Inference in first-order logic

CHAPTER 9, SECTIONS 14

AIMA Slides ©Stuart Russell and Peter Norvig, 1998 Chapter 9, Sections 1-4 1

Outline

& Proofs

& Unification

& Generalized Modus Ponens

¢ Forward and backward chaining

AIMA Slides ©Stuart Russell and Peter Norvig, 1998

Chapter 9, Sections 1-4

2

Proofs

Sound inference: find « such that KB = «.
Proof process is a search, operators are inference rules.

E.g., Modus Ponens (MP)

a, o = [At(Joe,UCB) At(Joe,UCB) = OK(Joe)
3 OK (Joe)

E.g., And-Introduction (Al)

a [OK(Joe) CSMajor(Joe)
aAf OK(Joe) NCSMajor(Joe)

E.g., Universal Elimination (UE)

Vi « Vo At(z,UCB) = OK(z)
af{x/T} At(Pat,UCB) = OK(Pat)

7 must be a ground term (i.e., no variables)

AIMA Slides ©Stuart Russell and Peter Norvig, 1998 Chapter 9, Sections 1-4 3

Example proof

Bob is a buffalo 1. Buf falo(Bob)
Pat is a pig 2. Pig(Pat)
Buffaloes outrun pigs |3. Vz,y Buffalo(z) A Pig(y) = Faster(x,y)

Bob outruns Pat

AIMA Slides ©Stuart Russell and Peter Norvig, 1998 Chapter 9, Sections 1-4 4

Al'l & 2

AIMA Slides ©Stuart Russell and Peter Norvig, 1998

4. Buf falo(Bob) N\ Pig(Pat)

Chapter 9, Sections 1-4

5

UE 3, {x/Bob,y/Pat}|5. Buf falo(Bob) A Pig(Pat) = Faster(Bob, Pat)

AIMA Slides ©Stuart Russell and Peter Norvig, 1998 Chapter 9, Sections 1-4 6

MP 6 & 7

AIMA Slides ©Stuart Russell and Peter Norvig, 1998

6. Faster(Bob, Pat)

Chapter 9, Sections 1-4

7

Search with primitive inference rules

Operators are inference rules
States are sets of sentences
Goal test checks state to see if it contains query sentence

123
Al, UE, MP is a common inference pattern
All&?2

1234 .

Problem: branching factor huge, esp. for UE
%’w {x/Bob, y/Pat}
12345 |dea: find a substitution that makes the rule
A_‘ MP 5 &6 premise match some known facts

12345() = a single, more powerful inference rule

AIMA Slides ©Stuart Russell and Peter Norvig, 1998 Chapter 9, Sections 1-4 8

Unification

A substitution o unifies atomic sentences p and q if poc = go

p q o

Knows(John,z) | Knows(John, Jane)
Knows(John,z) | Knows(y,OJ)
Knows(John,z) | Knows(y, Mother(y)

AIMA Slides ©Stuart Russell and Peter Norvig, 1998 Chapter 9, Sections 1-4 9

{x/Jane}
{x/John,y/OJ}
{y/John,x/Mother(John)}

Idea: Unify rule premises with known facts, apply unifier to conclusion

E.g., if we know g and Knows(John,x) = Likes(John,z)
then we conclude Likes(John, Jane)
Likes(John,OJ)
Likes(John, Mother(John))

AIMA Slides ©Stuart Russell and Peter Norvig, 1998 Chapter 9, Sections 1-4 10

Generalized Modus Ponens (GMP)

pi, ps s (PUAP2A L AP =) o .
where p;'o = p;o for all 7
qo
E.g. pi'= Faster(Bob,Pat)

po' = Faster(Pat,Steve)
PLADP2 = ¢ Faster(z,y) N Faster(y,z) = Faster(x, z)
o= {x/Bob,y/Pat, z/Steve}
go = Faster(Bob, Steve)

GMP used with KB of definite clauses (ezactly one positive literal):
either a single atomic sentence or

(conjunction of atomic sentences) = (atomic sentence)
All variables assumed universally quantified

AIMA Slides ©Stuart Russell and Peter Norvig, 1998 Chapter 9, Sections 1-4 11

Soundness of GMP

Need to show that

/

Py s hy (IAN L ADL = q) Eqo
provided that p;/o = p;o for all 1
Lemma: For any definite clause p, we have p = po by UE
L (A App=q) EmA...Ap,=qo=(pioA...Ap,o = qO0)
2.ps oo, EPIAAD) EploA . AD o

3. From 1 and 2, qo follows by simple MP

AIMA Slides ©Stuart Russell and Peter Norvig, 1998 Chapter 9, Sections 1-4 12

Forward chaining

When a new fact p is added to the KB
for each rule such that p unifies with a premise
if the other premises are known
then add the conclusion to the KB and continue chaining

Forward chaining is data-driven
e.g., inferring properties and categories from percepts

AIMA Slides ©Stuart Russell and Peter Norvig, 1998 Chapter 9, Sections 1-4 13

Forward chaining example

Add facts 1, 2, 3, 4, 5, 7 in turn.
Number in [| = unification literal; |/ indicates rule firing

‘I—l

. Buf falo(x) A Pig(y) = Faster(x,y)

Pig(y) A Slug(z) = Faster(y, z)

. Faster(xz,y) A Faster(y,z) = Faster(x, z)

Buf falo(Bob) [la,x]

. Pig(Pat) [1b, /] = 6. Faster(Bob, Pat) [3a,x], [3b,x]
[2a, ¥]

7. Slug(Steve) [2b, /]

—8. Faster(Pat, Steve) [3a,x], [3b,,/]
—9. Faster(Bob, Steve) [3a,x], [3b, X]

A

AIMA Slides ©Stuart Russell and Peter Norvig, 1998 Chapter 9, Sections 1-4

14

Backward chaining

When a query ¢ is asked
if a matching fact ¢' is known, return the unifier
for each rule whose consequent ¢’ matches ¢
attempt to prove each premise of the rule by backward chaining

(Some added complications in keeping track of the unifiers)
(More complications help to avoid infinite loops)
Two versions: find any solution, find all solutions

Backward chaining is the basis for logic programming, e.g., Prolog

AIMA Slides ©Stuart Russell and Peter Norvig, 1998 Chapter 9, Sections 1-4 15

Backward chaining example

Pig(y) A Slug(z) = Faster(y, z)

rﬁ my(z) A Creeps(z) = Slug(z)
Pig(Pat) 4. Slimy(Steve) 5. Creeps(Steve)

\‘*’ N> \"‘

Faster (Pat,Seve)

D {y/Pat, Z/Steve}

Simy(Seve) Creeps(Seve)

OXs; ®

AIMA Slides ©Stuart Russell and Peter Norvig, 1998

Chapter 9, Sections 1-4

16

