds:

lim
δθ→0

∥∥∥f(R� δθ) � f(R)− ∂f
∂θ δθ

∥∥∥
2

‖δθ‖2
= 0.

Theorem A.2: Suppose f : SO(3) → SO(3) is differen-
tiable. Then, for any fixed y ∈ SO(3):

∂

∂θ

(
y � f(R)

)
= −∂f

∂θ
+O(y � f(R)).

Proof: Using the definition of the � operator for SO(3),
we have, for any δθ ∈ R3:

y � f(R� δθ)

= y �

(
f(R) �

∂f

∂θ
δθ

)
+ o(δθ)

= y �

(
f(R) Exp

(
∂f

∂θ
δθ

))
+ o(δθ)

= Log
(

Exp
(
−∂f
∂θ
δθ

)
f(R)>y

)
+ o(δθ)

= Log
(

Exp
(
−∂f
∂θ
δθ

)
Exp

(
y � f(R)

))
+ o(δθ)

= y � f(R) + J−1
`

(
y � f(R)

)
·
(
−∂f
∂θ
δθ

)
+ o(δθ).



Here, we have defined J−1
` : R3\{0} → SO(3) by:

J−1
` (θ) = I − 1

2
θ∧ +

(
1

‖θ‖2
− 1 + cos ‖θ‖

2‖θ‖ · sin ‖θ‖

)
(θ∧)2,

in accordance with [33]. Here, ∧ : R3 → R3×3 denotes the
wedge operator. Thus, we have:

∂

∂θ

(
y � f(R)

)
= −J−1

`

(
y � f(R)

)
· ∂f
∂θ
.

The theorem statement now follows.
Theorem A.3: Suppose f : SO(3) → SO(3) is differen-

tiable. Then for any fixed y ∈ SO(3):

∂

∂θ

(
f(R) � y

)
=
∂f

∂θ
+O(f(R) � y).

Proof: Using the definition of the � operator for SO(3),
we have, for any δθ ∈ R3:

f(R� δθ) � y

=

(
f(R) �

∂f

∂θ
δθ

)
� y + o(δθ)

=

(
f(R) Exp

(
∂f

∂θ
δθ

))
� y + o(δθ)

= Log
(
y>f(R)Exp

(
∂f

∂θ
δθ

))
+ o(δθ)

= Log
(

Exp
(
f(R) � y

)
Exp

(
∂f

∂θ
δθ

))
+ o(δθ)

= f(R) � y + J−1
r

(
f(R) � y

)
·
(
∂f

∂θ
δθ

)
+ o(δθ),

which implies:

∂

∂θ

(
f(R) � y

)
= J−1

r

(
f(R) � y

)
· ∂f
∂θ
.

Here, we have defined J−1
r : R3\{0} → SO(3) by:

J−1
r (θ) = I +

1

2
θ∧ +

(
1

‖θ‖2
− 1 + cos ‖θ‖

2‖θ‖ · sin ‖θ‖

)
(θ∧)2,

in accordance with [33]. The theorem statement now follows.

In subsequent discussions, when we consider dynamics and
measurement models of the form y = f(R) � n, where n ∈
R3 denotes small-magnitude, zero-sum noise, terms of order
O(y � f(R)) and O(f(R) � y) are often ignored.

B. Appendix for Section IV

1) Algorithm Sub-blocks

Algorithm 3: Gauss-Newton Step.
Data: Objective C>C, linearization point x?t .
Result: Mean µ, covariance Σ after a Gauss-Newton step.

1 J ← ∂C
∂xt

∣∣
x?
t

2 Σt ← J>J
3 µt ← x?t − (J>J)−1J>C(x?t )
4 return µt,Σt

Algorithm 4: Marginalization
Data: Objective f = C>C, vector of variables to

marginalize xt,M , linearization point x?t .
Result: Mean µt,K and covariance Σt,K of

non-marginalized variables x?t,K .
1 C ← subvector of C containing entries dependent on xM .
2 J :=

[
JK JM

]
←
[

∂C
∂xt,K

∣∣
x?
t

∂C
∂xt,M

∣∣
x?
t

]
.

3 Σt,K ←
(
J>K
[
I − JM (J>MJM )−1J>M

]
JK
)−1

4 µt,K ← x?t,K − Σt,KJ
>
K

[
I − JM (J>MJM )−1J>M

]
C(x?)

5 return µt,K ,Σt,K

2) Proof of Theorem 4.1 (Gauss-Newton Steps)
Here, we present the proof of Theorem 4.1, reproduced

below.
Theorem A.4: (Gauss-Newton Step) Let xt? ∈ Rd denote

a given linearization point, and suppose J := ∂C
∂xt
∈ RdC×d

has full column rank. Then applying a Gauss-Newton step to
the cost c(xt), about xt? ∈ Rd yields the new cost:

c(xt) = ‖xt − µt‖2Σ−1
t

+ o(xt − xt?),

where µt ∈ Rd and Σt ∈ Rd×d are given by:

Σt ← (J>J)−1,

µt ← xt
? − (J>J)−1J>C(xt

?).

Proof: We have:

c(xt) = C(xt)
>C(xt)

=
[
C(xt

?) + J(xt − xt?)
]>[

C(xt
?) + J(xt − xt?)

]
+ o(xt − xt?)

= (xt − µt)>Σ−1
t (xt − µt) + c0(xt

?) + o(xt − xt?),

where c0(xt
?) ∈ R denotes a scalar-valued function of xt? that

is independent of the variable xt. This concludes the proof.
3) Proof of Theorem 4.2 (Maringalization Steps)
Theorem A.5 (Marginalization Step): Let xt? ∈ Rd denote

a given linearization point, and suppose J := ∂C
∂xt
∈ RdC×d

has full column rank. Define JK := ∂C
∂xt,K

∈ RdC×dK and
JM := ∂C

∂xt,M
∈ RdC×dM . If C2(xt,M , xt,K) were a linear

function of xt = (xt,M , xt,K), then applying a Marginalization
step to the cost c(xt), about the linearization point xt? =
(x?t,K , x

?
t,M ) ∈ Rd yields:

min
xt,M

c2(xt,K , xt,M ) = ‖xt,K − µt,K‖2Σ−1
t,K

,

where Σt,K ∈ RdK×dK and µt,K ∈ RdK are given by:

Σt,K :=
(
J>K
[
I − JM (J>MJM )−1J>M

]
JK
)−1

,

µt,K := x?t,K − Σt,KJ
>
K

[
I − JM (J>MJM )−1J>M

]
C(x?t ).

Proof: It suffices to show that:

min
xt,M

c2(xt,K , xt,M )

= (xt,K − µK)>Σ−1
K (xt,K − µK) + c′(x?t ).

To do so, we first note that since C2(xt) is linear in xt:

c2(xt) = ‖C2(xt)‖22 = ‖C2(x?t ) + J2∆xt‖22



= ‖C2(x?t ) + JK∆xt,K + JM∆xt,M‖22.

By the method of least-squares, the optimal ∆xt,M is given
by the normal equation:

∆xt,M = −(J>MJM )−1J>M
(
C2(x?t ) + JK∆xt,K

)
Substituting back into our expression for c(xt), we have:

min
xt,M

.c2(xt)

=‖
(
I − JM (J>MJM )−1J>M

)(
C2(x?t ) + JK∆xt,K

)
‖22

=
(
C2(x?t ) + JK∆xt,K

)>[
I − JM (J>MJM )−1J>M

](
C2(x?t ) + JK∆xt,K

)
= (xt,K − x?t,K)> J>K

[
I − JM (J>MJM )−1J>M

]
JK︸ ︷︷ ︸

:= Σ−1
K

(xt,K − x?t,K)

+ 2(xt,K − x?t,K)>J>K
[
I − JM (J>MJM )−1J>M

]
C2(x?t )

+ C2(x?t )
>[I − JM (J>MJM )−1J>M

]
C2(x?t )

=
(
xt,K −x?t,K + ΣKJ

>
K

[
I − JM (J>MJM )−1J>MC2(x?t )︸ ︷︷ ︸

:=−µK

])>
Σ−1
K

(
xt,K −x?t,K + ΣKJ

>
K

[
I − JM (J>MJM )−1J>M

]
C2(x?t )︸ ︷︷ ︸

:=−µK

)
+ C2(x?t )

(
I − JM (J>MJM )−1J>M

)
+ c′(x?t

= (xt,K − µK)>Σ−1
K (xt,K − µK) + c′(x?t ).

with ΣK and µK as defined in the theorem statement, and
c′(x?t ∈ R as a term independent of xt.

4) Main Algorithm on Manifolds
Recall the states, poses, features, dynamics and measure-

ment maps, and costs defined in Appendix A2. In particular,
the cost c(x) is given by:

c(x) = C(x)>C(x) (12)

Now, let x̄∗ be a chosen linearization point. Let Ĉx̄∗ := C ◦
π−1
x̄? be the coordinate representation of the function C near
x̄∗. Recall that Ĉx̄∗ is simply a function from one Euclidean
space to another. We can now Taylor expand to write:

C(x̄) = (C ◦ π−1
x? )
(
πx?(x)

)
= Ĉx̄?(∆χ)

= Ĉx̄?(0) + J∆χ+ o(∆χ), (13)

where ∆χ = x�x? and J is the Jacobian of Ĉx̄∗ with respect
to ∆χ evaluated at zero. We then apply a modified version of
the algorithms from Section IV-A:

1) Gauss-Newton Descent: Used to update the current
linearization point x̄{k} to a new linearization point
x̄{k+1}.

x(k+1) ← x(k) �
(
− (JTJ)−1JTC(x(k))

)
(14)

After Gauss-Newton steps have been taken, the lin-
earization point x? is fixed, and all or part of the original
optimization problem, reproduced below:

min
x

c(x) = min
x

C(x)>C(x)

is replaced with the following linear least squares opti-
mization problem:

min
x
.(x� µ)>Σ−1(x� µ) (15)

where the algorithm assigns:

µ← x? � (J>J)−1J>C(x?)

Σ← (J>J)−1.

2) Marginalization: Used to remove variables xM from the
optimization problem by applying linear approximation
to C—in particular, the optimization problem:

min
x
.c(x)

is approximated by:

min
xK

.(xK � µK)>Σ−1
K (xK � µK),

where the algorithm assigns:

µK ← x?K�(
− ΣKJ

>
K

[
I − JM (J>MJM )−1J>M

]
C2(x?)

)
ΣK ←

(
J>K
[
I − JM (J>MJM )−1J>M

]
JK
)−1

,

C. Appendix for Section V

1) Continuous to Discrete Time Formulation
The robotic systems analyzed by most mainstream SLAM

algorithms are described using continuous-time dynamics
models. The implementation of these algorithms thus involves
discrete-time propagation. We sketch this process below, in a
manner which is both mathematically aligned with the existing
literature and convenient for illustrating our optimization algo-
rithm, which operates using a discrete-time dynamics model.

To begin, let H and Hu denote the space of quaternions
and the space of unit quaternions, respectively. Recall that the
time derivative of a smooth curve on Hu, e.g., q ∈ Hu, can be
expressed as an element of H; in particular, there exists some
ω ∈ R3 such that:

q̇ = q ?

[
0
ω

]
∈ H. (16)

Let X be the dx-dimensional Lie group inhabited by the robot
state x ∈ X , given by the finite Cartesian product of Euclidean
spaces and unit quaternions. In other words, X can be written
as:

X := X1 × · · · XN ,

where Xk is either Hu or an Euclidean space, for each k ∈
{1, · · · , N}. Inspired by (16), we define:

X ′ := X ′1 × · · · X ′N ,

where, for each k ∈ {1, · · · , N}, we have X ′k = H if Xk =
Hu, and X ′k = Xk otherwise.



The fundamental question underlying the time discretization
process is as follows. Suppose the continuous-time dynamics
model for the robot state is given by:

ẋ(s) = gct
(
x(s), wc(s)

)
, ∀ s ∈ R, (17)

with gct : X × Rdx → X ′ smooth, and with wc(s) ∈ Rdx as
zero-mean white noise with autocorrelation E[wc(s)wc(s

′)] =
K · δ(s − s′) for each s ∈ R, where K ∈ Rdx×dx , K � 0,
and δ(·) denotes the Dirac delta function. Suppose wc(s) and
deviations in x(s) are treated as first-order perturbations. Can
we straightforwardly construct an approximate discrete-time
additive noise model, of the form:

xt+1 = g(xt) � w(t), (18)

where xt := x(t0) ∈ X , g : X → X smooth, and xt+1 :=
x(t1) ∈ X and w(t) ∈ Rdx , whose evolution agrees with that
of (17) up to first-order perturbations?

We answer the above question in the affirmative, by de-
tailing below the time discretization process used throughout
the remainder of this section. With a slight abuse of notation,
we write the discrete-time states as xt := x(t0) ∈ X and
xt+1 := x(t1) ∈ X for some t0, t1 ∈ R, with t0 < t1. The
main idea is to first perform non-linear integration on a set of
nominal dynamics, which ignores error in the initial state and
the dynamics noise. We then correct for these perturbations
by assuming that they evolve as a linear dynamical system.
• Nominal state dynamics:

We define the nominal state dynamics as:

˙̂x(s) = gct(x̂(s), 0) ∀ s ∈ R.

This is the set of dynamics that would be obeyed in the
absence of the white noise wc(s). If the solution x̂(s)
uniquely exists, we can construct a smooth function ĝ :
X → X that maps x̂(t0) to x̂(t1), i.e.:

x̂(t1) = ĝ
(
x̂(t0)

)
, (19)

which describes the discrete-time propagation of the
nominal state x(t).

• Error state dynamics:
To characterize the drift of the true state x(s) away

from the nominal state x(s), we define the error state
δx(s) := x(s) � δx̂(s) ∈ Rdx , and characterize the
corresponding error-state dynamics as:

˙δx(s) = gct(x(s), wc(s)) � gct(δx(s), 0)

=
∂f

∂x
(x̂(s), 0) · δx(s)

+
∂f

∂wc
(x̂(s), 0) · wc(s) + o

(
δx(s) · wc(s)

)
,

(20)

By approximating the dynamics of the error state δx(s) ∈
Rdx as a linear, time-varying system, we can write, for
each s ∈ (t0, t1):

δx(s) = Φ(s, t0)δx(t0) (21)

+

∫ s

t0

Φ(s, τ) · ∂f
∂ωc

(x̂(τ), 0) · wc(τ)dτ, (22)

where Φ(s, t0) ∈ Rdx×dx is the state transition matrix
satisfying:

d

ds
Φ(s, t0) =

∂f

∂x
(x̂(s), 0) · Φ(s, t0).

• True State dynamics—Discrete-time propagation of mean
and covariance:

From the discrete-time propagation of the nominal
and error dynamics, i.e., (19) and (21), we have:

x(t1) = x̂(t1) � δx(t1)

= ĝ(x̂(t0)) �

(
Φ(t1, t0)δx(t0)

+

∫ t1

t0

Φ(t1, τ) · ∂f
∂ωc

(x̂(τ), 0) · wc(τ)dτ

)
=
(
ĝ(x̂(t0)) � Φ(t1, t0)δx(t0)

)
�

(∫ t1

t0

Φ(t1, τ) · ∂f
∂ωc

(x̂(τ), 0) · wc(τ)dτ

)
+ o
(
δx(t0), wc(·)

)
,

where we have used the fact that the � operator, which
operates through:

Exp(δθ + δφ) = Exp(δθ) · Exp(δφ) + o(δθ · δφ)

for any x ∈ H and δθ, δφ ∈ R3.
Finally, by identifying:

xt+1 ← x(t1) ∈ X ,
g(xt)← x̂(t1) � Φ(t1, t0)δx(t0) ∈ X ,

wt ←
∫ t1

t0

Φ(t1, τ) · ∂f
∂ωc

(x̂(τ), 0) · wc(τ)dτ ∈ Rdx ,

we obtain our discrete-time dynamics model:

xt+1 = g(xt) � wt.

Notice that wt ∈ Rdx×dx is a zero-mean random variable,
with covariance Σw ∈ Rdx×dx given by:

Σw := E[wtw
>
t ]

=E

[∫ t1

t0

∫ t1

t0

Φ(t1, τ)
∂f

∂ωc
(x̂(τ), 0) · wc(τ)wc(τ

′)>

·
(
∂f

∂ωc
(x̂(τ ′), 0)

)>
Φ(t1, τ

′)> dτdτ ′

]

=

∫ t1

t0

Φ(t1, τ)
∂f

∂ωc
(x̂(τ), 0) ·K ·

(
∂f

∂ωc
(x̂(τ), 0)

)>
Φ(t1, τ)> dτ

where we have used the fact that E[wc(τ)wc(τ
′)>] =

K ·δ(τ−τ ′), with δ(·) denoting the Dirac delta function.
2) EKF, Setup
The Extended Kalman Filter (EKF), whose standard for-

mulation is presented in Algorithm 5, is an iterative algorithm
for updating estimates of the current pose xt (i.e. n = 1)
and positions of all observed features at the current time,
ft := (ft,1, · · · , ft,p) ∈ Rpdf . This corresponds to the sliding



window filter in our formulation, with n = 1 and q = p.
Below, as an application of our optimization-based SLAM
framework, we present the dynamics and measurement maps
of the EKF algorithm in R2, as well as the associated cost
functions. Dimension-wise, in its standard formulation, the
2D EKF is an instantiation of Algorithm 5 with dx = 3,
df = 2, and dz = 2. To unify our notation, we will suppose
that dx, df , dz assume these values throughout the rest of this
section.

Let xt := (x1
t , x

2
t , θt) ∈ Rdx denote the robot pose, com-

prising its position and angle in Rdf , let ft,k := (f1
t,k, f

2
t,k) ∈

Rdf denote the position of each feature fk ∈ {f1, · · · , fp}
visible at time t, and let zt,k := (z1

t,k, z
2
t,k) ∈ Rdz denote

the measurement of feature fk at time t. The dynamics map
g : Rdx → Rdx , with ẋt = g(xt) is obtained by performing
numerical integration on the continuous-time dynamics:

ẋ1
t = v cos θ + w1

t ,

ẋ2
t = v sin θ + w2

t ,

θ̇t = ω + w3
t ,

where wt := (w1
t , w

2
t , w

3
t ) ∈ Rdx denotes additive zero-

mean Gaussian noise on the (x, y, θ) coordinates of the state
variable, respectively, with joint covariance wt ∼ N (0,Σw)
for some covariance matrix Σw ∈ Rdx×dx , Σw � 0. For more
details regarding the numerical integration process, see Section
C1 in the Appendix.

The measurement map h : Rdx × Rdf → Rdz is given by:

z1
t,k = f1

t,k − x1
t + v1

t ,

z2
t,k = f2

t,k − x2
t + v2

t ,

where vt := (v1
t , v

2
t ) ∈ Rdz denotes additive zero-mean Gaus-

sian noise on the measurements z1
t,j , z

2
t,j ∈ R, respectively,

with joint covariance vt ∼ N (0,Σv) for some covariance
matrix Σv ∈ Rdz×dz , Σv � 0. The measurement vector
zt ∈ Rpdf is then given by concatenating each of the q residual
measurements obtained at time t, i.e. zt := (zt,1, · · · , zt,p) ∈
Rpdz .

3) Proofs from Section V-A
Theorem A.6: The feature augmentation step of the stan-

dard EKF SLAM algorithm (Alg. 6) is equivalent to applying
a Gauss-Newton step to cEKF,t,1 : Rdx+pdf → R, given by:

cEKF,t,1(x̃t, ft,p+1, · · · , ft,p+p′)

=‖x̃t − µt‖2Σ−1
t

+

p+p′∑
k=p+1

‖zt,k − h(xt, ft,k)‖2
Σ̃−1

v
.

Proof:
To simplify the analysis below, we assume all degrees

of freedom of new features are observed. More specifically,
we assume the existence of an inverse observation map
` : Rdx × Rdz → Rdf , satisfying h(xt, `(xt, zt)) = zt for
each xt ∈ Rdx , zt ∈ Rdz , which directly generates position
estimates of new features from their feature measurements and
the current pose, by effectively “inverting” the measurement
map h : Rdx × Rdf → Rdz [5]. When full observations are
unattainable, the missing degrees of freedom are introduced as
a prior to the system [5]; in this case, similar results follow.

Algorithm 5: Extended Kalman Filter SLAM, Stan-
dard Formulation.

Data: Prior distribution on x0 ∈ Rdx : N (µ0,Σ0), dynamics
and measurement noise covariances
Σw ∈ Rdx×dx ,Σv ∈ Rdz×dz , (discrete-time)
dynamics map g : Rdx → Rdx , measurement map
h : Rdx × Rpdf → Rdz , time horizon T ∈ N.

Result: Estimates x̂t for all desired timesteps t ≤ T .

1 for t = 0, · · · , T do
2 if detect new feature measurements

zt,p+1:p+p′ := (zt,p+1, · · · , zt,p+p′) ∈ Rp′dz then
3 µt,Σt, p← Alg. 6, EKF feature augmentation(

µt,Σt, p, zt,p+1:p+p′ , h(·)
)

4 end
5 zt,1:p := (zt,1, · · · , zt,p) ∈ Rpdz ← New measurements

of existing features.
6 µt,Σt ← Alg. 7, EKF feature update(

µt,Σt, zt,1:p, h(·)
)
.

7 if t < T then
8 µt+1,Σt+1 ← Alg. 8, EKF state propagation(

µt,Σt, g(·)
)

9 end
10 end
11 return x̂0, · · · x̂T ∈ Rdx .

First, to simplify notation, define:

zt,p+1:p+p′ = (zt,p+1, · · · , zt,p+p′) ∈ Rp
′dz ,

ft,p+1:p+p′ = (ft,p+1, · · · , ft,p+p′) ∈ Rp
′df ,

h̃(xt, ft,p+1:p+p′) :=
(
h(xt, ft,p+1), · · · , h(xt, ft,p+p′)

)
∈ Rp

′dz ,

Σ̃v = diag{Σv, · · · ,Σv} ∈ Rp
′dz×p′dz .

We can now rewrite the cost cEKF,t,1 as:

cEKF,t,1(x̃t, ft,p+1:p+p′)

=‖x̃t − µt‖2Σ−1
t

+ ‖zt,p+1:p+p′ − h̃(xt, ft,p+1:p+p′)‖2Σ̃−1
v
.

To apply a Gauss-Newton step, our first task is to
find a vector C1(x̃t, ft,p+1:p+p′) of an appropriate
dimension such that cEKF,t,1(x̃t, ft,p+1:p+p′) =
C1(x̃t, ft,p+1:p+p′)

>C1(x̃t, ft,p+1:p+p′). A natural choice is
furnished by C1(x̃t, ft,p+1:p+p′) ∈ Rdx+pdf+p′dz , as defined
below:

C1(x̃t, ft,p+1:p+p′)

:=

[
Σ
−1/2
t (x̃t − µt)

Σ
−1/2
v

(
zt,p+1:p+p′ − h̃(xt, ft,p+1:p+p′)

)] .
Thus, our parameters for the Gauss-Newton algorithm sub-
module are:

x̃?t := (x?t , f
?
t,1:p, f

?
t,p+1:p+p′)

=
(
µt, `(x

?
t , zt,p+1), · · · , `(x?t , zt,p+p′)

)
∈ Rdx+(p+p′)df ,

where x?t ∈ Rdx , f?t,1:p ∈ Rpdf , f?t,p+1:p+p′ ∈ Rp
′df ,

C1(x̃?t ) =

[
Σ
−1/2
t (x̃?t − µt)

Σ̃v
−1/2(

zt,p+1:p+p′ − h̃(x?t , f
?
t,p+1:p+p′)

)]



Algorithm 6: Extended Kalman Filter, Feature Aug-
mentation Sub-block.
Data: Current EKF state x̃t ∈ Rdx+pdf , with mean

µt ∈ Rdx+pdf and covariance
Σt ∈ R(dx+pdf )×(dx+pdf ), current number of
features p, observations of new features at
current pose
zt,p+1:p+p′ := (zt,p+1, · · · , zt,p+p′) ∈ Rp′dz ,
measurement map h : Rdx × Rdf → Rdz ,
inverse measurement map ` : Rdx ×Rdz → Rdf .

Result: Updated number of features p, updated EKF
state mean µt ∈ Rdx+pdf , covariance
Σt ∈ R(dx+pdf )×(dx+pdf ) (with p already
updated)

1 (µt,x, µt,f,1:p)← µt ∈ Rdx+pdf , with µt,x ∈ Rdx ,
µt,f,1:p ∈ Rpdf .

2 ` : Rdx × Rdz → Rdf ← Inverse measurement map,
satisfying zt,k = h

(
xt, `(xt, zt,k)

)
for each xt ∈ Rdx ,

zt,k ∈ Rdz , ∀k = p+ 1, · · · , p+ p′.
3 ˜̀(µt,x, zt,p+1, · · · , zt,p+p′)←(

`(µt,x, zt,p+1), · · · , `(µt,x, zt,p+p′)
)
∈

Rp′df×(dx+p′dz)

4 µt ←
(
µt, ˜̀(µt,x, zt,p+1, · · · , zt,p+p′)

)
∈ Rdx+(p+p′)df

5

[
Σt,xx Σt,xf
Σt,fx Σt,ff

]
← Σt ∈ R(dx+pdf )×(dx+pdf ), with

Σt,xx ∈ Rdx×dx , Σt,xf = Σ>t,fx ∈ Rdx×pdf ,
Σt,ff ∈ Rpdf×pdf .

6 Lx ← ∂ ˜̀

∂x

∣∣
(µt,z′t)

∈ Rp′df×dx

7 Lz ← ∂ ˜̀

∂z

∣∣
(µt,z′t)

∈ Rp′df×p′dz

8 Σ̃v ← diag{Σv, · · · ,Σv} ∈ Rp′dz×p′dz
9 Σt ← Σt,xx Σt,xf Σt,xxL

>
x

Σt,fx Σt,ff Σt,fxL
>
x

LxΣt,xx LxΣt,xf LxΣt,xxL
>
x + LzΣ̃vL

>
z

 ∈
R(dx+(p+p′)df )×(dx+(p+p′)df )

10 p← p+ p′

11 return µt ∈ Rdx+pdf ,Σt ∈ R(dx+pdf )×(dx+pdf ), p ≥ 0

=

[
0
0

]
∈ Rdx+pdf+p′dz ,

J =

[
Σ
−1/2
t O

−Σ̃
−1/2
v H̃t,x

[
I O

]
−Σ̃
−1/2
v H̃t,f

]
∈ R(dx+pdf+p′dz)×(dx+(p+p′)df ),

where H̃t :=
[
H̃t,x H̃t,f

]
∈ Rp′dz×(dx+p′df ) is defined as

the Jacobian of h̃ : Rdx×Rp′df → Rp′dz at (x?t , f
?
t,p+1:p+p′) ∈

Rdx+p′df , with H̃t,x ∈ Rp′dz×dx and H̃t,f ∈ Rp′dz×pdf . By
Algorithm 3, the Gauss-Newton update is thus given by:

Σt

← (J>J)−1 (23)

=

(Σ
−1/2
t −

[
I
O

]
H̃>t,xΣ̃

−1/2
v

O −Σ̃
−1/2
v H̃t,f



Algorithm 7: Extended Kalman Filter, Feature Update
Sub-block.

Data: Current EKF state x̃t ∈ Rdx+pdf , with mean
µt ∈ Rdx+pdf and covariance
Σt ∈ R(dx+pdf )×(dx+pdf ), new measurements of
existing features
zt,1:p := (zt,1, · · · , zt,p) ∈ Rpdz , measurement
map h : Rdx × Rdf → Rdz

Result: Updated EKF state mean µt ∈ Rdx+pdf and
covariance Σt ∈ R(dx+pdf )×(dx+pdf )

1 ft,1:p ← (ft,1, · · · , ft,p) ∈ Rpdf .
2 h̃(xt, ft,1:p)←

(
h(xt, ft,1), · · · , h(xt, ft,p)

)
∈ Rpdz

3 Ht ← ∂h̃
∂(xt,ft,1:p)

∣∣∣
µt

Jacobian of

h̃ : Rdx × Rpdf → Rpdz evaluated at µt ∈ Rdx+pdf .
4 Σ̃v ← diag{Σv, · · · ,Σv} ∈ Rpdz×pdz .
5 µt ← µt + ΣtH

T
t (HtΣtH

T
t + Σ̃v)

−1
(
zt,1:p −

h̃(µt, ft,1:p)
)
∈ Rdx+pdf .

6 Σt ← Σt − ΣtH
T
t (HtΣtH

T
t + Σ̃v)

−1HtΣt ∈
R(dx+pdf )×(dx+pdf ).

7 return µt ∈ Rdx+pdf ,Σt ∈ R(dx+pdf )×(dx+pdf ).

Algorithm 8: Extended Kalman Filter, State Propaga-
tion Sub-block.

Data: Current EKF state x̃t ∈ Rdx+pdf , with mean
µt ∈ Rdx+pdf and covariance
Σt ∈ R(dx+pdf )×(dx+pdf ), (discrete-time)
dynamics map g : Rdx → Rdx

Result: Propagated EKF state mean µt+1 ∈ Rdx+pdf

and covariance Σt+1 ∈ R(dx+pdf )×(dx+pdf )

1 (µt,x, µt,f,1:p)← µt, with µt,x ∈ Rdx , µt,f,1:p ∈ Rpdf .

2

[
Σt,xx Σt,xf
Σt,fx Σt,ff

]
← Σt ∈ Rdx×dx , with

Σt,xx ∈ Rdx×dx ,Σt,xf = Σ
>
t,fx ∈ Rdx×pdf ,

Σt,ff ∈ Rpdf×pdf .
3 Gt ← ∂g

∂x

∣∣∣
µt,x

.

4 µt+1 ←
(
g(µt), µt,f,1:p

)
∈ Rdx+pdf .

5 Σt+1 ←
[
GtΣt,xxG

>
t + Σw GtΣt,xf

Σt,fxG
>
t Σt,ff

]
∈

R(dx+pdf )×(dx+pdf ).
6 return µt+1 ∈ Rdx+pdf ,Σt+1 ∈ R(dx+pdf )×(dx+pdf ).

[
Σ
−1/2
t O

−Σ̃
−1/2
v H̃t,x

[
I O

]
−Σ̃
−1/2
v H̃t,f

])−1

(24)

=

Σ−1
t +

[
I
O

]
H̃>t,xΣ̃−1

v H̃t,x

[
I O

] [
I
O

]
H̃>t,xΣ̃

−1/2
v H̃t,f

H̃>t,f Σ̃−1
v H̃t,x

[
I O

]
H̃>t,f Σ̃−1

v H̃t,f

−1

=

Ωt,xx + H̃>t,xΣ̃−1
v H̃t,x Ωt,xf H̃>t,xΣ̃−1

v H̃t,f

Ωt,fx Ωt,ff O

H̃>t,f Σ̃−1
v H̃t,x O H̃>t,f Σ̃−1

v H̃tf

−1

, (25)

µt ← x̃?t − (J>J)−1J>C1(x̃?t )

=
(
µt, `(x

?
t , zt,p+1), · · · , `(x?t , zt,p+p′)

)
.

Here, we have defined Ωt,xx ∈ Rdx×dx ,Ωt,xf = Ω>t,fx ∈



Rdx×pdf and Ωt,ff ∈ Rpdf×pdf by:[
Ωt,xx Ωt,xf
Ωt,fx Ωt,ff

]
:=

[
Σt,xx Σt,xf
Σt,fx Σt,ff

]−1

(26)

To conclude the proof, we must show that (25) is identical
to the update equations for covariance matrix in the standard
formulation of the Extended Kalman Filter algorithm, i.e., we
must show that: Σt,xx Σt,xf Σt,xxL

>
x

Σt,fx Σt,ff Σt,fxL
>
x

LxΣt,xx LxΣt,xf LxΣt,xxL
>
x + LzΣvL

>
z


·

Ωt,xx + H̃>t,xΣ̃−1
v H̃t,x Ωt,xf H̃>t,xΣ̃−1

v H̃t,f

Ωt,fx Ωt,ff O

H̃>t,f Σ̃−1
v H̃t,x O H̃>t,f Σ̃−1

v H̃tf


equals the (dx + (p + p′)df ) × (dx + (p + p′)df ) identity
matrix. This follows by applying (26), as well as the matrix
equalities resulting from taking the derivative of the equation
zt := h

(
xt, `(xt, zt)

)
with respect to xt ∈ Rdx and zt ∈ Rdz ,

respectively:

I = H̃t,fLz,

O = H̃t,x +Ht,fLx.

Theorem A.7: The feature update step of the standard EKF
SLAM algorithm (Alg. 7) is equivalent to applying a Gauss-
Newton step on cEKF,t,2 : Rdx+pdf → R, given by:

cEKF,t,2(x̃t)

:=‖x̃t − µt‖2Σ−1
t

+

p∑
k=1

‖zt,k − h(xt, ft,k)‖2
Σ−1

v
.

Proof: First, to simplify notation, define:

zt,1:p := (zt,1, · · · , zt,p) ∈ Rpdz ,
ft,1:p := (ft,1, · · · , ft,p) ∈ Rpdf ,

h̃(xt, ft,1:p) :=
(
h(xt, ft,1), · · · , h(xt, ft,p)

)
∈ Rpdz ,

Σ̃v := diag{Σv, · · · ,Σv} ∈ Rpdz×pdz .

We can then rewrite the cost as:

cEKF,t,2(x̃t) = ‖x̃?t − µt‖2Σ−1
t

+ ‖zt,1:p − h̃(x̃?t )‖2Σ̃−1
v
.

To apply a Gauss-Newton step, our first task is to find
a vector C2(x̃t) of an appropriate dimension such that
cEKF,t,2(x̃t) = C2(x̃t)

>C2(x̃t). A natural choice is furnished
by C2(x̃t) ∈ Rdx+pdf+pdz , as defined below:

C2(x̃t) :=

[
Σ
−1/2
t (x̃t − µt)

Σ̃
−1/2
v (zt,1:p − h̃(x̃t))

]
.

Thus, our parameters for the Gauss-Newton algorithm sub-
module are:

x̃?t = µt ∈ Rdx+pdf ,

C2(x̃?t ) =

[
Σ
−1/2
t (x̃?t − µt)

Σ̃
−1/2
v (zt,1:p − h̃(x̃?t ))

]
=

[
0

Σ̃
−1/2
v (zt,1:p − h̃(µt)

]
∈ Rdx+pdf+pdz ,

J =

[
Σ
−1/2
t

−Σ̃
−1/2
v Ht

]
∈ R(dx+pdf+pdz)×(dx+pdf ),

where H̃t ∈ Rpdz × Rdx+pdf is defined as the Jacobian of
h̃ : Rdx × Rpdf → Rpdz at x̃?t ∈ Rdx+pdf . By Algorithm 3,
the Gauss-Newton update is thus given by:

Σt ← (J>J)−1

= (Σ−1
t +H>t ΣvHt)

−1

= Σt − ΣtH
>
t (Σ−1

v +HtΣ
−1
t H>)−1HtΣt,

µt ← µt − (J>J)−1J>C2(x̃?t )

= µt − (Σ−1
t +H>t Σ−1

v Ht)
−1
[
Σ
−1/2
t −H>t Σ

−1/2
v

]
[

0

Σ
−1/2
v (zt,1:p − h̃(µt))

]
= µt + (Σ−1

t +H>t Σ−1
v Ht)

−1H>t Σ−1
v

(
zt,1:p − h̃(µt)

)
,

= µt + Σ−1
v H>t (Σ−1

t +H>t Σ−1
v Ht)

−1
(
zt,1:p − h̃(µt)

)
,

which are identical to the feature update equations for the
mean and covariance matrix in the Extended Kalman Filter
algorithm, i.e. (4) and (5) respectively. Note that, in the final
step, we have used a variant of the Woodbury Matrix Identity.

Theorem A.8: The state propagation step of the standard
EKF SLAM algorithm (Alg. 8) is equivalent to applying a
Marginalization step to cEKF,t,4 : R2dx+pdf → R, given by:

cEKF,t,4(x̃t, xt+1)

:=‖x̃t − µt‖2Σ−1
t

+ ‖xt+1 − g(xt)‖2Σ−1
w
.

Proof: Intuitively, the state propagation step marginalizes
out x̃t ∈ Rdx and retain xt+1 ∈ Rdx . In other words, in
the notation of our Marginalization algorithm submodule, we
have:

x̃t,K = xt+1 ∈ Rdx+pdf ,

x̃t,M = x̃t ∈ Rdx+pdf .

To apply a marginalization step, our first task is to find vectors
CK(xK) = CK(x̃t) and CM (xK , xM ) = CM (x̃t, xt+1)
of appropriate dimensions such that cEKF,t,4(x̃t, xt+1) =
CK(xt+1)>CK(xt+1)+CM (x̃t, xt+1)>CM (x̃t, xt+1). A nat-
ural choice is furnished by CK(xt+1) ∈ R and
CM (x̃t, xt+1) ∈ Rdx , as defined below:

cK(xt+1) = 0

cM (x̃t, xt+1) = ‖x̃t − µt‖2Σ−1
t

+ ‖xt+1 − g(xt)‖2Σ−1
w
.

where we have identified the following parameters, in the
language of a Marginalization step (Section II):

CK(x̃t,K) = 0 ∈ R

CM (x̃t,K , x̃t,M ) =

[
Σ̄
−1/2
t (x̃t − µt)

Σ
−1/2
w

(
xt+1 − g(xt)

)] ∈ R2dx+pdf .

For convenience, we will define the pose and feature track
components of the mean µt ∈ Rdx+pdf by µt := (µt,x, µt,f ) ∈
Rdx+pdf , with µt,x ∈ Rdx and µt,f ∈ Rpdf , respectively. This
mirrors our definition of xt ∈ Rdx and ft,1:p ∈ Rpdf as the



components of the full state x̃t := (xt, ft,1:p) ∈ Rdx+pdf .
In addition, we will define the components of Σ̄

−1/2
t ∈

R(dx+pdf )×(dx+pdf ) and Σ̄−1
t ∈ R(dx+pdf )×(dx+pdf ) by:[

Ωt,xx Ωt,xf
Ωt,fx Ωt,ff

]
:= Σ̄−1

t ∈ R(dx+pdf )×(dx+pdf ),[
Λt,xx Λt,xf
Λt,fx Λt,ff

]
:= Σ̄

−1/2
t ∈ R(dx+pdf )×(dx+pdf ),

where Σt,xx,Λt,xx ∈ Rdx×dx , Σt,xf ,Λt,xf ∈ Rdx×pdf ,
Σt,fx,Λt,fx ∈ Rpdf×dx , and Σt,ff ,Λt,ff ∈ Rpdf×pdf . Using
the above definitions, we can reorder the residuals in CK ∈ R
and CM ∈ R2dx+pdf , and thus redefine them by:

CK(x̃t,K) = 0 ∈ R
CM (x̃t,K , x̃t,M )

=

Λt,xx(xt − µt,x) + Λt,xf (ft,1:p − µt,f )

Σ
−1/2
w (xt+1 − g(xt))

Λt,fx(xt − µt,x) + Λt,ff (ft,1:p − µt,f )


∈ R2dx+pdf .

Our state variables and cost functions for the Gauss-Newton
algorithm submodule are:

x?M = x̃?t = µt ∈ Rdx+pdf ,

x?K = g(x̃?t ) = g(µt) ∈ Rdx+pdf ,

CK(x̃?t,K) = 0 ∈ R,

CM (x̃?t,K , x̃
?
t,M ) =

[
0
0

]
∈ R2dx+pdf ,

JM =

 O Λxf

Σ
−1/2
w O
O Λff

 ∈ R(2dx+pdf )×(dx+pdf )

JK =

 Λxx

−Σ
−1/2
w Gt
Λxf

 ∈ R(2dx+pdf )×dx ,

where we have defined Gt to be the Jacobian of g : Rdx →
Rdx at µt,x ∈ Rdx , i.e.:

Gt :=
∂g

∂xt

∣∣∣∣∣
xt=µt,x

Applying the Marginalization equations, we thus have:

µt+1 ← x̃t,K − Σt+1J
>
K

[
I − JM (J>MJM )−1J>M

]
CM (x?K , x

?
M )

= g(µt),

Σt+1 ←
(
J>K
[
I − JM (J>MJM )−1J>M

]
JK
)−1

,

=
(
J>KJK − J>KJM (J>MJM )−1J>MJK

)−1
,

=

([
Σ−1
w O
O ΛfxΛxf + Λ2

ff

]
−
[

−Σ−1
w Gt

ΛfxΛxx + ΛffΛfx

]
(Λ2

xx + ΛxfΛfx +G>t Σ−1
w Gt)

−1

·
[
−G>t Σ−1

w ΛxxΛxf + ΛfxΛff
])−1

=

([
Σ−1
w O
O Ωff

]
−
[
−Σ−1

w Gt
Ωfx

]

(Ωxx +G>t Σ−1
w Gt)

−1
[
−G>t Σ−1

w Ωxf
])−1

To show that this is indeed identical to the propagation
equation for the covariance matrix in the Extended Kalman
Filter algorithm, i.e. Algorithm 5, Line 5, we must show that:([

Σ−1
w O
O Ωff

]
−
[
−Σ−1

w Gt
Ωfx

]
(Ωxx +G>t Σ−1

w Gt)
−1

[
−G>t Σ−1

w Ωxf
])−1

=

[
GtΣt,xxG

>
t + Σw GtΣt,xf

Σt,xfG
>
t Σt,ff

]
This follows by brute-force expanding the above block matrix
components, and applying Woodbury’s Matrix Identity, along
with the definitions of Σt,xx,Λt,xx, Σt,xf ,Λt,xf , Σt,fx,Λt,fx,
Σt,ff , and Λt,ff .

4) MSCKF, Setup
The Multi-State Constrained Kalman Filter (MSCKF) algo-

rithm iteratively refines the mean and covariance of a MSCKF
full state, consisting of the most recent IMU state and a sliding
window of n poses. (Algorithm 9) In particular, when a set
of new IMU measurements is obtained, the MSCKF full state
is propagated forward in time. When a new image measure-
ment arrives, the current pose is appended to the MSCKF
full state vector. Features not observed in the current pose
are marginalized. If the number of poses maintained in the
MSCKF full state, denoted n, exceeds a pre-specified upper
bound Nmax, then features common to every third currently
maintained pose, starting from the second oldest pose, are
marginalized. Below, we discuss the key components of the
MSCKF algorithm—the IMU state, poses, MSCKF full states,
features, image measurements, dynamics, pose augmentation
and measurement maps—in more detail.

The IMU state xt,IMU takes the form:

xt,IMU := (qWS , vS , bg, ba, rWS)(t) ∈ R3 ×Hu × R9, (27)

where we use S and W to represent the sensor frame and
world frame, respectively. Here, rWS ∈ R3 denotes the
position of the IMU sensor frame represented in the world
frame, qWS ∈ Hu denotes the unit quaternion of axis rotation
from world frame to IMU sensor frame, and R(qWS) ∈ SO(3)
denotes the rotation matrix associated with qWS . Moreover,
vS ∈ R3 denotes the linear velocity of the IMU sensor frame
relative to the world frame, as represented in the world frame,
while bg ∈ R3 and ba ∈ R3 denote the sensor biases of the gy-
roscope and accelerometer, respectively. Finally, ω̃S ∈ R3 and
ãS ∈ R3 denote gyroscope and accelerometer measurements,
respectively.

For convenience, define XIMU := R3×Hu×R9 and X ′IMU :=
R3×H×R9. The continuous-time IMU dynamics map gIMU,ct :
XIMU → X ′IMU is given by:

q̇WS = qWS ?
1

2

[
0

ω̃S − bg − wg

]
,



Algorithm 9: Multi-State Constrained Kalman Filter,
Standard Formulation.

Data: Prior distribution on xIMU,0 ∈ Xp: N (µ0,Σ0),
dynamics and measurement noise covariances
Σw ∈ Rdx×dx , Σv ∈ Rdx×dz , discrete-time dynamics
map gIMU : RdIMU × RdIMU , measurement map
h : Xp × Rdf → Rdz , time horizon T , pose
transformation ψ : XIMU × (Xp)n ×Xp → Xp (IMU
→ global).

Result: Estimates x̂t ∈ XIMU × (Xp)n for all desired
timesteps t ≤ T , where n := number of poses in x̂t
at time t.

1 Sz, Sx, Sz,1, Sz,2 ← φ
2 (n, p)← (0, 0)
3 for t = 0, · · · , T do
4 while new image I with new pose xn+1 ∈ Xp recorded,

next IMU measurement not yet received do
5 µt ∈ XIMU × (Xp)n,Σt ∈

R(dIMU+ndx)×(dIMU+ndx) ← Alg. 10 (x̃t, µt, Σt,
xn+1, xIMU

n+1, ψ(·))
6 {zn+1,j | feature j is observed at xn+1} ← Feature

measurements at xn+1

7 {f?
j | Feature j is observed at xn+1} ← Feature

position estimates at xn+1.
8 Record new estimates of existing features and first

estimate of new features at xn+1 ∈ Xp.
9 Sz ←

Sz ∪
{

(xn+1, fj)| Feature j observed at n+ 1
}

10 n← n+ 1
11 if n ≥ Nmax − 1 then
12 Sx ← {xi|i mod 3 = 2, and 1 ≤ i ≤ n.}
13 Sz,1 ←

{
(xi, fj) ∈ Sz

∣∣xi ∈
Sx, feature j observed at each pose in Sx

}
14 end
15 Sz,2 ←

{
(xi, fj) ∈ Sz|xi ∈

x1:n, feature j observed at xi but not at xn
}

.
16 Sf ←

{
fj
∣∣∃xi ∈ x1:n s.t. (xi, fj) ∈ Sz,1 ∪ Sz,2

}
17 if Sf 6= φ then
18 µt ∈ XIMU × (Xp)n,Σt ∈

R(dIMU+ndx)×(dIMU+ndx) ← Alg. 11 (x̃t, µt,
Σt, xn+1, Sz,1 ∪ Sz,2, Sf , h(·))

19 x̂t ← µt ∈ XIMU × (Xp)n.
20 end
21 Sz ← Sz\(Sz,1 ∪ {(xi, fj)|xi ∈ Sx})
22 Reindex poses and features, in ascending order of

index, i.e., {x1, · · · , xn−|Sx|} and
{f1, · · · , fp−|Sf |}.

23 (p, n)← (p− |Sf |, n− |Sx|)
24 end
25 if t < T then
26 µt+1 ∈ XIMU × (Xp)n,Σt+1 ∈

R(dIMU+ndx)×(dIMU+ndx) ← Alg. 12, MSCKF State
Propagation (x̃t, µt, Σt)

27 end
28 end
29 return x̂0, · · · x̂T ∈ XIMU × (Xp)n

ḃg = wbg ,

v̇S = R(qWS)>
(
ãS − ba + wa

)
+ gW ,

ḃa = wba ,

ṙWS = vS .

where ? denotes quaternion multiplication, and
wg, wa, wbg , wba ∈ R3 denote zero-mean standard Gaussian
noise.

Each pose xk ∈ {x1, · · · , xn} currently maintained
in the sliding window of poses takes the form xk :=
(qWCk

, rWCk
) ∈ Hu × R3, where rWCk

∈ R3 denotes the
position of the camera at pose xk in the world frame, while
qWCk

∈ Hu denotes the quaternion associated with the axis
rotation from the world frame to the camera frame at pose
xk ∈ H× R3. For convenience, we define Xp := Hu × R3.

The MSCKF full state maintained throughout the operation
of the MSCKF algorithm contains the IMU state at the current
time, as well as a collection of n poses, where n is constrained
to remain below a pre-specified, fixed upper bound Nmax:

x̃t := (xt,IMU, x1, · · · , xn) ∈ XIMU × (Xp)n. (28)

The state space is thus X := XIMU × (Xp)n.
When a new image measurement arrives, the estimate of

the current camera pose in the IMU frame, denoted xIMU
n+1 ∈

XIMU, is transformed to the global frame, and appended to
the MSCKF full state x̃t. This coordinate transformation is
realized by the map ψ : XIMU × (Xp)n → Xp, defined by:

ψ
(
qWS , vS , bg, ba, rWS , qWC1 , rWC1 , · · · ,

qWCn
, rWCn

, qWIn+1
, rWIn+1

)
=
(
qIC ? qWIn+1

, rWIn+1
+ C(qWIn+1

)rIC
)

:= (qWCn+1
, rWCn+1

),

where qIC denotes the quaternion encoding the (fixed) trans-
formation from the IMU frame to the camera frame. In
summary, the MSCKF algorithm defines the new pose xn+1

and updates the MSCKF full state x̃t as follows:

xn+1 ← ψ(x̃t, x
IMU
n+1) ∈ Xp,

x̃t ← (x̃t, xn+1) =
(
x̃t, ψ(x̃t, x

IMU
n+1)

)
∈ XIMU × (Xp)n+1,

with the map ψ as defined above.
When new feature position estimates are detected from a

new image measurement, the new camera pose corresponding
to this image measurement is appended to x̃t, and n is
incremented by 1. If n = Nmax the upper limit Nmax, a third
of all old poses in x̃t is discarded, starting from the second
oldest pose. Then, feature measurements, corresponding to
features unobserved at the current pose, are marginalized and
used to update the mean and covariance of the new MSCKF
full state x̃t.

As is the case with the EKF algorithm, we assume that
the image measurement space and feature space are given
by Rdz and Rdf , respectively, with dz = 2 and df = 3.
Throughout the duration of the MSCKF algorithm, poses and
features are added into, dropped from, and marginalized from
the MSCKF full state. Suppose at a given time, the MSCKF
maintains n poses in the MSCKF full state x̃t, and retains



measurements of p features. For each pose i ∈ {1, · · · , n}
and feature j ∈ {1, · · · , p} currently maintained in the SLAM
algorithm, if feature j were detected at pose i, let zi,j ∈ Rdz
denote the associated feature measurement. For the MSCKF,
the measurement map h : XIMU × Rdf → Rdz is given by:

zi,j = h(xi, fj)

:=
1

(R(qWCk
)fj − rWCk

)z

[
(R(qWCk

)fj − rWCk
)x

(R(qWCk
)fj − rWCk

)y

]
(t)

+ vi,j .

where R(qWCk
) ∈ SO(3) denotes the rotation matrix as-

sociated with the quaternion qWCk
, fj ∈ R3 denotes the

position of feature j in the world frame, while the subscript
indices “x, y, z” refer to the respective coordinates of the
vector R(qWS)fj−rWS ∈ Xp. Meanwhile, vi,j ∈ Rdz denotes
zero-mean standard Gaussian noise in the measurement at time
t, with covariance matrix Σv ∈ Rdz×dz , Σv � 0.

When a new image measurement is received, the MSCKF
algorithm performs marginalization, described in Section
IV-C, using two sets of feature measurements—the set of all
feature measurements common to old poses xi to be dropped,
denoted Sz,1, as well as the set of all feature measurements of
features fj not seen in the current pose, denoted Sz,2. These
are more precisely defined in Section V-B. The measurement
vector used for marginalization, denoted z̃ ∈ R|Sz,1∪Sz,2|dz ,
is then given by concatenating the q residual measurements
obtained at times t− n+ 1, · · · , t, i.e.:

z̃ := {zi,j |(xi, fj) ∈ Sz,1 ∪ Sz,2} ∈ R|Sz,1∪Sz,2|dz .

5) Proofs from Section V-B
Theorem A.9: The pose augmentation step of the standard

MSCKF SLAM algorithm (Alg. 10) is equivalent to applying
a Gauss-Newton step to cMSCKF,t,1 : XIMU × (Xp)n → R,
given by:

cMSCKF,t,1(x̃t, xn+1)

=‖x̃t � µt‖2Σ−1
t

+ ε−1‖xn+1 � ψ(x̃t, x
IMU
n+1)‖22,

and taking ε → 0 in the resulting (augmented) mean µt and
covariance Σt.

Proof: We claim that from an optimization per-
spective, the state augmentation step is equivalent to
applying one Gauss-Newton step to the cost function
cMSCKF,t,1(x̃t, xn+1), specified above, and then taking the
limit ε → 0 in the resulting augmented mean µt(ε) ∈
XIMU × (Xp)(n+1) and augmented covariance µt(ε) ∈
R(dIMU+(n+1)dx)×(dIMU+(n+1)dx).

To apply a Gauss-Newton step, our first task is to find
a vector C(x̃t, xn+1) of an appropriate dimension such that
cMSCKF,t,1(x̃t, xn+1) = C1(x̃t, xn+1)>C1(x̃t, xn+1). A nat-
ural choice is furnished by C1(x̃t, xn+1) ∈ RdIMU+(n+1)dx , as
defined below:

C1(x̃t, xn+1) :=

[
Σ
−1/2
t (x̃t � µt)

ε−1/2
(
xn+1 � ψ(x̃t, x

IMU
n+1)

)] .
Thus, our parameters for the Gauss-Newton algorithm sub-
module are:

(x̃?t , x
?
n+1) := (µt, ψ(µt, x

IMU
n+1)) ∈ XIMU × (Xp)n,

Algorithm 10: Multi-State Constrained Kalman Filter,
Pose Augmentation Sub-block.

Data: MSCKF state x̃t ∈ XIMU × (Xp)n, with mean
µt ∈ XIMU × (Xp)n and covariance
Σt ∈ R(dIMU+ndx)×(dIMU+ndx), New pose
xn+1 ∈ Xp, measurement of new pose in IMU
frame xIMU

n+1 ∈ Xp, Transformation of poses from
IMU frame to global frame
ψ : R(dIMU+ndx) ×Xp → Xp

Result: Updated MSCKF state mean
µt ∈ XIMU × (Xp)n and covariance
Σt ∈ R(dIMU+ndx)×(dIMU+ndx), updated number
of poses n.

1 x̃t ← (x̃t, xn+1) ∈ RdIMU+(n+1)dx , where xn+1 ∈ Xp is
the new pose vector.

2 {zn+1,j | Feature j is observed at pose n+ 1} ←
Feature measurements at pose xn+1

3 {f?j | Feature j is observed at pose xn+1} ← Feature
position estimates at pose xn+1.

4 µt ← (µt, ψ(µt, x
IMU
n+1)) ∈ RdIMU+(n+1)dx , where

µt,IMU ∈ RdIMU := IMU component of µt,
xIMU
n+1 ∈ Xp := pose estimate of xn+1 from the IMU

frame.

5 Σt ←

[
IdIMU+(n+1)dx

∂ψ
∂(x̃t,xIMU

n+1)

]
Σt

[
IdIMU+(n+1)dx

∂ψ
∂(x̃t,xIMU

n+1)

]>
6 return µt ∈ XIMU × (Xp)n,

Σt ∈ R(dIMU+ndx)×(dIMU+ndx), n ≥ 0

C1(x̃?t , x
?
n+1) =

[
Σ
−1/2
t (x̃?t − µt)

ε−1/2
(
x?n+1 − ψ(x̃?t , x

IMU
n+1)

)] =

[
0
0

]
∈ RdIMU+(n+1)dx ,

J =

[
Σ
−1/2
t O

−ε−1/2Ψ ε−1/2Idx

]
∈ R(dIMU+(n+1)dx)×(dIMU+(n+1)dx),

where Ψ ∈ Rdx×(dIMU+ndx) is defined as the Jacobian of
ψ : XIMU × (Xp)n → Xp with respect to x̃t at (x̃?t , x

IMU
n+1) ∈

RdIMU+(n1)dx . By Algorithm 3, the Gauss-Newton update is
thus given by:

Σt(ε)← (J>J)−1 =

[
Σ

1/2
t O

ΨΣ
1/2
t ε1/2Idx

] [
Σ

1/2
t Σ

1/2
t Ψ>

O ε1/2Idx

]
=

[
Σt ΣtΦ

>

ΨΣt ΨΣtΨ
> + εIdx

]
,

µt(ε)← x̃?t − (J>J)−1J>C1(x̃?t , x
?
n+1)

= 0.

Taking ε→ 0 concludes the proof.
Theorem A.10: The feature update step of the standard

MSCKF algorithm (Alg. 11) is equivalent to applying a
marginalization step to cMSCKF,t,2 : XIMU × (Xp)n ×
R|Sf |df → R, given by:

cMSCKF,t,2(x̃t, fSf
)



Algorithm 11: Multi-State Constrained Kalman Filter,
Feature Update Sub-block.

Data: MSCKF state x̃t ∈ XIMU × (Xp)n, with mean
µt ∈ XIMU × (Xp)n and covariance
Σt ∈ R(dIMU+ndx)×(dIMU+ndx), Set of image
measurements for marginalization Sz,1 ∪ Sz,2,
Set of features to marginalize Sf , measurement
map h : Xp × Rdf → Rdz .

Result: Updated MSCKF state mean
µt ∈ XIMU × (Xp)n and covariance
Σt ∈ R(dIMU+ndx)×(dIMU+ndx).

1 fSf
∈ R|Sf |df ← Concatenation of all features in Sf

2 f?Sf
∈ R|Sf |df ← Concatenation of position estimate of

all features in Sf
3 h̃(x̃t, fSf

) ∈ R|Sz,1∪Sz,2|dz ← Concatenation of
measurement map outputs{
h(xi, fj)|(xi, fj) ∈ Sz,1 ∪ Sz,2

}
.

4 z̃ ∈ R|Sz,1∪Sz,2|dz ← Concatenation of feature
measurements

{
zij |(xi, fj) ∈ Sz,1 ∪ Sz,2

}
.

5 H̃t,x ← ∂h̃
∂x̃t

(µt, f
?
Sf

) ∈ R|Sz,1∪Sz,2|dz×(dIMU+ndx).

6 H̃t,f ← ∂h̃
∂fSf

(µt, f
?
Sf

) ∈ R|Sz,1∪Sz,2|dz×|Sf |df .

7 {a1, · · · , a|Sz,1∪Sz,2|dz−|Sf |df } ⊂ R|Sz,1∪Sz,2|dz ←
Orthonormal basis for N(H̃>t,f ).

8 A←
[
a1 · · · a|Sz,1∪Sz,2|dz−|Sf |df

]
∈

R|Sz,1∪Sz,2|dz×(|Sz,1∪Sz,2|dz−|Sf |df ).
9 QT ← QR Decomposition of A>H̃t,x, with

Q ∈ R(|Sz,1∪Sz,2|dz−|Sf |df )×(|Sz,1∪Sz,2|dz−|Sf |df ),
T ∈ R(|Sz,1∪Sz,2|dz−|Sf |df )×(dIMU+ndx).

10 Σ
−1

t ← Σ−1
t + T>(Q>A>RAQ)−1T ∈

R(dIMU+ndx)×(dIMU+ndx).
11 µt ← µt �

(
Σ−1
t +

T>(Q>A>RAQ)−1T
)−1

T>(Q>A>RAQ)−1
(
z̃ �

h̃(x̃t)
)
∈ XIMU × (Xp)n.

12 x̂t ← µt ∈ XIMU × (Xp)n.
13 return µt ∈ XIMU × (Xp)n,

Σt ∈ R(dIMU+ndx)×(dIMU+ndx)

:=‖x̃t � µt‖2Σ−1
t

+
∑

(xi,fj)∈Sz,1∪Sz,2

‖zi,j � h(xi, fj)‖2Σ−1
v
,

where fSf
∈ R|Sf |df denotes the stacked vector of all feature

positions in Sf (see Algorithm 9).
Proof: First, we rewrite cMSCKF,t,2 as:

cMSCKF,t,2(x̃t, fSf
)

:=‖x̃t � µt‖2Σ−1
t

+ ‖z̃ � h̃(x̃t, fSf
)‖2

Σ̃−1
v
,

where z̃ ∈ R|Sz,1∪Sz,2|dz , h̃ : XIMU × (Xp)n × R|Sf |df →
R|Sz,1∪Sz,2|dz : are defined as follows—z̃ denotes the stacked
measurement vectors in {zi,j |(xi, fj) ∈ Sz,1 ∪ Sz,2} ∈
R|Sz,1∪Sz,2|dz , h̃(x̃t, fSf

) denotes the stacked outputs of
the measurement map in {h(xi, fj)|(xi, fj) ∈ Sz,1 ∪
Sz,2} ∈ R|Sz,1∪Sz,2|dz , and Σ̃v := diag{Σv, · · · ,Σv} ∈
R|Sz|dz×|Sz|dz .

Essentially, by marginalizing the feature position estimates,
this step utilizes information from feature measurements to

Algorithm 12: Multi-State Constrained Kalman Filter,
State Propagation Sub-block.

Data: MSCKF state x̃t ∈ XIMU × (Xp)n, with mean
µt ∈ XIMU × (Xp)n and covariance
Σt ∈ R(dIMU+ndx)×(dIMU+ndx), (discrete-time)
dynamics map g : RdIMU → RdIMU .

Result: Updated MSCKF state mean
µt+1 ∈ XIMU × (Xp)n and covariance
Σt+1 ∈ R(dIMU+ndx)×(dIMU+ndx).

1 (µt,IMU, µt,x,1:n)← µt, with µt,IMU ∈ RdIMU ,
µt,x,1:n ∈ Rndx .

2 Gt ← Jacobian of gIMU : RdIMU → RdIMU evaluated at
µt,IMU ∈ RdIMU .

3 µt+1 ←
(
gIMU(µt,IMU), µt,x,1:n

)
∈ XIMU × (Xp)n.

4 Σt+1 ←
[
Gt O
O Indx

]
Σt

[
G>t O
O Indx

]
+

[
Σw O
O O

]
∈

R(dIMU+ndx)×(dIMU+ndx).
5 return µt+1 ∈ XIMU × (Xp)n,

Σt+1 ∈ R(dIMU+ndx)×(dIMU+ndx).

constrain our state estimates. To accomplish this, we choose
our algorithm variables as follows:

x̃t,K := x̃t = (xt,IMU, x1, · · · , xn)

∈ RdIMU+ndx+|Sf |df ,

x̃t,M := fSf
∈ R|Sf |df ,

x := (x̃t,K , x̃t,M )

∈ RdIMU+ndx+|Sf |df ,

CM (x̃t,K , x̃t,M ) :=

[
Σ
−1/2
t (x̃t � µt)

Σ̃
−1x/2
v

(
z̃ � h̃(x̃t, fSf

)
)]

∈ RdIMU+ndx+|Sz,1∪Sz,2|dz .

The Marginalization algorithm block then implies that:

JK :=
∂CM
∂x̃t

(µt, f
?
Sf

) =

[
Σ
−1/2
t

−Σ̃
−1/2
v H̃t,x

]
∈ R(dIMU+ndx+|Sz,1∪Sz,2|dz)×(dIMU+ndx),

JM :=
∂CM
∂fSf

(µt, f
?
Sf

) =

[
O

−Σ̃
−1/2
v H̃t,f

]
∈ R(dIMU+ndx+|Sz,1∪Sz,2|dz)×|Sf |df ,

where we have defined:

f?Sf
∈ R|Sf |df ← Stacked position estimates of features in Sf ,

H̃t,x :=
∂h̃

∂x̃t
h̃(µt, f

?
Sf

) ∈ R|Sz,1∪Sz,2|dz×(dIMU+ndx),

H̃t,f :=
∂h̃

∂fSf

(µt, f
?
Sf

) ∈ R|Sz,1∪Sz,2|dz×|Sf |df .

Recall that the marginalization equations (10) and (9) in our
formulation read:

µK ← µK − ΣKJ
>
K

[
I − JM (J>MJM )−1J>M

]
CM

(
x̃t,K , x̃t,M

)
,

ΣK ←
(
J>K(I − JM (J>MJM )−1J>M )JK

)−1
.



Substituting in the above expressions for JK , JM , and
CM

(
µt, f

?
Sf

)
, we have:

Σt ← (J>K(I − JM (J>MJM )−1J>M )JK
)−1

,

=

([
Σ
−1/2
t −H̃>t,xΣ̃

−1/2
v

]
[
I O

O I − Σ̃
−1/2
v H̃t,f (H̃>t,f Σ̃−1

v H̃t,f )−1H̃>t,f Σ̃
−1/2
v

]
[

Σ
1/2
t

−Σ̃
−1/2
v H̃t,x

])−1

=
(
Σ−1
t + H̃>t,xΣ̃−1/2

v

[
I − Σ̃−1/2

v H̃t,f (H̃>t,f Σ̃−1
v H̃t,f )−1

H̃>t,f Σ̃−1/2
v

]
Σ̃−1/2
v H̃t,x

)−1

µt ← µK − ΣKJ
>
K

[
I − JM (J>MJM )−1J>M

]
CM

(
µt, f

?
Sf

)
= µt +

(
Σ−1
t + H̃>t,xΣ̃−1/2

v[
I − Σ̃−1/2

v H̃t,f (H̃>t,f Σ̃−1
v H̃t,f )−1H̃>t,f Σ̃−1/2

v

]
· Σ̃−1/2

v H̃t,x

)−1

· H̃>t,xΣ̃−1/2
v

[
I − Σ̃−1/2

v H̃t,f (H̃>t,f Σ̃−1
v H̃t,f )−1

· H̃>t,f Σ̃−1/2
v

]
Σ̃−1/2
v

(
z̃ − h̃(x̃t, fSf

)
)
.

Comparing with the update step in the MSCKF algorithm, i.e.,
(10) and (9), reproduced below:

Σ
−1

t ← Σ−1
t + T>(Q>A>Σ̃vAQ)−1T,

µt ← µt +
(
Σ−1
t + T>(Q>A>Σ̃vAQ)−1T

)−1

T>(Q>A>Σ̃vAQ)−1
(
z̃ − h̃(x̃t, fSf

)
)

we find that it suffices to show:

T>(Q>A>Σ̃vAQ)−1

= H̃>t,xΣ̃−1/2
v

[
I − Σ̃−1/2

v H̃t,f (H̃>t,f Σ̃−1
v H̃t,f )−1H̃>t,f Σ̃−1/2

v

]
· Σ̃−1/2

v

= H̃t,xΣ̃−1
v H̃t,x − H̃>t,xΣ̃−1

v H̃t,f (H̃>t,f Σ̃−1
v H̃t,f )−1H̃>t,f Σ̃−1

v .

To see this, recall that A is defined as a full-rank matrix whose
columns span N(H̃>t,f ). Thus:

(Σ̃−1/2
v H̃t,f )> · Σ̃1/2

v AQ = H̃>t,fAQ = O.

In other words, the columns of Σ̃
−1/2
v H̃t,f and of Σ̃

1/2
v AQ

form bases of orthogonal subspaces whose direct sum equals
Rnqdz . We thus have:

Σ̃−1/2
v H̃t,f (H̃>t,f Σ̃−1

v H̃t,f )−1H̃>t,f Σ̃−1/2
v

+ Σ̃1/2
v AQ(Q>A>Σ̃vAQ)−1Q>A>Σ̃1/2

v = I,

which in turn implies that:

T>(Q>A>Σ̃vAQ)−1

= H̃>t,xAQ(Q>A>Σ̃vAQ)−1Q>A>

= H̃>t,xΣ̃−1/2
v (Σ̃1/2

v AQ)

(Q>A>Σ̃1/2
v · Σ̃1/2

v AQ)−1(Q>A>Σ̃1/2
v )Σ̃−1/2

v

= H̃>t,xΣ̃−1/2
v

(
I − Σ̃−1/2

v H̃t,f (H̃>t,f Σ̃−1
v H̃t,f )−1H̃>t,f Σ̃−1/2

v

)
Σ̃−1/2
v

= H̃t,xΣ̃−1
v H̃t,x − H̃>t,xΣ̃−1

v H̃t,f (H̃>t,f Σ̃−1
v H̃t,f )−1H̃>t,f Σ̃−1

v ,

as claimed.

Theorem A.11: The state propagation step of the standard
MSCKF SLAM algorithm (Alg. 12) is equivalent to applying
a Marginalization step once to cMSCKF,t,4 : R2dIMU+ndx → R,
given by:

cMSCKF,t,4(x̃t, xt+1,IMU)

:=‖x̃t � µt‖2Σ−1
t

+ ‖xt+1,IMU � gIMU(xt,IMU)‖2
Σ−1

t
.

Proof: We claim that from an optimization perspective,
the update step is equivalent to applying one marginalization
step to the cost function cMSCKF,t,4(x̃t, xt+1,IMU) specified
above. In particular, we wish to marginalize out xt,IMU ∈ XIMU
and retain xt+1,IMU ∈ XIMU; in other words, in the notation of
our Marginalization algorithm submodule, we have:

x̃t,K := (xt+1,IMU, x1, · · · , xn) ∈ XIMU × (Xp)n,
x̃t,M := xt,IMU ∈ XIMU.

To apply a marginalization step, our first task is to
find vectors CK(xK) = CK(x̃t) and CM (xK , xM ) =
CM (x̃t, xt+1,IMU) of appropriate dimensions such that
cMSCKF,t,4(x̃t, xt+1,IMU) = CK(xt+1,IMU)>CK(xt+1,IMU) +
CM (x̃t, xt+1,IMU)>CM (x̃t, xt+1,IMU). A natural choice is fur-
nished by CK(xt+1,IMU) ∈ R and CM (x̃t, xt+1,IMU) ∈ Xp, as
defined below:

CK(x̃t,K) = 0 ∈ R

CM (x̃t,K , x̃t,M ) =

[
Σ̄
−1/2
t (x̃t − µt)

Σ
−1/2
w

(
xt+1,IMU − gIMU(xt,IMU)

)]
∈ R2dIMU+ndx .

For convenience, we will define the IMU state and pose
components of the mean µt ∈ XIMU × (Xp)n by µt :=
(µt,IMU, µt,IMU) ∈ XIMU × (Xp)n, with µt,IMU ∈ Xp and
µt,x ∈ (Xp)n, respectively. This mirrors our definition of
xt ∈ Xp and xn+1 ∈ (Xp)n as the components of the full
state x̃t := (xt, xn+1) ∈ XIMU × (Xp)n. In addition, we will
define the components of Σ̄

−1/2
t ∈ R(dIMU+ndx)×(dIMU+ndx)

and Σ̄−1
t ∈ R(dIMU+ndx)×(dIMU+ndx) by:[

Ωt,IMU,IMU Ωt,IMU,x
Ωt,x,IMU Ωt,x,x

]
:= Σ̄−1

t

∈ R(dIMU+ndx)×(dIMU+ndx),[
Λt,IMU,IMU Λt,IMU,x
Λt,x,IMU Λt,x,x

]
:= Σ̄

−1/2
t

∈ R(dIMU+ndx)×(dIMU+ndx),

with the dimensions of the above block matrices given by
Σt,IMU,IMU,Λt,IMU,IMU ∈ RdIMU×dIMU , Σt,IMU,x,Λt,IMU,x ∈
RdIMU×ndx , Σt,x,IMU,Λt,x,IMU ∈ Rpdx×dIMU , and
Σt,x,x,Λt,x,x ∈ Rndx×ndx . Using the above definitions, we
can reorder the residuals in CK ∈ R and CM ∈ R2dIMU+ndx ,
and thus redefine them by:

CK(x̃t,K) = 0 ∈ R



CM (x̃t,K , x̃t,M )

=

Λt,IMU,IMU(xt,IMU − µt,IMU) + Λt,IMU,x(x1:n − µt,x)

Σ
−1/2
w (xt+1,IMU − gIMU(xt,IMU))

Λt,x,IMU(xt,IMU − µt,IMU) + Λt,x,x(x1:n − µt,x)


∈ R2dIMU+ndx ,

where x1:n := (x1, · · · , xn) ∈ (Xp)n.
Our state variables and cost functions for the Gauss-Newton

algorithm submodule are:

x?M = x̃?t = µt ∈ XIMU × (Xp)n,
x?K = g(x̃?t ) = g(µt) ∈ XIMU × (Xp)n,

CK(x̃?t,K) = 0 ∈ R,

CM (x̃?t,K , x̃
?
t,M ) =

[
0
0

]
∈ R2dIMU+ndx ,

JK =

 O ΛIMU,x

Σ
−1/2
w O
O Λxx


∈ R(2dIMU+ndx)×(dIMU+ndx)

JM =

 ΛIMU,IMU

−Σ
−1/2
w Gt

Λx,IMU

 ∈ R(2dIMU+ndx)×dx ,

where we have defined Gt to be the Jacobian of gIMU :
XIMU → XIMU at µt,IMU ∈ XIMU, i.e.:

Gt :=
∂g

∂xt,IMU

∣∣∣∣∣
xt,IMU=µt,IMU

Applying the Marginalization update equations, we thus have:

µt+1 ← x̃t,K − Σt+1J
>
K

[
I − JM (J>MJM )−1J>M

]
CM (x?K , x

?
M )

= g(µt),

Σt+1 ←
(
J>K
[
I − JM (J>MJM )−1J>M

]
JK
)−1

,

=
(
J>KJK − J>KJM (J>MJM )−1J>MJK

)−1
,

=

([
Σ−1
w O
O Λx,IMUΛIMU,x + Λ2

xx

]
−
[

−Σ−1
w Gt

Λx,IMUΛIMU,IMU + ΛxxΛx,IMU

]
·

· (Λ2
IMU,IMU + ΛIMU,xΛx,IMU +G>t Σ−1

w Gt)
−1

·
[
−G>t Σ−1

w ΛIMU,IMUΛIMU,x + Λx,IMUΛxx
])−1

=

([
Σ−1
w O
O Ωxx

]
−
[
−Σ−1

w Gt
Ωx,IMU

]
(ΩIMU,IMU +G>t Σ−1

w Gt)
−1

[
−G>t Σ−1

w ΩIMU,x
])−1

To show that this is indeed identical to the propagation
equation for the covariance matrix in the Extended Kalman

Filter algorithm, i.e. Algorithm 5, Line 5, we must show that:([
Σ−1
w O
O Ωxx

]
−
[
−Σ−1

w Gt
Ωx,IMU

]

(ΩIMU,IMU +G>t Σ−1
w Gt)

−1
[
−G>t Σ−1

w ΩIMU,x
])−1

=

[
GtΣt,IMU,IMUG

>
t + Σw GtΣt,IMU,x

Σt,IMU,xG
>
t Σt,x,x

]
This follows by brute-force expanding the above block ma-
trix components, and applying Woodbury’s Matrix Iden-
tity, along with the definitions of Σt,IMU,IMU,Λt,IMU,IMU,
Σt,IMU,x,Λt,IMU,x, Σt,x,IMU,Λt,x,IMU, Σt,x,x, and Λt,x,x.

D. Simulation Settings

1) Dataset
All experiments are performed on the EuRoC MAV dataset

[27], a popular public SLAM dataset of stereo image se-
quences and inertial measurement unit (IMU) measurements.
The stereo images and IMU measurements arrive at rates of
20Hz and 200Hz, respectively. The sensor suite is mounted
on board a micro aerial vehicle. Ground-truth poses, recorded
using a Vicon moion capture system and IMU biases, are also
available for each sequence. Our experiments are carried out
on the Vicon Room 2 01 and 02 sequences, which contain
about 2300 stereo images each and span about 2 minutes of
real-time operation. The first of these sequences is easier to
analyze via our SLAM algorithms, as it corresponds to simple
and slow evolution of the camera, while the latter contains
some jerky and quick motions that prove challenging to some
algorithms.

2) Front-end and Back-end
Since the focus of this work is the SLAM back-end, we

standardize the front-end across all experiments, altering only
the back-end used to process the abstracted data produced
by the front-end. We use keypoint features as environment
landmarks, as is standard in visual SLAM. First, BRISK
features are extracted from both images of the input stereo
pair. Then, feature matching is carried out between the left and
right image frames. We then carry out brute force matching
using Hamming distance on the binary BRISK descriptors,
and filter outliers via an epipolar constraint check, using the
known relative pose between the two cameras in the stereo
set-up. Only keypoints for which a stereo match was found
are kept. Next, a four-way consistence check is carried out.
i.e. a match between two stereo frames S1, S2 is accepted if
and only if both observations of a given feature in S1 are
matched to the respective observations of the same feature
in S2. Finally, outlier matches are rejected by projecting the
best estimate of the matched feature onto the best estimate
of the current camera pose, and rejecting matches that have
a high reprojection error. Any stereo matches in the current
frame that were not matched with a previously seen is recorded
as a newly detected landmark, and initialized using stereo
triangulation from the best estimate of the current camera



pose. The front-end maintains data structures allowing two-
way access between features and camera poses: for each
feature index, it is possible to look up all camera poses from
which that feature is visible, and likewise for each camera
pose it is possible to query which features are visible in that
frame.

For book-keeping the cost function in the back-end, comput-
ing Jacobians, and implementing Gauss-Newton optimization,
we use GTSAM in C++ [8, 28].

3) Dynamics and Image Measurement Models
We use an on-board IMU to collect odometry measure-

ments, i.e., body-frame angular velocity and linear acceler-
ation, and apply the IMU pre-integration scheme detailed in
[29], as summarized below. The objective of IMU preintegra-
tion is to establish a discrete-time dynamics map xt+1 = g(xt)
that allows us to predict the pose of the robot at time xt+1

given the pose at time t and the IMU measurement at time t.
Here, each timestep corresponds to a new image measurement.
Since IMU measurements arrive at a faster rate than image
measurements, to compute this map, we must stack several
IMU measurements into a relative state measurement, which
can then be concatenated with the state at time xt to get the
predicted state at time xt+1.

The robot state xt consists of the orientation, position, and
velocity of the body frame relative to the world frame, and
the IMU biases, so that xt = (Rt, pt, vt, bt), where (Rt, pt) ∈
SE(3), vt ∈ R3 and bt = (bgt , b

a
t ) ∈ R3 × R3 ' R6 are the

IMU biases in the gyroscope and accelerometer respectively.
The IMU biases are slowly varying and generally unknown,
so they are included in the robot state and are also jointly
estimated.

The IMU measures angular velocity and accelerations. The
measurements are denoted B ã and Bω̃WB . Here, B refers to
the robot’s body frame and W the world frame. The prefix
B means that the quantity is expressed in the B frame, and
the suffix WB denotes that the quantity represents the motion
of the B frame relative to W . So the pose of the robot is
(RWB ,W p) ∈ SE(3). The measurements are affected by
additive white noise η and the slowly varying IMU biases:

Bω̃WB(t) = BωWB(t) + bg(t) + ηg(t)

B ã(t) = R>WB(t)(Wa(t)−W g) + bg(t) + ηg(t)

where WωWB is the true angular velocity, Wa the true
acceleration, and W g the gravity acceleration vector in the
world frame. Assume that between timestep t and t + 1, we
received m IMU measurements, at constant time increments
∆t. [29] provides expressions for (xt+1 � g(xt)) directly in
terms of the IMU measurements. Additionally, expressions
for noise propagation are also provided, which allows us to
compute the covariance Σv over the error (xt+1 � g(xt)) in
terms of the measurement noise η, which is what we need to
compute the required cost function ‖xt+1 � g(xt)‖2Σ−1

v
and

Jacobians.
Given a camera pose xt = (Rt, pt) and a 3D feature location

fj = (fxj , f
y
j , f

z
j ), the camera measurement model h(xt, fj)

predicts the projected pixel location of the point in both stereo
images. We assume the stereo camera pair is calibrated and

rectified, so that both cameras have the same pinhole camera
matrix K, and the epilines are horizontal. As such, the two
measurements of a point in the two cameras will share the
same v-coordinate in (u, v) image space. Therefore, an image
measurement will be stored as a 3-vector (uL, uR, v), where
the coordinates of the measurement in the left and right image
are (uL, v) and (uR, v) respectively. The measurement map
h predicts the image location (uL, uR, v) by projecting the
point fj onto both image frames (with the standard pinhole
projection), using the known poses of the two cameras in the
robot’s body-frame. Due to noise, the actual measurement
will not have the exact same v coordinate, so the image
measurement is collected by averaging the two v-coordinates
of the two keypoints. This measurement ztj is then compared
to the predicted coordinates by a Mahalanobis distance in
R3 space to get the cost function ‖ztj − h(xt, fj)‖2Σ−1

w
. The

covariance Σw is the expected noise in image space, which is
a design parameter. In our experiments we choose Σw = σI3
where I3 is the 3 × 3 identity matrix and σ = 0.05 pixels,
which was found to work well in practice.
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