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Abstract

Impulse differential inclusions provide a framework
for modelling hybrid phenomena. In the context of
impulse differential inclusions, verification for safety
specifications and safe controller synthesis can be
formulated as viability and invariance questions for
appropriate sets of states. In this paper, a charac-
terisation of viability and invariance kerneis (i.e. the
largest subsets of a given set that are viable or in-
variant) is presented. In the process, a method for
computing these sets using standard viability and
invariance tools is developed.

Keywords: Hybrid systems; Viability Theory;
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1 Introduction

A substantial part of the literature on hybrid sys-
tems has been devoted to the problem of reacha-
bility and safety, that is the question of whether,
under the dynamics of a hybrid system, a given set
of states can be reached from a given set of initial
conditions. Techniques have been developed for es-
tablishing whether the set of reachable states is con-
tained in a certain set, either algorithmically (see [1]
and the references therein) or deductively [2]. In
the case of hybrid control systems, methods have
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been developed for synthesising controllers that sat-
isfy such safety specifications (see, for example [3, 4]
and the references therein). Since the reachability
problem quickly becomes computationally infeasi-
ble, approximation techniques have been proposed
to facilitate the analysis [5, 6].

For continuous dynamical systems described by dif-

ferential inclusions, questions of reachability can be

addressed in the context of viability theory [7]. Via-

bility theory deals with two fundamental properties

of sets of states of a dynamical system. Roughly

speaking, a set of states, K, is called viable if for all

initial conditions in K there exists a solution of the

dynamical system that remains in K; it is called in--
variant if for all initial conditions in K all solutions

of the system remain in K. In the case where a

set, K, is not viable (respectively invariant), viabil-

ity theory techniques can also be used to establish

the largest subset of K which is viable (respectively,

invariant), which is known as the wviability kernel
(respectively, invariance kernely of K. Numerical

algorithms have been developed to compute these

kernels [8], and have been used to compute things

such as basins of attraction for equilibria [9].

In [10], viability theory concepts were extended to a
fairly large class of hybrid systems, known as im-
pulse differential inclusions. Methods from non-
smooth analysis were used to characterise sets of
states that are viable or invariant under the dynam-
ics of an impulse differential inclusion, and study the
existence of runs. In this paper we pursue this di-
rection further, by providing a characterisation for
the viability and invariance kernels of sets of states
of an impulse differential inclusion. It is easy to see
that viability and invariance kernels are closely re-
lated to maximal invariant and maximal controlled
invariant sets, therefore their characterisation is im-
portant for verification and controller synthesis for
safety specifications.

The material is arranged in four sections. In Sec-
tion 2, we review the impulse differential inclusion
framework, and summarise the viability and invari-
ance conditions derived in [10]. Procedures for es-



tablishing the viability and invariance kernels of a
set are then developed in Section 3. Current re-
search topics are highlighted in 4. The proofs of the
various facts stated in the paper are rather techni-
cal, and have been omitted to maintain the flow of
the paper. The interested reader is referred to [11].

2 Impulse Differential Inclusions

We start by summarising the notation used in the
subsequent development. The paper assumes some
familiarity with the basic concepts of non-smooth
and set valued analysis (upper and lower semicon-
tinuity, Lipschitz maps etc.) and differential inclu-
sions (solution concepts, etc.). The reader is re-
ferred [7] to for a thorough treatment.

For an arbitrary set, K, 2¥ is used to denote the
power set of K, i.e. the set of all subsets of K. For
a set valued map R: X — 2¥ andaset K CY
we use R™1{K) to denote the snwverse image of K
under R and R®!(K) to denote the extended core of
K under R, defined by

RUK) = {zeX|R@ENK £},
REVK) = (z€X|R()CK)
U{z € X | R(z) = B}.

Notice that R=(Y) is the set of x € X such that
R(x) # 0. We call the set R™}{Y') the domain of R
and the set {(z,y) €¢ X xY |y € R(x)} the graph
of R.

We use X to denote a finite dimensional vector space
with the standard Euclidean metric, denoted by 4.
For a closed subset, K C X, of a finite dimensional
vector space, and a point z € K, we use Tx(z) to
denote the contingent cone to K at z, i.e. the set
of v € X such that there exists a sequence of real
numbers h,, > 0 converging to 0 and a sequence of
v, € X converging to v satisfying

VnEO, I“'hn'ﬁ)n 1S K

We say that a map F' : X — 2% is Marchaud if
and only if (1) the graph and the domain of F are
nonempty and closed; (2) for all # € X, F(z) is
convex, compact and nonempty; and, (3) the growth
of F is linear, that is there exists ¢ > 0 such that for

alze X

sup{[[ol | v € F(z)} < {fllj +1).

We will consider hybrid phenomena, in the sense of
dynamical phenomena that involve both continuous
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evolution and discrete transitions. To distinguish
the times at which discrete transitions take place we
recal] the notion of a hybrid time trajectory (4, 12].

Definition 1 A hybrid time trajectory, 7 =
{L}N, is a finite or infinite sequenee of intervals
of the real line, such that

e fori< N, I; = [ri,7]], and, if N < oo, either
In = [t 74], or In = [, T [

LJ fOT‘ all i, Ti S 'T: = Ti41.

Since the dynamical systems we will consider will be
time invariant, we assume, without loss of general-
ity, that 7o = 0. The interpretation is that ; are the
times at which discrete transitions take place. No-
tice that discrete transitions are assumed to be in-
stantaneous, and therefore multiple discrete transi-
tions may take place at the same time instant (since
it is possible for 7; = T;41). Each hybrid time tra-
jectory, 7, is fully ordered by the relation <, which
for t € {r;,7{] € 7 and ' € [7;,7]] € 7 is defined by
t<t'iffandonlyift <t ori<j, weuset <t to
denote t <t' ort =t" and i = j. For t € R, we use
t € 7 as a shorthand notation for “there exists a j
such that ¢t € [r;,7]] € 7. For a topological space
K we use k : 7 ~ K as a shorthand notation for a
map assigning values from K to all t € 7. Notice
that k : 7 ~ K is not a function over the interval

U; L, since it assigns multiple values to the times
t=mn=1_,.

We are now ready to introduee the class of dynam-
ical systems considered in this paper (see also [10]).

Definition 2 An impulse differential inclusion
is a collection (X, F, R, J), consisting of a finite di-
mensional vector space X, a set valued map F :
X — 2%, regarded as a differential inclusion & €
F(z), a set valued map R : X — 2%, regarded as
a reset map, and a set J C X, regarded as a forced
transition set.

We call z € X the state of the impulse differential
inclusion. Subsequently, I = X \ J will be used to
denote the complement of J. The set I is sometimes
referred to as the “domain”, or the “invariant” in
the hybrid systems literature.

Impulse differential inclusions can be used to de-
scribe hybrid phenomena in the following sense.

Definition 3 A run of an impulse differential in-
elusion, (X, F, R, J), is e pair, (1,1), consisting of



Figure 1: A run of an impulse differential inclusion
(X,F,R,J)

a hybrid time trajectory T and a map ¢ T ~ X,
that satisfies.

® Discrete Evolution:
R(z(7{))

for all i, z(riy1) €

s Continuous Evolution: #f » < 7/, (') s @
solution to the differential inclusion & € F(x)
over the interval [1;,7;] starting at x(7;}, with

z(t) g J for allt € |, 7L

We will use R(x r g 0 (x0) to denote the set of all
runs of an impulse differential inclusion (X, F, R, J)
starting at a state z{7g) = £o € X. An example of
a run of an impulse differential inclusion is shown in
Figure 1; the solid arrows indicate continuous evolu-
tion while the dotted arrows indicate discrete transi-
tions. According to Definition 3, R enables discrete
transitions (transitions may happen when R(x) # 0
but do not have to), while J forces discrete transi-
tions (transitions must happen when z € J). It is
easy to see that by appropriately embedding discrete
states into finite dimensional vector spaces impulse
differential inclusions can be used to meodel a very
wide class of hybrid phenomena.

A run of an impulse differential inclusion is called:

s finite, if T is a finite sequence ending with a
compact interval,

e infinite, if either 7 is an infinite sequence, or

212(7-:! - Ti) = o0,

® Zeno, if it is infinite and 3 (7] — 73} < oo.
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We will use RS 1 p 1y(o) to denote the set of all
infinite runs of (X, F, R, J) starting at zo (some of
which may be Zenc while others not). In {10] condi-
tions were developed to guarantee that infinite runs
exist, using the viability concepts introduced below.

Definition 4 A run, {1,x) of an impulse differen-
tial inclusion, (X, F, R, J), is called viable in a set
KCXifforalter, z(t)e K.

Notice that the definition of a viable run requires the
state to remain in the set K throughout the run,
along continuous evelution up until and including
the state before a discrete transition, as well as after
the discrete transition. Based on the notion of a
viable run, one can define two different classes of
sets.

Definition 5 A set K C X is called viable under
an impulse differential inclusion, (X, F, R, J), if for
all o € K there exisis an infinite run, (r,z) €
R?},F,R:J) (xz0), viable in K. K is called invariant
under the impulse differential inclusion, if for all
xp € K all runs (‘T, LL‘) € R(X’F‘R._)')(.’L'D) are viable
in K.

It should be easy to appreciate the concept of invari-
ance, and its implications for safety verification for
hybrid systems. Careful examination of Definition 5
reveals that viability is closely related to the concept
of controlled invariance in the absence of uncontrol-
lable disturbances [4]. It is easy to see that if a set is
viable under an impulse differential inclusion, then
there exists a controller (involving feedback during
both continuous evolution and discrete transitions)
that ensures that if the state starts in that set it
remains there for ever.

The characterisation of viable and invariant sets pre-
sented in {10], led to the following conditions.

Theorem 1 Consider an tmpulse differential in-
clusion (X,F,R,J) such that F is Marchaud, R
is upper semicontinuous with closed domain and J
is closed!. A closed set K C X is viable under
(X, F\R, J) if and only if

1. KnJC R YK), and

2 Ve K\RVK), F(z)NTk(z) # 0

ISimilar conditions characterise viability when the set J
is open, or, in other words, the set [ = X \ J is closed.



The conditions can be interpreted as requiring that
if for some state in K continuous evolution keeping
the state in K is impossible, a discrete transition
back into K must be possible.

Theorem 2 Consider an impulse differential inclu-
sion (X, F, R, J} such that F is Marchaud and Lip-
schitz and J is closed. A closed set K C X 15 tn-
variant under (X, F, R, J) if and only if

1. RIK)CK, and
2. ¥Vzxe K\J, F(z) CTk(z).

The conditions can be interpreted as requiring that
for any state in K and any possible type of evolution
from that state {continuous or discrete), the state
must remain in K. It can be shown that these very
intuitive conditions reduce to the standard viability
and invariance conditions for differential inclusions
and discrete time systems, if the impulse differential
inclusion allows only continuous or only discrete dy-
namics.

In the cases where an impulse differential inclusion
fails to satisfy a given viability or invariance require-
ment, one would like to establish sets of initial con-
ditions (if any) for which the requirement will be
satisfied. This notion can be characterised by the
viability and invariance kernels.

Definition 6 The viability kernel,
Viabix rrn(K) of a set K C X under an
impulse differential inclusion (X, F,R,J) is the set
of states xp € X, for which there exists en infinite
run, (1,2} € R(O,?{,F,R,J)(mo)’ viable in K. The
invariance kernel, Invix rgrn(K) of K under
(X, F,R,J) is the set of states zy € X, for which
all runs (1,7} € Rix F,rn(To) are viable in K.

The viability (respectively invariance) kernel of a
set K can be thought of as the unique maximal
controlled invariant (respectively invariant) subset

of the set K.

3 Viability and Invariance Kernels

The viability kernel of an impulse differential inclu-
sion can be characterised in terms of the notion of
the viability kernel with target for a continuous dif-
ferential inclusion. This notion was first introduced
in [13], in the context of optimal control problems
with terminal constraints. For a differential inclu-
sion £ € F(z), the viability kernel of a set X C X
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with target C C X, Viabp(K,C), is defined as the
set of states for which there exists a solution to the
differential inclusion that remains in K either for
ever, of until it reaches €. The following lemma
summarises the basic properties of the viability ker-
nel with target.

Lemma 1 Consider a Marchaud map F: X — 2%
and two closed sets K and C. Viabp(K,C) is the
largest closed subset of K such that for allx € K\C,
F(x) N Tr(x) #0.

The proof for the case where F' is Lipschitz is given
in [13]. The proof for the more general case can be
found in [11]. Notice that, by definition

KN C C Vigbr(K,C) C K.

Using this notion, one can give an alternative char-
acterisation of the sets that are viable under an
impulse differential inclusion, as fixed points of
an appropriate operator. For an impulse differ-
ential inclusion (X, F, R,J), consider the coperator
PW?X,F,R,J) : 2%X 5 2X defined by

Prely r gy (K) =Viabp(K N1, RTY(K))
UK nR™YK))
Recall that T = X \ J.

Lemma 2 Consider an impulse differential inclu-
sion (X, F,R,J) such that F is Marchaud, R is
upper semicontinuous with closed domain, and J
is open. A closed set K C X is viable under
(X,F,R,J) if and only if it is o fived point of the
operator Pre(x p g 5y

The lemma follows from the ocbservation that
Pre?X, £ rJ)(K) is effectively the set of states in K
for which there exists a piece of continuous evolution
{possibly trivial or infinite} followed by a discrete
transition that remains in K.

Theorem 3 Consider an impulse differential inclu-
sion (X, F, R, J) such that F is Marchaud, R is up-
per semicontinuous with closed domain and compact
images, and J is open. The viability kernel of a
closed set K C X under (X,F,R,J) is the largest
closed subset of K wviable under (X, F,R,.J), that
is, the largest closed fixed point of Pre(axﬁ F,R,J} €ON-
tained in K.

It should be stressed that the conditions of Theo-
rem 3 ensure that for all initial conditions in the



viability kernel infinite runs of the impulse differ-
ential inclusion exist, but do not ensure that these
runs will extend over an infinite time horizon; all
runs starting at certain initial conditions in the vi-
ability kernel may turn cut to be Zeno.

The proof of Theorem 3 is based on the following
procedure for approximating the viability kernel.

Algorithm 1 (Viability Kernel Approx.)

initialisation: K1 =0, Ko =K,i=0
while Ki 79 Ki—l

begin
Kip1 = PTE?X,F,R,J)(Ki)
i=t+1

end

One can use existing software tools for computing
viability kernels for differential inclusions to approx-
imate Viebp(K NI, R~1(K)) at each step of the
above algorithm.

The invariance kernel can be characterised using the
notion of the invariance kernel with target for con-
tinuous differential inclusions. For a differential in-
clusion & € F(z), the invariance kernel of a set K
with target C, Invp(K,C) is defined as the set of
states for which all solutions to the differential in-
clusion remain in K either for ever, of until they
reach C. The following lemma suminarises the ba-
sic properties of the invariance kernel with target.

Lemma 3 Consider o Marchaud and Lipschitz
mep F : X — 2% and two eclosed sets K and C.
Invg(K,C) is the largest closed subset of K such
that for all x € K\ C, F(z) C Tk(x).

Notice that, by definition
KnCCInvp(K,CYC K.

Using the notien of invariance kernel with target,
one can give an alternative characterisation of the
sets that are invariant under an impulse differential
inclusion, as fixed points of an operator. Given an
impulse differential inclusion (X, F, R, J), consider
the operator Pre}"X’F’R'J) : 2% — 2% defined by

PT‘E?X,F,R,J) (K} = Inup(K, J) n RPYK)

Lemma 4 Consider an impulse differential inclu-
sion (X, F, R, J) such that F is Marchaud and Lip-
schitz, R is lower semicontinuous, and J is closed.
A closed set K C X is invariant under (X, F, R, J)
if and only if it is a fired point of the operutor
PreFX} F.R,J)-
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Prely g g n(K) is effectively the set of states in K
for which all pieces of continuous evolution and all
discrete transitions remain in K.

Theorem 4 Consider an impulse differential inclu-
sion (X, F,R,J) such that F is Marchaud and Lip-
schitz, R is lower semicontinuous and J is closed.
The invariance kernel of a closed set K C X under
(X, F,R,J) is the largest closed subset of K invari-
ant under (X, F, R, J), that is, the largest, closed
fized point of PreYX!F’R,J) contained in K.

Again the proof of Theorem 4 makes use of the se-
quence of nested sets generated by the following al-
gorithm,

Algorithm 2 (Invariance Kernel Approx.)
initialisation: K_; =0, Kg = K,i=0
while Ki 7é Ki—l

begin
Kis1 = Prelx p g 5 (K:)
i=1+1

end

Standard viability theory computational tools can
be used to implement each step of the algorithm,
and hence systematically approximate the invari-
ance kernel of the set K.

4 Concluding Remarks

We presented conditions for characterising the vi-
ability and invariance kernels of sets of states un-
der the action of an impulse differential inclusion.
The conditions were based on constructive proce-
dures for obtaining successively better estimates of
the kernels. We are currently investigating how soft-
ware tools for studying the viability of sets under the
action of differential inclusions can be used to com-
pute these estimates, and how the results compare
with different methods that have been proposed for
numerically approximating invariant and controlled
invariant sets.

The results presented in this paper are part of an
extensive study of hybrid control through the frame-
work of viability theory. A number of interesting
extensions are currently under investigation. They
include optimal control of impulse differential in-
clusions {value functions and their characterisations
in terms of quasi-variational inequalities or viability
kernels), stability (Lyapunov functions their char-
acterisation as viability kernels) and a study of the



initialisation map, which can be used to convert a
hybrid system to a discrete time system by abstract-
ing away the continuous dynamics.
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