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Abstract— We analyze stochastic differential equations and
their discretizations to derive novel high probability tracking
bounds for exponentially stable time varying systems which
are corrupted by process noise. The bounds have an explicit
dependence on the rate of convergence for the unperturbed
system and the dimension of the state space. The magnitude
of the stochastic deviations have a simple intuitive form, and
our perturbation bounds also allow us to derive tighter high
probability bounds on the tracking of reference trajectories
than the state of the art. The resulting bounds can be used in
analyzing many tracking control schemes.

I. INTRODUCTION

Modern autonomous systems require safety assurances
which scale gracefully with the dimension of the system.
However, much of the prior work on computing safe tracking
bounds for uncertain dynamical systems relies on adversarial
or worst-case analysis (see e.g. [1], [2] and the references
therein). Yet worst-case analysis often becomes too conser-
vative and computationally expensive for high dimensional
systems. This suggests the use of average-case stochastic
safety guarantees to mitigate the curse of dimensionality. The
behavior of dynamical systems under stochastic perturbations
has been studied but mostly in settings where the structure
gives rise to well known distributions (like e.g. linear systems
perturbed with Gaussian noise [3]) or under strong stability
assumptions which may be hard to verify [4]. Tractable
finite-time error bounds for more complex classes of systems
are, to the best of our knowledge, still missing from the
literature.

In this work we derive new bounds on the iterates of
stochastic, time-varying, nonlinear dynamical systems that
satisfy a Lyapunov stability condition on their corresponding
deterministic dynamics. The resulting bounds have explicit
dependencies on problem-dependent parameters which make
them amenable for use in practical scenarios.

Error bounds for reference tracking have been extensively
studied in the literature, though often in the asymptotic
regime [5]-[7] and with strong structural assumptions on the
underlying dynamics (e.g. linear [7], [8]). Most similar to our
work is a recent line of work on tracking error bounds of
constant step-size stochastic approximation [9], in terms of
bounds on the mean-squared error. Under slightly stronger
assumptions on the noise and using a different set of analysis
tools, we are able to bound the higher order moments of
the error which yields correspondingly tighter tracking error
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bounds. Other related work includes work on constant step-
sizes for linear dynamics arising from reinforcement learning
schemes [8], [10], or the convergence of stochastic gradient
schemes [11] where the assumed structure guarantees a
contraction on the state space.

Finally, our work draws on a set of techniques most re-
cently used to analyze the finite-time properties of Langevin
stochastic differential equations used in Markov-Chain
Monte-Carlo (MCMC) sampling algorithms (see e.g. [12]—
[15]). However, the structure of the Langevin dynamics—
namely the drift term of the diffusion being the gradient
of a strongly concave potential function— is often stronger
than is present in nonlinear control problems. As such, in
this work we expand upon techniques used in prior work
to derive finite-time guarantees for nonlinear dynamical sys-
tems with Lyapunov functions under Gaussian perturbations.
Our results hold under weaker assumptions than Lyapunov-
stability of stochastic differential equations [4], [16], which
has been well researched in its own right. The conditions
for stochastic stability remain hard to verify in general, and
our assumptions — namely the stability of the deterministic
system— by no means guarantee stability of the stochastic
dynamics [4], [16].

The paper is organized as follows. In Section II we present
the discrete dynamics and the continuous-time limit we seek
to analyze along with our assumptions on the processes.
In Section III we then develop two high-probability error
bounds on the continuous time process by analyzing how a
Lyapunov function evolves along trajectories of a stochastic
differential equation. The first bound gives high probability
bounds on level-sets of the Lyapunov function, while the
second is on the individual iterates of the process. Our
proof technique results in tighter bounds than prior work
with explicit dependencies on problem-relevant parameters.
In Section IV we show that the bounds on the continuous
process can be used to derive error bounds for the discrete
process of interest. In particular we show that the iterates of
the discrete process satisfy a sub-Gaussian moment condi-
tion. We conclude in Section V with a brief discussion of
potential directions for future work.

II. PRELIMINARIES

In many control tasks it is often desired to derive high
confidence sets or tubes which are invariant under the dy-
namics. In this paper, we focus on deriving such sets for a
dynamical system of the form:

Tht1 =xr+h (f(l‘k,kih)+wk+1), (D)
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where f : R? x R, — R? describes the dynamics of the
system, i > 0 is the stepsize, and wg41 ~ N(0, 2k+1) can
be seen as un-modelled dynamics or unavoidable process
noise. We assume throughout this paper that f is locally
Lipschitz continuous in x and piecewise continuous in t.
Key to our analysis, is in viewing (1) as the forwards Euler
discretization with stepsize h of a stochastic differential
equation (SDE) of the form:

dX; = f(X¢, t)dt + QdBy, 2

where QQ; = Zt‘% and B; is standard Brownian motion.

To derive high confidence bounds around trajectories of
the discrete dynamics we analyze properties of the limiting
continuous time dynamics and then bound the approximation
error. Key to our analysis are properties of the determin-
istic continuous-time system: & = f(z,t¢). In particular,
we assume that there exists a (global) Lyapunov function,
V : R x Ry — R which satisfies the following standard
assumptions (see e.g [17]):

Assumption 1 (Assumption on the Lyapunov Function). The
Lyapunov function V € C%(R? x R.) satisfies, for all x €

RY:
041||:17H2§V(9:,t)§042\|x||2 YV t>0 3)
V.V (x,t) is L-Lipshitz continuous in = V ¢ >0 (4)
dV(x,t)

VoV (@, )" fla,t) + < —agllz[|* V>0 (5)

dt

We remark that without loss of generality we assume the
minimum of the Lyapunov function to be at the origin. We
further note that our assumption on time-varying dynamics
and a time-varying Lyapunov function allows for the mini-
mum of the Lyapunov function to be a time-varying process
2*(t), but our analysis does not change. We further note that
our assumptions imply that the minimum of the Lyapunov
function is exponentially stable such that:

V(Xp,T) < V(Xg,0)e 227

given our assumptions. Though this is a strong property,
it is still weaker than following the gradient of a potential
function as the Lyapunov function does not necessarily imply
a contraction on the space of trajectories over arbitrary time
horizons.

Remark 1. We note that our assumption is that V is a
Lyapunov function for the deterministic system. As such
though it guarantees exponential stability of the deterministic
system it does not necessarily certify exponential stochastic
stability or pth moment exponential stochastic stability as
is common in the analysis of stability of SDEs [4]. Such
concepts imply that X tends to the minimum of the Lya-
punov function in probability or almost surely which is a
much stronger property than is implied by Assumption 1.
Indeed our assumption only guarantees the existence of a
limiting steady state distribution [16]. In this paper we derive
properties of the finite time distribution.

To conclude, our preliminaries section we make an as-
sumption on the noise process 3;:

Assumption 2 (Assumption on the noise process). The

process ¥ : R, — R4¥9 satisfies:
spec(Xi) <o V t >0,
where o > 0 and spec denotes the spectrum of a matrix.

Given these assumptions, in the next section we derive
high probability bounds on trajectories of the SDE which
we subsequently use to derive the confidence sets for the
discrete dynamics. We remark that throughout this paper all
norms are the Euclidean norm unless stated otherwise.

III. CONSTRUCTING CONFIDENCE SETS

To construct confidence sets around trajectories of the SDE
we proceed by analyzing how the Lyapunov function evolves
along its trajectories. We construct a bound on the higher
order moments of the Lyapunov function and use this to
construct our high probability bounds. Our proof makes use
of techniques and ideas recently used to analyze the conver-
gence of Langevin MCMC sampling algorithms [18]-[20]
but the analysis is complicated due to the fact that the drift
is not the gradient of a strongly concave function. Despite
this, we show that the standard assumptions on the Lyapunov
function can substitute for this property and be used to
derive high-probability bounds around the (potentially time-
varying) minimum of the Lyapunov function.

Theorem 1. Given Assumptions 1-2, initial condition x,
and for a time T > 0, along trajectories of (2) for any
d €(0,1):

P(V(X7,T) > e(5) <6

where:

€1(6) = 26_%:23T+1V(CC0,O) +

asolLe <

8L log &
d+ Og‘;).
as

851

Before presenting the proof of this Theorem, we first note
that it guarantees that the Lyapunov function behaves like a
sub-exponential random variable around its minimum along
trajectories of the SDE,. The first term in €1 () reflects an
exponentially decaying dependence on the initial position,
with the same decay rate, az/ay as for the deterministic
dynamical system.

The second term has an inverse relationship with this
decay rate, highlighting how tighter Lyapunov functions lead
to tighter high-probability guarantees for the system. If the
Lyapunov function were a control Lyapunov function, this
decay rate could be seen to be proportional to the gain of
the control. As such we observe how a higher gain in the
control has a direct effect on the resulting confidence sets.

Proof. To derive our confidence sets we study how a scaled
version of the Lyapunov function, e“*V (x, t), evolves along
trajectories of the SDE (2), where ¢ > 0 is a design choice
we make later in the proof.
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Via Itd’s formula:
eCtV(gct,t) =V(2g,0)+T1+T2+T3+T4

where:

t
T1=/ eV (X5, s)ds
0
t
r2= [ e (va(Xs, T F(Xos) +
0
t _cs
T :/ %(tr(ZSViV(XS,S)) ds
0

t
T4:/ eV, V(Xs,8) 7 QsdBs.
0

Via our assumptions on the Lyapunov function, we can
combine 7’1 and 72 to find that:

t
T1+T2< / e (can — as)|| Xs|*ds,
0

where we used (3) to upper bound 7'1 and (5) to upper
bound T'2. Further choosing ¢ = g—z, lets lets us upper bound
T1+ T2 by 0.

To upper bound 73, we use the fact that V' has L-Lipshcitz
gradients in « and our upper bound on the singular values
of ¥; to find that:

T3 < /t odLe | adLeCt7
0 2 2c

where to derive this result we used Cauchy-Schwartz to upper
bound the trace of the two matrices, the fact that o(X(z)) <
o and 0(V2V(X,,s)) < L, and trivially upper bounded
et — 1 by e“t. Finally, for T4, we note that this term is a
Martingale which we define as M;. Letting ¢ = Z—Z’ these
upper bounds combine to give:

odLe
2c

eV (zg,t) < V(zo,0) + +M,. (6)

=U;
To derive our high-probability guarantees we control the
high moments of the supremum of eV (x;,t). To begin, we
invoke (6) to find that:

P13 P13
E {(sup eCtV(It,t)) } <E {<sup U, + Mt> }
t<T t<T

1

P17

SUT—HE[(supMJ)} )
t<T

where in the last line we used the fact that U; is a monoton-
ically increasing function of ¢ and the Minkowski inequality.

Thus, it remains to bound the second term on the right
hand side above. To do so, we make use of the Burkholder-
Gundy-Davis inequality [21] which bounds the supremum of
a martingale over time by analyzing its quadratic variations:

Ik ) ,
E [(SUP|Mt|) } <(8p)z E [<MtaMt>§} )]
t<T
I

Expanding on I gives:

S .
I=E (/ ethV,@V(XS,s)TE(XS)VxV(XS,s)ds)
0
(] i T %
<E (/ aL2eQCt|X5||2ds>
0
' [ L2 cT %
e (S spexg?) |
t<T

where 4 is a result of the upper bound on X(X,) when
¢z = 0 and the fact that V,V(z,s) is L-Lipschitz and
V.V (x,s) = 0 when z = 0 by assumption which implies
that |V, V (z,s)|| < L||X]|. The second inequality follows
by upper bounding the integral by the sup,, e“*|| X;||? and

solving the remaining integral fOT e“ds.
Combining all the upper bounds gives:

2
E [(sup eCtV(xht)) }
t<T

8poL2ecT AN
v+ | [ (2225 (supeix?) ) |
c t<T

We further develop this upper bound by using Young’s
inequality on the quantity inside of the expectation:

1 1
8 L2 cT\ 2 3
<p0 € ) (sup eCtXt||2>
& t<T

1 (8poL?e
< — (PTEE ) M (qupet| X2 ).
2001 c 2 \u<T

Plugging this in and using Minkowski’s inequality again
gives:

e |apervien) |

8poL?et 1 [(

Nl

D=

<Ur+

1
P13
-E UV (X, t
20{1C + 2 sup e ( ts )) :| )

t<T

where we used the assumption on V' and (3). Rearranging
the last line gives:

=

p 8 L2 cT
E Ksup eCtV(a:t,t)) ] <oUp+ P7LE 0 (g)
t<T a1c

Finally, we use (8) to control the p-th moments of V' (x, t):

=

B0V 1)) < T8 [ (smpe Ve ) |

t<T
8L
+ p) .
a1
T5

Using this p-th moment bound, via Markov’s inequality we
have that for € > 0:

P(V(Xr,T) > o) < SVER T <T5)p

L
< 26TV (29,0) + 27 (d
3
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Choosing € = e(T'5), and p = log 3 for & € (0,1) gives the
desired result. O

In Theorem 1 we constructed confidence sets in terms
of level-sets of the Lyapunov function. However, in many
settings it may be useful to construct balls around the
minimum of the Lyapunov function in the Euclidean metric.
In the following corollary to Theorem 1 we show that this
distance is sub-Gaussian at every time instant ¢ > 0.

Corollary 1. Given Assumptions 1-2, initial condition xy,
and for a time T > 0, along trajectories of (2), for § €
(0,e72):

P (| Xr| > 2(8)) < 8

where:

23741 1
age’ @2 asolLe 8L log <
62(5)\/22 1 X0l + 22 (d+ gé).
a7 Q30 a7

The proof of Corollary 1 follows by invoking the upper
and lower bounds on the Lyapunov function V' in Assump-
tion 1, and we omit it for brevity.

We remark that the bounds presented in Theorem 1 and
Corollary 1 result from controlling higher-order moments
of the continuous-time process. As such, they are tighter
than error bounds developed under similar assumptions on
the dynamics (yet weaker assumptions on the noise) in [9],
and stronger than classic results in the stochastic approxima-
tion literature where commonly only the second moment is
bounded [3].

IV. A SUBGAUSSIAN MOMENT BOUND FOR THE
DISCRETIZED PROCESS

To extend these results to the discretized process, which is
often more useful in practice, we introduce the interpolated
process X, for which X, = X, and which evolves for all
t € (ih, (i + 1)h] fori € N:

dXt = f(Xiha Zh)dt + QtdBt (9)

where the process noise ); and Brownian motion are chosen
to be the same as in (2). We note that this means that =
fi(zﬂ)h >.¢ds. To bound the approximation error between the
interpolated process and the true process we require a further

assumption on the dynamics:

Assumption 3 (Stronger assumption on the smoothness of
the dynamics). The dynamics f(z,t) is jointly Lipschitz
continuous in x and t:
If(@,t) = f@" )| < Lyl — || + Lot — ¢

Given this assumption we present the following theorem
on the iterates of the discretized process:
Theorem 2. Given Assumptions 1-3, initial condition X,
and for a time K > 0, if h < min 4\}%‘22? , %, 1) then for
all k > 1 and 6 € (0,1) the iterates of (1) satisfy:

P ([ Xkl > e3(9))) <0

where:
€3(0) =
k—1 2 1
L d 1+ dh)log =
K\/<1‘mh> o2 + Lz Fodro Uy dilogs
4 oam

for K is a constant depending only on the smoothness
parameters a1, a2, a3, L and Ly and m = as/2a0.

Before presenting the proof of Theorem 2, we comment
about the bound. We first note that it guarantees that the
individual iterates of the process are sub-Gaussian around
the minimum of the Lyapunov function and that it inherits
the desirable properties of the bounds in the previous section.
The proof proceeds by bounding the distance between an in-
terpolated version of the SDE (9) (which is equivalent to the
discrete system (1)) and the limiting SDE that we studied in
the previous section. Key to the proof is using the Lyapunov
function as a ‘metric’ and invoking the exponential decay of
the Lyapunov function and our results from Section III.

Proof. To begin the proof we first note that:

_ 2 _
1Xe]? < = V(Xp — Xo,t) + 2| X% (10)
a1

Through this decomposition, we note that we simply have
to analyze how V(X; — Xy, t) evolves along trajectories of
X, — X,. By construction, we remark that X, = X, and for
all t € (ih, (i + 1)h] for i € N:

d (Xt - Xt) = (f(th,Zh) - f(Xt,t)) dt,

since the randomness contributed to both processes is
identical and cancels. It follows that:

V(Xt - Xt7t)
- - av (X, — X, t
=V, V(X, — X, )T (X, — Xy, t) + %
=T
+ Vo V(X — X, ) (f(Xin,ih) — f(Xi — Xi,t))
=T
V. V(X — X, )T f( X0, 1)

=13
We proceed by constructing upper bounds on terms 77, 75,
and T3. By assumption, T} < —g—zV()_(t — X4, t). To bound
T5 we make use of the assumed Lipschitz continuity of both
V.V and f in X and Young’s inequality with constants €;
and es:

Ty < ||V V(Xi — Xe, )|l f(Xin, ih) — f(Xe — Xe, t)|
< LLg|| Xy — Xel[[| Xin — Xi + X
+ LLp(t —ih)|| X — X

LL;+eLLy . - LL: -
< DI TRV (%, Xy t) + Tflle — X2

LL
5 Lt —ih)2.

€2

2041

LL
+ =X +
€1
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Finally, for 75 we once again use Young’s inequality:

ElLLf = LLf 2
T3 < V(Xy — X, t) + —|| X¢]]”.
3= o, (Xe t )+2€1|| tll
Combining these upper bounds gives:
V(X — X¢,t)
3e1LL LL .
< (_% ablbyte T) V(X — Xy, t)
o) 2001

LL 3 . - LL
# 2L (IR + 1Ko = XilP ) + 52— in

To complete this upper bound we expand upon || X;, — X¢||?:

1 X — Xel|* =

t t
/f(Xih,ih)der/ Q.dBs
ih ih
=W,

< (20t — ih)2L3) | Xan|® + 2| W2 1%,

where W, is a d- dlmenswnal Gaussian process with mean 0
and covariance f p Ssds = (t —ih)oly for I; the identity
matrix in R%*¢, Using this decomposition, we find that:

V(X — Xy, t)
LL LL _
< (—0‘3 Salli* e T)V(Xt—Xt,t)
(65 20[1
LL 3 . S
Ly (nxtn? - m)ZL?an?)

€1 2

_Cl
LL LL

f|| W2 + =Lt — in)?.
2¢€9
=C5

Choosing, for simplicity €; and €s as:

€ = 13 o —
' dayLLy 2

Q103
dag LLp’

and letting m = 2(232, we have by the fundamental theorem
of calculus that for ¢ € (ih, (i + 1)h] for i € N:

V(Xt - Xtvt)
_ 4(t —ih)3C1 L3 >
S (em(ch) + ()lf> V(th — th,’l,h)
a
+4(t—zh)301L 1 Xin||® + 351 HX I*e “ds

e )WL 2ds + (t — ih)Cy,

t
o
ih

where we have used the fact that f:h e~m(t=9)ds < (t—ih)
and || X;p || < 2|| Xin — Xinl|? +2]| Xsn]|? to further simplify
the bound. Choosing ¢ = (i + 1)h, taking the L, norm of

both sides, and using the Minkowski inequality gives:

E[V(X, - X, t)"]"
4W3Cy L2

< e—mh + f
>~ o

+4n*C1L7E [\|th||2p] + hCy

) E [V(Xin — Xin, ih)p]%

3 (i+1)h ak
+ 701 E / e—7rL((i+1))L—s) ||Xs||2d8

2 ih

::T4
(i+1)h ‘ 25
+C1E / e DR T |12 ds :
ih
:=T5

Using Minkowski’s integral inequality, we can further
upper bound 7y and T5 as:

(+1)h
Ty S/
in

(i+1)h
T5 S/
ih

From the proof of Corollary 1, we know that:

2p7 5\ 2
(B (117 %)
2092 L 4L
Qge + 0 <d+p>7
2maon aq
=D

m((z+1)h S)E [HX ||2p}%

efm((iJrl)hfs)E [HW5H2P} % ds

1
E [|IX]*"]”

IN

ms 9
1 Xol
1

which implies that:

20[2 7(

(i+1)h
T, < /
ih oy

- 2a2efmh(1 _ efmh)ef%nhi

DR || X |2ds + hD

| Xol|? + hD.

a1m

To upper bound T, we use the fact that since W is Gaussian
with mean 0 and covariance ffh Yeds X (t —ih)oly, |Ws]|
is a v/8dho norm-sulb-Gaussian random variable [22], which
satisfies: E [||Ws||?]7 < +/8dpho. Thus we have that:

_ 1
E [V(X(t1yn — X(+yn, (i + DR)P]?
4h3Cy L2 _ 1
< <€mh + 1j> E [V(th - Xih,ih)p] ’1’
o

6a26—'mh(1 _ e—'mh)e—thi
a1m

80[2]13[/?01

_|_ - J

a1

+ hC (8dpha2 + <4h2L} +

+C

1 X0l

3
— | D .
2) )+hC2

mh
% , choos-

672mhi||XO||2

Since for h < 1/m, we have e”mh <1 —

maog 1

4V2LL3? m?

ing h < min( 1) guarantees that k :=
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3 2
(e*mh + M) < 1— 22 < 1 which in turn yields

(o2 4
a recursion:

E [V(X@+1n = Xpyn (0 + 1Dh)P]?
< EkE [V(Xih — Xihaih)p]%
Gage_mh(l _ e—mh)e—thi

a1m

+G | Xol[*

8042}1311?01

4+
aq

+ hCy (8dph02 + <4h2L‘;‘ + 2) D> + hCs.

e 2mh | X |

Using the fact that X = X, we must have that:

_ 1
E [V(X(it1)n — X(ig1yn: (i + Dh)P] "

Bage (1 — e~ P Sagh3L>
< 2 ( ) L) o Ts | Xo?
a1m
3 i+1
2 272 ;

where Tg = k2 Z;:o k7 because e~™" < k. Since Ty is a
geometric series, with k < 1 — %h for the possible choices

of h, simple computation finds that 75 < 4 (1 — 21)" /mh.
Since 1 — e~™" < mh, we further simplify to find:

=

E [V(X@s+1)n — X1y, (i + 1)h)P]

6age™ ™" 4+ 8anh?L2 B\®
<40y 2 = (1 - m) 10 1”
agm 4
4C 3 4C
+ = (8dph02 + <4h2Lfc + ) D) + =2,
m 2 m

Now, recallling that we are interested in bounding
E [[|X¢]|??] ¥, and that t = (i + 1)k, we make use of (10),
Minkowski’s inequality, and our upper bounds, to find that:

_ 1
E [[|X.]1*]?
4 )
<2D + %efmh(erl)”Xow
1

+ 801 2

Gage™ ™" 4+ 8anh? L2 i
2 2 f (1 _ Tnh) ||X0H2

oarm 4
8C 3 3C
+— <8dpha - (4h2L§ + ) D) +—=
apm 2 arm
R\’ 12+ od 1+dh
<K <1m) 102 + 24+ od+o(1+dh)p
4 am

where K depends only on oy, a,a3,L and Ly. The re-
mainder of the proof follows exactly as in the proof of
Theorem 1. O

V. CONCLUSION

In this paper we derived new high-probability bounds
around iterates of controlled stochastic nonlinear systems
using properties of the deterministic drift. We remark that
the bounds we derived are tighter than other recently derived

bounds for tracking albeit under slightly stronger assump-
tions on the noise process than in [9]. Further, the scaling
with the dimension of the state space is sub-linear which
allows our bounds to scale effectively to high dimensions
where deterministic bounds from e.g Reachability-based
methods may be impossible to compute due to the curse
of dimensionality [1].
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