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Abstract

Learning to play collaborative-competitive games

by

Kshama Dwarakanath

Master of Science in Computer Science

University of California, Berkeley

Professor Shankar S. Sastry, Chair

In this project, we formalize a collaborative-competitive game with competition between two
teams and collaboration between members of each team. The players from the first team seek
to reach their individual goals while avoiding capture by the second team. And, the second
team seeks to capture all players in the first team. The competition between the two teams
arises from the fact that the second team seeks to capture the first team’s players, while the
latter seek to reach their individual goals while avoiding capture. The players within each
team can collaborate with each other in order to achieve their individual and team goals.
The ground rules for game play are cast in the form of a Markov Decision Process with
the goal of learning optimal game play strategies for members of the first team. We collect
expert trajectories from human experts that played the game, and use this data to learn
similar game play strategies designed to ensure that the first team wins the game. A recent
approach for imitation learning called Generative Adversarial Imitation Learning (GAIL) is
examined in the context of these collaborative-competitive games. The results of running
GAIL on expert data are contrasted against those got from state of the art algorithms from
the domain of imitation learning as well as (forward) reinforcement learning. We see that
the learnt policies resemble in logic to those used by human experts in playing the game,
while being successful in about 70% of new games played. This success rate is very close to
that of the human experts playing the game.
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Chapter 1

Introduction and Related Work

Multi-agent systems have exceedingly become popular with the advent of robot teams, au-
tonomous driving, drone delivery [6] and various other applications involving decentralized
control. A multi-agent system is comprised of agents that interact with each other and with
a common environment on which they can act through their actuators [22]. The complexity
of many tasks arising in multi-agent systems results in difficulty in a priori design of effective
agent behaviour [5]. The interaction between agents agents in a multi-agent system can be
one of three types - competitive, cooperative, or mixed. In competitive settings, we have
agents that each seek to achieve their goals independent of other agents. In cooperative
settings, all agents work together towards a common goal. In the mixed setting, the agents
each have their own goal along with a system goal that they need to work towards. In
this report, we are interested in a special case in the third category where there exist two
competing teams of agents with their respective team goals. The agents in each team need
to cooperate with other members of their own team to achieve their team goal while they
compete with members from the other team.

The complex nature of agent behaviours in multi-agent systems makes analytical control
design for such systems complex. Such systems often benefit from the use of trial-and-error
based approaches, such as reinforcement learning, to learning optimal agent behaviours[18].
The method of reinforcement learning (RL) involves modeling the agent in the environment
as a Markov Decision Process (MDP) with an underlying transition dynamics and (if avail-
able) a reward function or cost function to encode the task of interest. In such a setup,
the agent learns by reinforcement of its action through the reward function. Most of the
successes of RL have been in single agent domains where the goal is to find the best decision
making behaviour for a single agent in an environment with no other agents [11]. On the
contrary, the technique of reinforcement learning (RL) is especially suited to these multi-
agent systems in which agents can learn to behave optimally from their interaction with
other agents and the environment.

While RL is certainly a viable approach to learning to play collaborative-competitive
games, a fundamental assumption that underlies its use is the availability of a reward function
or cost function that determines how good a certain agent behaviour is. On the other hand,
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humans often learn to perform tasks via imitation - they observe others perform a task,
and then very quickly infer the appropriate actions to take based on their observations
[20]. This is of interest in applications such as multi-robot control and training groups
of robots/humans, where a notion of desired behaviour is better known than the exact
reinforcement signal that could give rise to that behaviour. Imitation learning refers to this
idea of observing expert behaviour in terms of their policies or trajectories with the goal of
learning to perform the task. One approach to solving imitation learning problems is called
behavior cloning where one simply formulates this problem as a supervised learning problem
where we learn a mapping from states to action from the given expert demonstrations. And,
the learner replays this learnt policy in new test cases/states as well. This relies on covering
all state-action pairs in the training data so as to be able to predict test behaviour well.

Another approach to solving imitation learning problems is by first inverse learning re-
wards from expert trajectories and then extracting a policy from that reward function with
reinforcement learning. Inverse Reinforcement Learning (IRL) refers to the problem of ex-
tracting the reinforcement signal or the reward function given observed, optimal behaviour.
There have been numerous approaches proposed to solve the IRL problem. One of the first
and most cited papers in this field is [14] wherein lies the foundation of IRL as studied in the
field of machine learning. The authors formulate the IRL problem as one of finding rewards
that give rise to expert policies as solutions to reinforcement learning problems with these
rewards.

Standard IRL is ill-posed since the zero reward function is always a solution, which in
turn means that all policies are optimal! Hence, all attempts at IRL involves enforcing fur-
ther constrains or modifying the IRL objective so as to prevent this degeneracy. [1] involves
matching expected feature counts between the demonstrated examples and the learner’s pol-
icy. The underlying assumption made here is that the expert agent is acting near-optimally
in an MDP, while the learner is capable of nearly matching feature expectations. In [15], the
authors derive a framework that looks at learning a reward function that makes the expert
policy much better (in terms of rewards) than any other policy by a margin that scales with
the difference between the two policies. They also make the comment that the distinction
between [1] and [15] is evocative of generative versus discriminative learning where the for-
mer makes stronger assumptions to derive the process that generates expert behaviour. And
the latter tries to mimic expert behaviour while being agnostic about the underlying process
that generates it.

In [25], the authors adopt a probabilistic approach to reasoning about uncertainty in
inverse reinforcement learning. This uncertainty is deemed to arise from noise and imperfect
expert behaviour that is commonplace when the expert agents are humans. They utilize
the principle of maximum entropy to resolve ambiguity in choosing a decision distribution
under the constraint of matching the reward value of demonstrated behavior. A common
disadvantage of all of the above approaches to imitation is the need to perform IRL to recover
the expert’s cost function and then using RL to extract a policy from that cost function,
which can be slow. A recent approach to imitation learning called generative adversarial
imitation learning (GAIL) aims at overcoming this problem by directly extracting a policy
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given expert data[9]. And, we will look at this approach in more detail with specific focus
on learning to play collaborative-competitive games.

In this report, we’ll focus on a specific class of collaborative-competitive games with
two competing teams of players, called Team Human and Team Computer respectively.
The human team players seek to reach their individual goals while avoiding capture by the
computer team. And, the computer team seeks to capture all players in the human team.
The competition between the two teams arises from the fact that the computer team seeks
to capture the human players, while the human players seek to reach their individual goals
while avoiding capture. The players within each team can collaborate with each other in
order to achieve their individual and team goals.

The goal of this project is to learn optimal game play strategies for members of a team
under a fixed (but unknown) strategy adopted by the competing team. In order to do this,
we first devise the rules of the game in terms of allowed team behaviour and formulate the
game as a Markov Decision Problem with appropriate state and action spaces in Chapter 3
according to the definitions given in Chapter 2. The MDP formulation makes the problem
suited for the use of state of the art imitation learning algorithms. In particular, we look
at a recent imitation learning algorithm called Generative Adversarial Imitation Learning
(GAIL) that finds a policy close to that of the expert, without going through the cycle of
IRL followed by RL for imitation learning[9]. Chapter 3 also talks about the composition
of the GAIL algorithm. We then contrast the performance of GAIL for our game to that
of behavioural cloning as well as state of the art reinforcement learning algorithms such as
Trust Region Policy Optimization, Deep Q Networks and Actor Critic methods in Chapter
4. This is followed by a discussion of the results in Chapter 5.
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Chapter 2

Preliminaries

Definition 1. For any positive integer n, denote the set {1, 2, · · · , n} by [n].

Definition 2 (Convex conjugate of a function). Given a function f : RS×A → R∪ {∞}, its
convex conjugate f ? : RS×A → R ∪ {∞} is defined as

f ?(x) := sup
y∈RS×A

xTy − f(y)

Definition 3 (MDP). A finite Markov Decision Process (MDP) is a tuple
(
S,A, {Pa : a ∈

A}, c, γ
)

where

• S = {1, 2, · · · , n} is a finite set of states

• A = {1, 2, · · · ,m} is a finite set of actions

• For each action a ∈ A, Pa ∈ Rn×n is a state transition matrix where Pa(i, j) denotes
the probability of transitioning into state j upon applying action a in state i

• c : S ×A → R is the cost function where c(i, j) is the cost accrued from taking action
j when in state i 1

• γ ∈ [0, 1) is the discount factor to weigh down future rewards with respect to current
rewards

Note that for any MDP with finite state and action spaces, one can always number the
states and actions as in definition 3.

Definition 4 (Policy). A policy is a map π : S → P(A) from the current state to the set of
all probability distributions on A denoted by P(A). Since A is a finite set, P(A) is essentially
the set of all vectors in [0, 1]m with components summing to 1.

1Note that we look at MDPs with a cost function so that the goal is to minimize the expected sum of
discounted costs. This is equivalent to an MDP with reward function defined as the negative of the cost
function, where the goal is to maximize the expected sum of discounted rewards.



CHAPTER 2. PRELIMINARIES 5

Let Π ⊆
{
π : S → P(A)

}
be the set of all policies of interest.

Definition 5 (Cost of a policy). The cost of a policy π ∈ Π under cost function c : S×A → R
is denoted by Eπ[c(s, a)] and defined as

Eπ[c(s, a)] := E
[ ∞∑
t=0

γtc(st, at)

∣∣∣∣at ∼ π(·|st)
]

Definition 6 (Entropy of a policy). The entropy of a probabilistic policy π is denoted by
H(π) and defined as

H(π) := E
[
− log Ψ

]
(2.1)

where Ψ is a random variable drawn from the distribution given by π(S).

Definition 7 (Occupancy measure of a policy). Define the occupancy measure ρπ : S×A →
R For a policy π ∈ Π as

ρπ(s, a) := π(a|s)
∞∑
t=0

γtP(st = s|π) (2.2)

With this definition of the occupancy measure, one can express the cost of policy π ∈ Π as

Eπ[c(s, a)] =
∑
s∈S

∑
a∈A

ρπ(s, a)c(s, a)

Problem (RL). Given a cost function c : S ×A → R, the goal in reinforcement learning is
to extract from it a policy denoted by RL(c) so that

RL(c) ∈ arg min
π∈Π

Eπ[c(s, a)] (2.3)

Problem (IRL). Given an expert policy πE ∈ Π that we want to rationalize with inverse
reinforcement learning, we wish to find a cost function c : S ×A → R such that

πE ∈ arg min
π∈Π

Eπ[c(s, a)] (2.4)

The goal in inverse reinforcement learning (IRL) is to extract a cost function so that an
optimal policy in an MDP with this cost function imitates the expert policy. In maximum
entropy IRL [25], we want to find a cost function that that assigns low cost to the expert
policy and high cost to all other policies while not overfitting on the expert data. This is
realized by ensuring high entropy for the expert policy.
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Problem (Maximum Entropy IRL). Given an expert policy πE ∈ Π that we want to ra-
tionalize with maximum entropy IRL, we wish to find a cost function c : S × A → R such
that

πE ∈ arg min
π∈Π

Eπ[c(s, a)]−H(π) (2.5)

(2.5) implies that a solution to the maximum entropy IRL problem satisfies

min
π∈Π

Eπ[c(s, a)]−H(π)− EπE [c(s, a)] +H(πE) ≥ 0 (2.6)

Among all cost functions c : S × A → R that satisfy (2.6), we pick one that maximizes the
difference between the expert policy and all other policies:

c? ∈ arg max
c

min
π∈Π

Eπ[c(s, a)]−H(π)− EπE [c(s, a)] +H(πE)

That is, the solution to our maximum entropy IRL problem is a cost function c? : S×A → R
such that

c? ∈ arg max
c

[
min
π

Eπ[c(s, a)]−H(π)

]
− EπE [c(s, a)] (2.7)

where the square brackets indicate that the internal optimization corresponds to solving an
RL problem with cost c, while also maximizing the entropy of the optimal policy.
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Chapter 3

Problem Formulation

In this chapter, we describe the class of collaborative-competitive games of interest and set
some ground rules for game play. We consider a setup with two competing teams of players,
called Team Human and Team Computer with nH and nC players respectively. Each player
in the human team has an associated goal to be reached. The goal of the human team is to
ensure that its players reach their individual goals while avoiding capture by the computer
team. The goal of the computer team is to capture all players in the human team. The
competition between the two teams arises from the fact that the computer team seeks to
capture the human players, while the human players seek to reach their individual goals
while avoiding capture. The players within each team can collaborate with each other in
order to achieve their individual and team goals.

In order to motivate the need for collaboration within players of each team, consider
the following example with nH = 1 and nC = 2. The computer players have a square
region of size 3 as their capture zone. Thus, any human player that enters this region is
captured by the computer player. Similarly, the human player has a capture region of size
5. This advantage in the size of the capture region for the human team is counteracted by a
disadvantage in speed. While the human player can move only 1 grid at a time, the computer
players can each move up to 3 and 5 grids at a time respectively. Assume that the strategy
of the human player is to get to its goal (the red grid at the bottom right of Figure 3.1) while
avoiding capture by computer players, by capturing any computer player that gets close to
it. In the first case, assume that the computer players collaborate with each other to capture
the human player as in Figure 3.1. What happens here is that the computer team decides
to provide its player 2 as a bait for the human player. As the human player starts to chase
computer player 2, computer player 3 attacks it from behind and captures it as shown in
the sequence of snapshots in Figure 3.1. In the second case, assume that the players of the
computer team do not collaborate with each other to capture members of the human team.
Then, one possible non-collaborative strategy for the computer players is to both chase the
human player by taking the shortest path to it. Such a non-collaborative strategy could
result in a loss for the computer team as opposed to that with the collaborative strategy
described before.
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(1) (2)

(3) (4)

Figure 3.1: The need for collaboration

From the example above, we see that the presence of collaboration within members of a
team greatly improves the team’s competitive ability against its opposition. The goal of this
project is to learn optimal game play strategies for members of a team under a fixed (but
unknown) strategy adopted by the competing team. In order to do this, we first devise the
rules of the game in terms of permitted team behaviour. This qualitative description of the
game is then translated into its formulation as a Markov Decision Problem with appropriate
state and action spaces.1 The MDP formulation makes the problem suited for the use of

1Note that in this section we look at MDPs with a reward function so that the goal is to maximize the
expected sum of discounted rewards. This is because of the interpretation of the reward as a score used
to generate human game play data. This is equivalent to studying an MDP with cost function being the
negative reward function.
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state of the art reinforcement learning and imitation learning algorithms. In particular,
we focus on a recent imitation learning algorithm called generative adversarial imitation
learning (GAIL) that seeks to extract a policy from expert data, as if it were obtained
by reinforcement learning following inverse reinforcement learning. The composition of the
GAIL algorithm is described later in this chapter.

3.1 Rules of the game

� We have two competing teams: Team Human and Team Computer, with nH and nC
players respectively.

� Assume the human players are numbered 1, 2, · · · , nH and the computer players are
numbered nH + 1, · · · , nH + nC .

� The goal of the human team is to reach their individual goals.

� The goal of human player i ∈ [nH ] is denoted by Gi = (xGi , yGi).

� The goal of the computer team is to capture all players in the human team.

� The game is set in a grid world environment of width w and height h.

� The state of each player is defined by its position in the grid world, and its orientation
which can be one of 4 possible orientations - north, east, south and west.

� The state (position, orientation) of all players are visible to all other players.

� Each player has a capture window aligned with its orientation. Any other player that
enters this capture zone is captured.

� Each player i can either turn left by 90◦, turn right by 90◦, stay put or move forward
by vi number of grids where vi is the velocity of player i.

� Each computer player has velocity vi that is greater than or equal to that of the human
team.

� The human team has capture window of size greater than or equal to that of the
computer team.

� Reward/Score structure:2

1. Scores of all players are displayed on the game screen. All players start with 0
score.

2. R immediate points for reaching goal for human players.

2This is equivalent to having a cost function being the negative reward/score function.
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3. C points added for capturing competitor (given at goal for human players and
immediately for computer players).

4. C immediate points reduced for being captured by competitor.

5. The score of a human player is decremented by the negative l1 from its current
grid position to its goal. This is done to continuously provide reward signals to
the human players to direct them towards their goals.

6. The scores of human players are decremented every time step taken to get to goal.
This is so that faster maneuvers to goal are preferred. It also helps to prevent the
strategy of always capturing all computer players before going to the goal.

� The computer team wins if they capture all human players.

� The human team wins when there is at least one of its players at their goal and all
other players are captured.

� The game ends when one of the following occurs:

1. The human teams wins.

2. The computer team wins.

3. Maximum game time is exceeded, in which case the computer team wins.

Exemplar pictures

Figures 3.2-3.4 are exemplar pictures for the game described above. The human player/s
are colored red and the computer players are colored green. The yellow number alongside
each player denotes the index of that player. The orientation of each player is the direction
in which the triangle depicting each player points. The red boxes indicate goal locations for
the human team (indexed by the index of human players). The rectangular region extending
from the base of each player is the capture region for that player. Once a player is captured
by a competitor, it turns yellow. For instance in Figure 3.3, there are 3 computer players and
1 human player, with computer player 2 captured by human player 1 and hence, in yellow.
The capture regions of all computer players are squares of size 3, while the human players
have capture regions of sizes 7 and 5 respectively in Figure 3.2. The scores for all computer
players are displayed along the left edge of the grid world, while those of the human players
are displayed along the right edge. Any messages to the human experts playing the game
on behalf of the human team are displayed below the grid world as in Figure 3.3.

3.2 MDP formulation

In order to find optimal policies for both teams in a collaborative-competitive game, we adopt
an iterative framework that learns policies for one team while holding that of the competitor
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Figure 3.2: nH = 2, nC = 4 in 18× 18 grid world

Figure 3.3: nH = 1, nC = 3 in 15 × 15
grid world

Figure 3.4: nH = 1, nC = 2 in 8× 8 grid
world

fixed (but unknown to the former team). We can then turn the qualitative rules above into
the formulation of a Markov decision problem for the first team. In this report, we describe
this process of learning policies for the human team. This process can be repeated for the
computer team while keeping the human team policy fixed (though unknown).

The joint human-computer game can be represented by a Markov decision processM =(
S,A, {Pa : a ∈ A}, R, γ

)
where

1. S is the state space comprising all possible states of the form

s =
[
{xi, yi, θi : i ∈ [nH + nC ]}, {Gi : i ∈ [nH ]}

]
∈ R3(nH+nC)+2nH
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where we encode the orientation of player i for all i ∈ [nH + nC ] as follows:

θi = 0↔ East; θi = 1↔ South; θi = 2↔West; θi = 3↔ North

and the goal of human player i ∈ [nH ] is denoted by Gi = (xGi , yGi). One can interpret
the above state s as an effective state since it is a concatenation of agent states (here,
the human team states) along with the environment states (here the computer team
states and its own goals).3 Since xi ∈ [w], yi ∈ [h] and θi ∈ {0, 1, 2, 3}, we have the
dimension of state space as n = |S| = 4nC+nH × (hw)nC+2nH .

2. A = AH is the action space for the human team with actions

a =
[
a1 a2 · · · anH

]
where we encode the actions of player i for all i ∈ [nH + nC ] as follows:

ai = 0↔ Stay Still; ai = 1↔ Turn Left; ai = 2↔ Turn Right; ai = 3↔ Move ahead

Since ai ∈ {0, 1, 2, 3} for all i ∈ [nH ], the dimension of the action space is m = |A| =
4nH .

3. Pa is the transition model under action a where Pa(s, s
′) is the probability of transi-

tioning into state s′ ∈ S upon using action a ∈ A in state s ∈ S. Note that there is
assumed to exist a (possibly unknown) computer policy ψ : S → P(AC) that deter-
mines the computer action given the effective state. Hence, given the effective state at
the current time instant, one can in principle determine the next effective state given
the human action.

4. R(s, a) is the reward for taking action a ∈ A in state s ∈ S. This can equivalently
be expressed in terms of the random variable R(s′) where the reward takes on values
R(s′) with probability Pa(s, s

′) for next state s′. To make notation simpler, we define
the reward function for the human team as the sum of those got by its players. The
reward Ri(s

′) got by player i ∈ [nH ] is given by

Ri(s
′) =



R, if player i reaches its goal, when in state s′

R+LC,
if player i reaches its goal and has captured L computer players

along the way, when in state s′

−C, if player i is captured by a computer player, when in state s′

−λ1

(
|xi − xGi|+ |yi − yGi|

)
− λ2, otherwise

3In experiments, we augment the state s with
[
{D(i, Gi) : i ∈ [nH ]}, {D(i, j) : i ∈ [nH ]; j ∈ nH + [nC ]}

]
where D(i, j) = |xi−xj |+ |yi− yj | for i ∈ [nH ]; j ∈ nH + [nC ] is the l1 distance between human player i and
computer player j and D(i, Gi) := |xi− xGi |+ |yi− yGi | is the l1 distance of human player i ∈ [nH ] from its
own goal Gi = (xGi

, yGi
). This was done since it was observed to improve performance.
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where λ1, λ2 ≥ 0 are weighting factors for the cost of being at a certain distance to the
goal, and the cost of maneuver time respectively. The reward for the human team is
then given by

R(s′) =

nH∑
i=1

Ri(s
′)

Note that is the reward function that is used to generate expert trajectories for im-
itation learning algorithms. It can also be used (as in this report) to compare the
performance of reinforcement learning algorithms to imitation learning algorithms for
this problem.

5. γ ∈ [0, 1) is the discount factor.

Since the dimension of the state and action spaces are both exponential in the number of
players nC and nH , function approximators are essential to reducing the computational com-
plexity of learning algorithms on these spaces. We will therefore use multi-layer perceptron
networks to compute functions of interest on S and A. With the above MDP formulation,
we now introduce an imitation learning algorithm of interest called generative adversarial
imitation learning.

3.3 Generative Adversarial Imitation Learning

(GAIL)

The authors of GAIL [9] are interested in the problem of learning to perform a task from
expert demonstrations, which is a specific setting of imitation learning. They introduce a
framework for directly learning policies from data, bypassing any intermediate IRL step by
looking at the policy given by running reinforcement learning on a cost function learned by
maximum causal entropy IRL [25, 24]. In order to build up to their framework, we first
look at the cost function output by a maximum entropy IRL procedure on an expert policy
πE ∈ Π. Denote by RS×A the set of all cost functions c : S ×A → R.

Definition 8 (Cost from MaxEntIRL). The output of running maximum entropy IRL with
expert policy πE ∈ Π and convex cost regularizer ψ : RS×A → R ∪ {∞} is a cost function
denoted by IRLψ(πE) and defined as

IRLψ(πE) := arg max
c∈RS×A

−ψ(c) +

[
min
π∈Π

Eπ[c(s, a)]−H(π)

]
− EπE [c(s, a)] (3.1)

Note that (3.1) is the same as (2.7) with a cost regularizer ψ. Given the cost function
that is output by IRL, we are now interested in the policy given by running reinforcement
learning on the output of IRL. In order to characterize the optimal policy from RL, the
authors transform optimization problems over policies into convex problems by mapping a
policy π ∈ Π to its occupancy measure ρπ as given in (2.2).
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Proposition 1 ([19]). The set of all possible occupancy measures D = {ρπ : π ∈ Π} has a
one-to-one correspondence to the set of all policies Π. In addition, D is a convex set since
it can be expressed as D =

{
ρ ≥ 0 :

∑
a ρ(s, a) = p0(s) + γ

∑
s′,a P (s|s′, a)ρ(s′, a) ∀s ∈ S

}
where p0 is the initial state distribution.

One can then characterize the policy got by running reinforcement learning on the cost
output by maximum entropy inverse reinforcement learning as follows.

Proposition 2 ([9]).

RL ◦ IRLψ(πE) = arg min
π∈Π
−H(π) + ψ?

(
ρπ − ρπE

)
(3.2)

= arg min
π∈Π

max
c∈RS×A

−H(π) + (ρπ − ρπE)T c− ψ(c) (3.3)

where ψ? : RS×A → R ∪ {∞} is the convex conjugate function of the convex cost regularizer
ψ : RS×A → R ∪ {∞}.

The proof of Proposition 2 is in the Appendix of [9]. (3.3) says that the optimal cost
function and optimal policy form a saddle point of a certain function. IRL finds the optimal
cost function and running RL on the output of IRL gives the optimal policy. (3.2) says that
ψ-regularized IRL implicitly seeks a policy whose occupancy measure is close in the sense of
ψ? to that of the expert. Hence, the authors make the following interesting statement: While
IRL was originally defined as the problem of finding a cost function that makes the expert
policy optimal with respect to derived cost, Proposition 2 helps us view IRL as the problem
of finding a cost function that induces a policy that matches the expert’s occupancy measure.

An interesting exercise is to analyze the result of using different cost regularizers ψ in
Proposition 2 to see if we can derive some existing imitation learning algorithms as special
cases of the analysis above. Table 3.1 shows the results from such an analysis for two cost
functions that give rise to existing imitation learning algorithms, as well a novel algorithm
that connects to the area of generative adversarial networks [8].

Consider the following cost regularizer, called the GAIL regularizer, given by

ψGAIL(c) :=

{
EπE [g(c(s, a)], if c < 0

+∞, otherwise
where g(x) :=

{
−x− log(1− ex), if x < 0

+∞, otherwise

⇒ ψGAIL(c) =

{
−EπE [c(s, a)]− EπE [log(1− ec(s,a))], if c < 0

+∞, otherwise

Define the function D : S ×A → [0,∞) for all s ∈ S and all a ∈ A as

D(s, a) := ec(s,a)

so that c(s, a) = logD(s, a). We can then express the GAIL regularizer in terms of D as
follows

ψGAIL(D) =

{
−EπE [logD(s, a)]− EπE [log(1−D(s, a))], if D ∈ (0, 1)

+∞, otherwise
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ψ(c) Result Algorithm obtained

Constant function
ρRL◦IRLψ(πE) = ρπE Behavior Cloning

ψ(c) = k ∀c

Indicator function ψ?(ρπ−ρπE) = maxc∈C Eπ[c(s, a)] Entropy-regularized

ψ(c) =

{
0, if c ∈ C
+∞, otherwise

−EπE [c(s, a)] apprenticeship learning

GAIL regularizer
ψ?(ρπ − ρπE) = DJS

(
ρπ
∣∣∣∣ρπE)+ k

Generative adversarial

ψ(c) =

{
EπE [g(c(s, a)], if c < 0

+∞, otherwise
imitation learning (GAIL)

Table 3.1: Imitation learning algorithms as special cases of Proposition 2

Proposition 3 ([9]). The convex conjugate of ψGAIL satisfies

ψ?GAIL(ρπ − ρπE) = max
D∈(0,1)S×A

Eπ[logD(s, a)] + EπE [log(1−D(s, a))]

= DJS

(
ρπ
∣∣∣∣ρπE)+ k

where DJS(P ||Q) denotes the Jensen-Shannon divergence between probability distributions P
and Q, and k ∈ R is a constant.

Using Propositions 2 and 3, we can see that

RL ◦ IRLψGAIL
(πE) = arg min

π
−H(π) +DJS

(
ρπ
∣∣∣∣ρπE) (3.4)

This says that the GAIL objective is to find a policy that has occupancy measure close to
that of the expert where closeness is defined in terms off the Jensen-Shannon divergence
between distributions, while having high entropy. (3.4) can equivalently be expressed as

RL ◦ IRLψGAIL
(πE) = arg min

π
max

D∈(0,1)S×A
Eπ[logD(s, a)] + EπE [log(1−D(s, a))]−H(π)

(3.5)

which is similar to the objective in generative adversarial networks [8] given below

min
G

max
D

Ex∼pdata(x)

[
logD(x)

]
+ Ez∼pZ(z)

[
log(1−D(G(z)))

]
which represents a two player min max game between a generator G and a discriminator
D. The aim of the generator is to learn to generate samples from the distribution of the
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training data pdata. And, the aim of the discriminator is to differentiate the distribution of
the generated data G(z) from the training data distribution pdata. Hence, G tries to fool
D by minimizing the probability that D classifies the generated data as not coming from
pdata as D tries to prevent any such activity by G. In (3.5), the policy π plays the role of
the generator that tries to mimic the expert occupancy measure ρπE while the cost function
D = ec plays the role of the discriminator that tries to differentiate the occupancy measure
of the generator ρπ from that of the expert ρπE . This similarity between the optimization
problems in generative adversarial networks and GAIL gives GAIL its name.

We now look at how (3.5) is implemented in practice when the generator (policy) and
discriminator (cost) are modeled by function approximators. Let θ be the weights of the
parameterized policy πθ and w be the weights of the parameterized cost Dw. A natural
approach is to take a gradient ascent step for the weights w and a gradient descent step for
the weights θ. Define

L(w, θ, πE) := Eπθ [logDw(s, a)] + EπE [log(1−Dw(s, a))]−H(πθ)

The gradient of L with respect to parameters w and θ are then given by

∇wL(w, θ, πE) = Eπθ [∇w logDw(s, a)] + EπE [∇w log(1−Dw(s, a))] (3.6)

∇θL(w, θ, πE) = −∇θH(πθ) +∇θEπθ [logDw(s, a)]

= −∇θH(πθ) +∇θE
[ ∞∑
t=0

γt logDw(st, at)

∣∣∣∣at ∼ πθ(·|st), st+1 ∼ P (·|st, at)
]

= −∇θH(πθ) +∇θE
[ ∞∑
t=0

γt
∑
at∈A

logDw(st, at)πθ(at|st)
∣∣∣∣st+1 ∼ P (·|st, at)

]

= −∇θH(πθ) + E
[ ∞∑
t=0

γt
∑
at∈A

logDw(st, at)∇θπθ(at|st)
∣∣∣∣st+1 ∼ P (·|st, at)

]

= −∇θH(πθ) +
∞∑
t=0

γt
∑
at∈A

E
[

logDw(st, at)∇θ log πθ(at|st)πθ(at|st)
∣∣∣∣st+1 ∼ P (·|st, at)

]
∇θL(w, θ, πE) = −∇θH(πθ) + Eπθ

[
∇θ log πθ(a|s)Q(s, a)

]
where Q(s, a) := Eπθ

[
logDw(s′, a′)

∣∣s0 = s, a0 = a
]
. Given finitely many trajectories τ ∼ πθ

and τE ∼ πE, we replace the population averages by their sample averages to form unbiased
estimates of the gradients. This gives us algorithm 1 that describes the implementation of
generative adversarial imitation learning with function approximation for the cost function
D and policy π. {αi : i ≥ 0} and {βi : i ≥ 0} are the learning rates for the discriminator
network and generator network respectively.
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Algorithm 1: Generative adversarial imitation learning

Input: Expert trajectories τE ∼ πE, initial parameters θ0 and w0

1 for i = 0, 1, 2, · · · do
2 Sample trajectories τi ∼ πθi
3 Gradient ascent for discriminator (cost function) parameters

wi+1 ← wi + αi

[
Êτi
[
∇w logDw(s, a)

]
+ ÊτE

[
∇w log(1−Dw(s, a))

]]
w=wi

4 Gradient descent for generator (policy function) parameters

θi+1 ← θi − βi
[
Êτi
[
∇θ log πθ(a|s)Q(s, a)

]
−∇θH(πθ)

]
θ=θi

where

Q(s, a) = Êτi
[

logDwi+1
(s′, a′)

∣∣s0 = s, a0 = a
]

5 end
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Chapter 4

Experimental Results

In this chapter, we investigate the training time and performance of state of the art reinforce-
ment learning algorithms as well as imitation learning algorithms on a particular instance of
the game described in Chapter 3.1 While the general formulation of the MDP and the code
can handle arbitrary games, we examine the performance of the different algorithms on a
game setup with the following specifications:

nH nC w h vH vC
Capture Capture

Goal H R C λ1 λ2

region H region C

1 2 8 8 1 {3, 5} 5× 5 {3× 3, 3× 3} (8, 8) 1 1 0.01 0.01

As per the above game setup setup, we have 2 computer players and 1 human player in
a grid world. The human player has a goal that it needs to get to while avoiding capture
by any computer player. The goal of the computer team is to capture the human player
before it gets to its goal. As mentioned in the problem setup, the computer team has a
speed advantage but capture region disadvantage as compared to the human team. Figure
4.1 gives snapshots of the game window for the above game setup. In the figure on the left,
the computer player numbered 2 has captured the human player in its location (and is hence,
not visible). In the figure on the right, the human player in red has captured the computer
player numbered 2, making it yellow. The capture region of the human player is a square
of size 5 while those of both computer players are squares of size 3. The red square on the
bottom right of both grids represents the goal for the human player. The strategy of the
computer team is for each of its players to find the closest human player to itself, and take
the shortest path to that human player. This strategy of the computer team is unknown to
the human team (as expected).

1All code for this project can be found at https://github.com/KshamaDw/collaborative-

competitive-games. The grid world setup for collaborative-competitive games is a custom Gym envi-
ronment [4] written by me that utilizes features from the grid world implementation of [7].

https://github.com/KshamaDw/collaborative-competitive-games
https://github.com/KshamaDw/collaborative-competitive-games
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Figure 4.1: Game Setup

4.1 Expert data

In this project, we consider the following two types of expert data for imitation learning:

� Human game play data: This data was collected from games played by a few friends
of mine. This involves the human looking at the grid world with player scores and
taking actions to control the human player to increase his/her displayed score. An
example sequence of human expert actions is given in Figure 4.2. We found that 100
such games take about 10 minutes to be played. Due to human time considerations,
this dataset is limited in size to about 104 games. Upon examining the test accuracy
of the studied imitation learning algorithms, it was clear that larger expert datasets
would help improve the performance of the algorithms. Here, we measure performance
in terms of the number of games won of a 1000 new games played.

� RL generated expert game play data: This is got by using the reinforcement learning
algorithm of trust region policy optimization (TRPO) [17] using the reward function
described in the MDP formulation in Chapter 3. This helps generate large datasets
containing up to 107 games on a personal computer.2

Since finding large quantities of human expert data is hard, we used TRPO generated
expert data to train imitation learning algorithms. Since the reward function is also available
from the problem formulation, we compare the performance of direct reinforcement learning
to that of imitation learning on the human generated as well as TRPO generated data.

2All experiments in this report were carried out on a MacBook Pro with 2.7 GHz Quad-Core Intel Core
i7 with 16GB RAM and Intel Iris Plus Graphics 655 1536 MB.
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(1) (2) (3)

(4) (5) (6)

(7) (8)

Figure 4.2: Example of human expert game play

4.2 Reinforcement Learning algorithms

Reinforcement learning algorithms seek to find an optimal policy for a system given its MDP
formulation through trial-and-error based interactions with the system. Based on their ap-
proach towards policy optimization, they can be divided into two types - policy iteration
methods and policy gradient methods. Policy iteration methods involve an alternation be-
tween value estimation and policy update [3]. And, policy gradient methods involve policy
updates using the gradient of the cost function with respect to the policy. In this project,
we evaluate the performance of four state of the art reinforcement learning algorithms on
their ability to learn to play collaborative-competitive games as described in Chapter 3.
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Trust Region Policy Optimization

Trust Region Policy Optimization (TRPO) is a policy gradient method that seeks to iter-
atively update the current policy by minimizing a local approximation to the cost of the
policy subject to the constraint that the new policy iterate lies in a trust region around the
current policy iterate [17]. Here, the local approximation to the cost of the current policy
iterate is got by expressing the expected cost of the new policy in terms of the advantage
and state visitation frequency of the current policy as in [10].

Proximal Policy Optimization

Proximal Policy Optimization (PPO) is also a policy gradient method that alternates be-
tween interaction with the environment, and optimization of a surrogate objective function
using stochastic gradient descent (for cost functions) [16]. There are two main differences
between TRPO and PPO. The first difference is the modification of the objective function
through the use of a penalty term in PPO instead of a constraint as in TRPO. The second
difference is the use of multiple epochs of gradient descent towards each policy update in
PPO in order to reduce variance of the updates.

Actor Critic using Kronecker-Factored Trust Region

Actor Critic using Kronecker-Factored Trust Region (ACKTR - pronounced ‘actor’) is a scal-
able trust-region optimization algorithm for actor-critic methods [23]. Actor-critic methods
are policy iteration methods where the temporal difference error from the value function is
used to update the policy [18]. The name ‘actor’ refers to the policy that picks actions, and
the name ‘critic’ refers to the value function estimator that evaluates the action taken by
the actor. Therefore, ACKTR is a policy iteration method that is based on temporal differ-
ence learning and trust region optimization, made to be scalable using a Kronecker-factored
approximation to the natural gradient [12].

Deep Q Networks

Deep Q Networks (DQN) refer to a modification of the standard Q Learning algorithm [21]
through the introduction of non linear features in the representation of the Q value function
[13]. The algorithm alternates between updating the Q value based on its deviation from the
Bellman equation, and updating the policy to maximize the resulting Q value function. The
authors of DQN claim that their algorithm is more data efficient and results in less divergent
value functions than those from the standard Q learning algorithm.

We use a neural network with 2 hidden layers with 64 neurons in each layer to model
the policy and the value function for all of the four previously mentioned RL algorithms.
The nonlinear activation in each layer is the hyperbolic tangent function given by tanh(x) =
ex−e−x
ex+e−x

. The number of training iterations is in the list {102, 103, 104, 105, 106, 107, 108}. The
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accuracy of the aforementioned RL algorithms is plotted along with the corresponding train-
ing time as a function of training iterations in Figure 4.3. We see that PPO achieves the
largest test performance by winning about 76% of new games played.

Figure 4.3: RL accuracy and training time

4.3 Imitation learning algorithms

Behavioral Cloning

Behavioral cloning (BC) [2] is a solution method for imitation learning problems wherein
training data containing the encountered states and actions of the expert demonstrator is
used by the learner or agent to fit a regression model from states to actions to replicate the
expert’s policy [20]. A major advantage of behavioral cloning is that there is no environment
interaction that is needed during training.

We use a neural network with 2 hidden layers with 64 neurons in each layer to model
the policy as a function of the state for BC. The nonlinear activation in each layer is the
hyperbolic tangent function given by tanh(x) = ex−e−x

ex+e−x
. The number of training iterations

is in the list {102, 103, 104, 105, 106, 107}. The accuracy of BC on using human expert game
play data for training is plotted along with the corresponding training time as a function of
training iterations in Figure 4.4. Note that the maximum number of human expert games
that we could collect was 104. As mentioned previously, we also used the RL algorithm of
TRPO to automatically generate expert training data for BC. The accuracy of BC on using
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TRPO expert data for training is plotted along with the corresponding training time as a
function of training iterations in Figure 4.5.3 In this case, we were able to generate up to 107

games on a personal computer using a CPU. The legends in these plots indicate the number
of successful games among all expert games, which were then picked out for training BC.
The generation times for the human data and TRPO data are plotted as a function of the
number of generated games in Figure 4.6. We see that BC achieves a test performance of
winning about 67.2% of new games played when trained over 7, 145, 644 successful games
generated by TRPO. Note that best achievable performance when trained with human data
is about 59% when trained over 8, 126 successful games.

Figure 4.4: BC results on human expert data

Generative adversarial imitation learning

Generative adversarial imitation learning (GAIL) is an approach for imitation learning that
was described in detail in the previous chapter. It involves using input expert trajectories to
learn a policy that has occupancy measure close to that of the expert (as in Proposition 3),
by consecutively learning a cost function that differentiates between the learnt policy and
the input expert policy.

3All BC experiments carried out on TRPO data were those that completed training within 1 day. There
are no results for those that took longer, such as when the data size is 107 and training iterations are larger
than 101.
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Figure 4.5: BC results on TRPO data

Figure 4.6: Generation time for human expert data and TRPO data

We use a neural network with 2 hidden layers with 64 neurons in each layer to model
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the policy and the cost function for GAIL. The nonlinear activation in each layer is the
hyperbolic tangent function given by tanh(x) = ex−e−x

ex+e−x
. The number of training iterations is

in the list {102, 103, 104, 105, 106, 107}. The accuracy of GAIL on using human expert game
play data for training is plotted along with the corresponding training time as a function of
training iterations in Figure 4.7. Note that the maximum number of human expert games
that we could collect was 104. As mentioned previously, we also used the RL algorithm of
TRPO to automatically generate expert training data for GAIL. The accuracy of GAIL on
using TRPO expert data for training is plotted along with the corresponding training time
as a function of training iterations in Figure 4.8. In this case, we were able to generate up
to 107 games on a personal computer using a CPU. The legends in these plots indicate the
number of successful games among all expert games, which were then picked out for training
GAIL. The generation times for the human data and TRPO data are plotted as a function of
the number of generated games in Figure 4.6. We see that GAIL achieves a test performance
of winning about 70.4% of new games played when trained over 7, 145, 644 successful games
generated by TRPO. Note that best achievable performance when trained with human data
is about 43.4% when trained over 8, 126 successful games.

Figure 4.7: GAIL results on human expert data

4.4 Comparison of all methods

In this section we compare the training time and test accuracy of reinforcement learning and
imitation learning methods described above for human expert data in Figure 4.9, and for
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Figure 4.8: GAIL results on TRPO data

TRPO generated expert data in Figure 4.10. We can see that while RL algorithms achieve
marginally better test performance than GAIL, they do require the presence of a reward
function in order to learn a policy. We also see that GAIL requires lesser training time and
has higher accuracy than BC. Some key numbers regarding the best performance of these
algorithms on new games are collected in Table 4.1 along with their type - RL refers to
reinforcement learning and IL refers to imitation learning.
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Algorithm Type
# Training # Expert games Training % games

iterations trained on time (hrs) won

TRPO RL 108 - 20.76 74.0

PPO RL 107 - 2.05 76.0

ACKTR RL 108 - 27.44 70.9

DQN RL 107 - 5.61 56.6

BC on human data IL 102 8,126 0.02 59.0

GAIL on human data IL 102 8,126 0.01 43.4

BC on TRPO data IL 101 7,145,644 1.88 67.2

GAIL on TRPO data IL 102 7,145,644 1.99 70.4

Table 4.1: Comparison of the performance of all algorithms on new games

Figure 4.9: Comparison of RL/BC/GAIL on human expert data
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Figure 4.10: Comparison of RL/BC/GAIL on TRPO data



29

Chapter 5

Discussion and Conclusion

In this chapter, we look at a typical policy learnt from the approaches mentioned in the
previous chapter, and contrast it with a typical human expert policy as shown in Figure 4.2.
We then collect some results from training GAIL and BC on all expert data, without picking
out the successful ones. Some shortcomings of the approach are mentioned thereafter.

5.1 A view of the learnt policies

A typical policy learnt from running reinforcement learning using the TRPO algorithm for
108 iterations in shown in Figure 5.1. The numbers below the grids indicate the sequence
of video frames in the game. The corresponding video can be found at https://youtu.

be/E1sYnvtXcLQ. A typical policy learnt from running imitation learning using the GAIL
algorithm on TRPO generated data of size 7, 145, 644 for 100 iterations in shown in Figure
5.2. The numbers below the grids indicate the sequence of video frames in the game. The
corresponding video can be found at https://youtu.be/cEwGMoiMYvc. One can see that
the GAIL player initially starts moving towards its goal in sub-figures (1)-(3). When it
realizes that it can increase its reward by also capturing the computer player 2, it changes
its orientation to capture it as in sub-figures (4)-(6). It then goes back to its original path
of moving towards its goal in sub-figures (7)-(11). It is interesting to see that this reasoning
is very similar to that of the human expert policy in Figure 4.2. A similar argument also
holds for the RL policy in Figure 5.1.

5.2 Training with all data

The performance of imitation learning algorithms depends on the quality of the expert data
sued for training them. Since the GAIL algorithm is based on maximum entropy formulation
of inverse reinforcement learning, it seeks to find a policy that is similar to that of the expert
subject its justification by the cost function. That is to say that, the learnt policy is free
to differ from the expert policy as long as it minimizes the learnt cost function. This hints

https://youtu.be/E1sYnvtXcLQ
https://youtu.be/E1sYnvtXcLQ
https://youtu.be/cEwGMoiMYvc
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

(10)

Figure 5.1: A typical policy learnt using reinforcement learning

at the possibility that the learnt policy is cost optimizing even when some of the expert
trajectories are not from successful games. And that is what we see in our experiments as
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

(10) (11)

Figure 5.2: A typical policy learnt using GAIL for imitation learning

well. We see that the performance of GAIL when all of the expert data was used (without
picking only the successful samples) is similar to that when only successful samples were used
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Figure 5.3: Performance of GAIL when trained on all generated data versus that when
trained on successful data

for training, as shown in Figure 5.3. An important point to note is that the performance of
GAIL is comparable to human expert performance only when the training data is comprised
of at least 65% of successful samples.

Conclusion

In this project, we formalized a collaborative-competitive game with competition between
two teams and collaboration between members of each team. The ground rules for game play
were cast in the form of a Markov Decision Process with the goal of learning optimal game
play strategies for members of one team (at a time). We collected expert trajectories from
humans that played the game on behalf of one of the teams, and use that data to learn similar
game play strategies that can help the team win the game. This involved the examination of
an imitation learning approach called Generative Adversarial Imitation Learning that finds
a policy close to that of the expert, without going through the cycle of IRL followed by RL
for imitation learning. We compared the results of running GAIL on expert data to those got
from state of the art algorithms from the domain of imitation learning as well as (forward)
reinforcement learning using the reward structure described in the problem formulation. We
saw that the learnt policies resembled the logic used by humans in playing the game, while
being successful in about 70% of new games played. This is very close (though smaller) than
the performance of human players. A disadvantage of these imitation learning methods is
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that they require large quantities of expert data in order to achieve human-like performance.
This can be practically infeasible to obtain from human demonstrations, and can benefit
from the use of tools such as forward reinforcement learning (when rewards are available) or
generative adversarial networks to computationally generate human-like expert data given a
training set of human demonstrations.
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