
Quantifying Differences in Reward Functions

Adam Gleave1∗ Michael Dennis1 Shane Legg2 Stuart Russell1 Jan Leike3

1UC Berkeley 2DeepMind 3Independent
gleave@berkeley.edu

Abstract

For many tasks, the reward function is too complex to be specified procedurally, and
must instead be learned from user data. Prior work has evaluated learned reward
functions by examining rollouts from a policy optimized for the learned reward.
However, this method cannot distinguish between the learned reward function
failing to reflect user preferences, and the reinforcement learning algorithm failing
to optimize the learned reward. Moreover, the rollout method is highly sensitive
to details of the evaluation environment, which often differs from the deployment
environment. To address these problems, we introduce the Equivalent-Policy In-
variant Comparison (EPIC) distance to quantify the difference between two reward
functions directly, without training a policy. We prove EPIC is invariant on an
equivalence class of reward functions that always induce the same optimal policy.
Furthermore, we find EPIC can be precisely approximated and is more robust than
baselines to the choice of visitation distribution. Finally, we show that EPIC dis-
tance bounds the regret of optimal policies even under different transition dynamics,
and confirm empirically that it predicts policy training success. Our code is avail-
able at https://github.com/HumanCompatibleAI/evaluating-rewards.

1 Introduction

Reinforcement learning (RL) has reached or surpassed human performance in many domains with
clearly-defined reward functions, such as games [19; 14; 22] and narrowly-scoped robotic manip-
ulation tasks [15]. Unfortunately, the reward functions for most real-world tasks are difficult or
impossible to procedurally specify. Even a task as simple as peg insertion from pixels has a non-trivial
reward function that must usually be learned [21, IV.A]. Most real-world tasks have far more complex
reward functions than this. In particular, tasks involving human interaction depend on complex and
user-dependent preferences. These challenges have inspired work on learning a reward function,
whether from demonstrations [12; 16; 25; 8; 3], preferences [1; 24; 6; 17; 26] or both [10; 4].

Prior work usually evaluates the learned reward function R̂ using the “rollout method”: training
a policy πR̂ to optimize R̂ and then examining rollouts from πR̂. Unfortunately, this method is
computationally expensive because it requires us to solve an RL problem. Furthermore, the rollout
method produces false negatives when the reward R̂ matches user preferences, but the RL algorithm
fails to maximize R̂. The method also produces false positives: many reward functions induce the
desired rollout in a given environment but do not with the user’s preferences. If the initial state
distribution or transition dynamics change, misaligned rewards may induce undesirable policies.

Reinforcement learning is founded on the observation that it is usually easier and more robust to
specify a reward function, rather than a policy maximizing that reward function. Applying this insight
to reward function analysis, we develop methods to compare reward functions directly, without
training a policy. We summarize our desiderata for reward function distances in Table 1.

We introduce the Equivalent-Policy Invariant Comparison (EPIC) pseudometric that meets all five
desiderata. EPIC (section 4) canonicalizes the reward functions’ potential-based shaping, then
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Table 1: Summary of the desiderata satisfied by each reward function distance. Key – the distance is:
a pseudometric (section 3); invariant to potential shaping [13] and positive rescaling (section 3); a
computationally efficient approximation achieving low error (section 6.1); predictive of the similarity
of the trained policies (section 6.2); and robust to the choice of visitation distribution (section 6.3).

Distance Pseudometric Invariant Efficient Predictive Robust
EPIC 3 3 3 3 3
NPEC 7 3 7 3 7
ERC 3 7 3 3 (7)

computes the correlation between the canonical rewards over a visitation distribution D of transitions.
For comparison, we also propose two baselines (section 5), Episode Return Correlation (ERC) and
Nearest Point in Equivalence Class (NPEC), which partially satisfy the desiderata.

EPIC works best when D has support on all realistic transitions. In our experiments, we achieve
this by using uninformative priors, such as a uniform distribution over transitions. Moreover, we
find EPIC is robust to the exact choice of distribution D, producing similar results across a range of
distributions, whereas ERC and especially NPEC are highly sensitive to the choice of D (section 6.3).

Reward learning algorithms are typically benchmarked on tasks with a known ground-truth reward
function R. When using the rollout method, it is common to report the regret: how much less true
reward R is obtained by a policy πR̂ optimized for the learned reward R̂ versus a policy πR optimized
for R. Theorem 4.9 shows that reward functions with low EPIC distance to the true reward R induce
optimal policies with low regret even in unseen environments. We also confirm empirically that this
result holds in practice (section 6.2).

2 Related work

There exists a variety of methods to learn reward functions. One prominent family is inverse
reinforcement learning (IRL; 12), which infers a reward function from demonstrations. The IRL
problem is inherently underconstrained: many different reward functions can lead to the same
demonstrations. Bayesian IRL [16] handles this ambiguity by inferring a posterior over reward
functions. By contrast, Maximum Entropy IRL [25] selects the highest entropy reward function
consistent with the demonstrations; this method has scaled to high-dimensional environments [7; 8].

An alternative approach is to learn from preference comparisons between two trajectories [1; 24; 6; 17].
T-REX [4] is a hybrid approach, learning from a ranked set of demonstrations. More directly, Cabi
et al. [5] learn from “sketches” of cumulative reward over an episode.

To the best of our knowledge, there is no prior work that focuses on evaluating reward functions
directly. The most closely related work is Ng et al. [13], identifying reward transformations guaranteed
not to change the optimal policy. However, a variety of ad-hoc methods have been developed to
evaluate reward functions. The rollout method – evaluating rollouts of a policy trained on the learned
reward – is evident in the earliest work on IRL [12]. Fu et al. [8] refined the rollout method by testing
on a transfer environment, inspiring our experiment in section 6.2. Recent work has compared reward
functions by scatterplotting returns [10; 4], inspiring our ERC baseline (section 5.1).

3 Background

This section introduces material needed for the distances defined in subsequent sections. We start
by defining a distance metric, then introduce the Markov Decision Process (MDP) formalism, and
finally describe when reward functions induce the same optimal policy in any compatible MDP.
Definition 3.1. Let X be a set and d : X ×X → [0,∞) a function. d is a premetric if d(x, x) = 0
for all x ∈ X . d is a pseudometric if, furthermore, for all x, y, z ∈ X , d(x, y) = d(y, x) and
d(x, z) ≤ d(x, y) + d(y, z). d is a metric if, furthermore, for all x, y ∈ X , d(x, y) = 0 ⇐⇒ x = y.

We wish for d(RA, RB) = 0 when reward functions RA and RB are in the same equivalence class,
even if RA 6= RB . This is forbidden in a metric but permitted in a pseudometric, while retaining

2



other guarantees such as symmetry and triangle inequality that a metric provides. Accordingly, a
pseudometric is usually the best choice for a distance d over reward functions.
Definition 3.2. A Markov Decision Process (MDP) M = (S,A, γ, µ, T , R) consists of a set of
states S and a set of actions A; a discount factor γ ∈ [0, 1]; an initial state distribution µ(s); a
transition distribution T (s′ | s, a) specifying the probability of transitioning to s′ from s after taking
action a; and a reward function R(s, a, s′) specifying the reward upon taking action a in state s and
transitioning to state s′.

A trajectory τ consists of a sequence of states and actions, τ = (s0, a0, s1, a1, · · · ), where each
si ∈ S and ai ∈ A. The return on a trajectory is defined as the sum of discounted rewards,
g(τ ;R) =

∑|τ |
t=0 γ

tR(st, at, st+1), where the length of the trajectory |τ | may be infinite.

In the following, we assume a discounted (γ < 1) infinite-horizon MDP. The results can be generalized
to undiscounted (γ = 1) MDPs subject to regularity conditions needed for convergence.

A stochastic policy π(a | s) assigns probabilities to taking action a ∈ A in state s ∈ S . The objective
of an MDP is to find a policy π that maximizes the expected return, G(π) = Eτ(π) [g(τ ;R)], where
τ(π) is a trajectory generated by sampling the initial state s0 from µ, each action at from the policy
π(at | st) and successor states st+1 from the transition distribution T (st+1 | st, at). An MDP M
has a set of optimal policies π∗(M) that maximize the expected return, π∗(M) = arg maxπ G(π).

In this paper, we consider the setting where we only have access to an MDP\R,M− = (S,A, γ, µ, T ).
The unknown reward function R must be learned from human data. Typically, only the state space
S , action space A and discount γ are known exactly, with the initial state µ and transition dynamics
T only observable from interacting with the environment M−. In the following, we describe an
equivalence class whose members are guaranteed to have the same set of optimal policies in any
MDP\R M− with fixed S, A and γ (allowing the unknown T and µ to take arbitrary values).
Definition 3.3. A potential shaping reward is defined as R(s, a, s′) = γΦ(s′) − Φ(s), given a
potential Φ : S → R and where γ is the MDP discount rate.
Definition 3.4 (Reward Equivalence). We define two bounded reward functions RA and RB to be
equivalent, RA ≡ RB , for a fixed (S,A, γ) if and only if there exists a constant λ > 0 and a bounded
potential function Φ : S → R such that for all s, s′ ∈ S and a ∈ A:

RB(s, a, s′) = λRA(s, a, s′) + γΦ(s′)− Φ(s).

Note RA −RB ≡ Zero (where Zero is the all-zero reward) if and only if RA ≡ RB with λ = 1.
Proposition 3.5. The binary relation≡ is an equivalence relation. LetRA, RB , RC : S×A×S → R
be bounded reward functions. Then ≡ is reflexive, RA ≡ RA; symmetric, RA ≡ RB implies
RB ≡ RA; and transitive, (RA ≡ RB) ∧ (RB ≡ RC) implies RA ≡ RC .
Proof. See section A.3.1 in supplementary material.

The expected return of potential shaping γΦ(s′) − Φ(s) on a trajectory segment (s0, · · · , sT ) is
γTΦ(sT ) − Φ(s0). The first term γTΦ(sT ) → 0 as T → ∞, while the second term Φ(s0) only
depends on the initial state, and so potential shaping does not change the set of optimal policies [13].

Scaling a reward function by a positive factor λ > 0 scales the expected return of all trajectories by
λ, leaving the set of optimal policies unchanged. The set of optimal policies is also invariant to a
constant shift c ∈ R of the reward, however this can already be obtained by shifting Φ by c

γ−1 .†

If RA ≡ RB , for a fixed (S,A, γ), then for any MDP\R M− = (S,A, γ, µ, T ) we have
π∗ ((M−, RA)) = π∗ ((M−, RB)), where (M−, R) denotes the MDP specified by M− with re-
ward function R. In other words, RA and RB induce the same optimal policies for all initial state
distributions µ and transition dynamics T .

4 Comparing reward functions with EPIC

In this section we introduce the Equivalent-Policy Invariant Comparison (EPIC) pseudometric.
This novel distance canonicalizes the reward functions’ potential-based shaping, then compares

†Note constant shifts in the reward of an undiscounted MDP would cause the value function to diverge.
Fortunately, the shaping γΦ(s′) − Φ(s) is unchanged by constant shifts to Φ when γ = 1.
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the canonical representatives using Pearson distance, which is invariant to scale. Together, this
construction makes EPIC invariant on reward equivalence classes. See section A.3.2 for proofs.

We define the canonically shaped reward CDS ,DA (R) as an expectation over some arbitrary distri-
butions DS and DA over states S and actions A respectively. This construction means CDS ,DA (R)
only depends on (S,A, γ), and not on the initial state distribution µ or transition dynamics T . In
particular, we may evaluate R on transitions that are impossible in the training environment, since
these may become possible in a deployment environment with a different µ or T .

Definition 4.1 (Canonically Shaped Reward). Let R : S ×A× S → R be a reward function. Given
distributions DS and DA over states S and actions A respectively, let S and S′ be random variables
independently sampled from DS and A sampled from DA. We define the canonically shaped R to be:

CDS ,DA (R) (s, a, s′) = R(s, a, s′) + E [γR(s′, A, S′)−R(s,A, S′)− γR(S,A, S′)] .

Informally, if R′ is shaped by potential Φ, then increasing Φ(s) decreases R′(s, a, s′) but in-
creases E [−R′(s,A, S′)], canceling. Similarly, increasing Φ(s′) increases R′(s, a, s′) but decreases
E [γR′(s′, A, S′)]. Finally, E[R(S,A, S′)] centers the reward, canceling constant shift.

Proposition 4.2 (The Canonically Shaped Reward is Invariant to Shaping ). Let R : S ×A×S → R
be a reward function and Φ : S → R a potential function. Let γ ∈ [0, 1] be a discount rate,
and DS and DA be distributions over states S and A respectively. Let R′ denote R shaped by
Φ: R′(s, a, s′) = R(s, a, s′) + γΦ(s′) − Φ(s). Then the canonically shaped R′ and R are equal:
CDS ,DA (R′) = CDS ,DA (R).

Proposition 4.2 holds for arbitrary distributions DS and DA. However, in the following Proposition
we show that the potential shaping introduced by the canonicalization CDS ,DA (R) is more influenced
by perturbations to R of higher joint probability transitions (s, a, s′). This suggests choosing DS and
DA to have broad support, making CDS ,DA (R) more robust to perturbations of any given transition.

Proposition 4.3. Let S and A be discrete state and action spaces, with |S| ≥ 2. Let R, ν :
S ×A×S → R be reward functions, with ν(s, a, s′) = λI[(s, a, s′) = (x, u, x′)], λ ∈ R, x, x′ ∈ S
and u ∈ A. Let ΦDS ,DA(R)(s, a, s′) = CDS ,DA (R) (s, a, s′)−R(s, a, s′). Then:

‖ΦDS ,DA(R+ ν)− ΦDS ,DA(R)‖∞ = λ (1 + γDS(x))DA(u)DS(x′).

We have canonicalized potential shaping; next, we compare the rewards in a scale-invariant manner.

Definition 4.4. The Pearson distance between random variablesX and Y is defined by the expression
Dρ(X,Y ) = 1√

2

√
1− ρ(X,Y ), where ρ(X,Y ) is the Pearson correlation between X and Y .

Lemma 4.5. The Pearson distance Dρ is a pseudometric. Moreover, let a, b ∈ (0,∞), c, d ∈ R and
X,Y be random variables. Then it follows that 0 ≤ Dρ(aX + c, bY + d) = Dρ(X,Y ) ≤ 1.

We can now define EPIC in terms of the Pearson distance between canonically shaped rewards.

Definition 4.6 (Equivalent-Policy Invariant Comparison (EPIC) pseudometric). Let D be some
visitation distribution over transitions s a→ s′. Let S,A, S′ be random variables jointly sampled from
D. Let DS and DA be some distributions over states S and A respectively. The Equivalent-Policy
Invariant Comparison (EPIC) distance between reward functions RA and RB is:

DEPIC(RA, RB) = Dρ (CDS ,DA (RA) (S,A, S′), CDS ,DA (RB) (S,A, S′)) .

Theorem 4.7. The Equivalent-Policy Invariant Comparison distance is a pseudometric.

The triangle inequality is particularly important. For example, consider an environment with an
expensive to evaluate ground-truth reward R. Directly comparing many learned rewards R̂ to R
might be prohibitively expensive. We can instead pay a one-off cost: query R a finite number of
times and infer a proxy reward RP with DEPIC(R,RP ) ≤ ε. The triangle inequality allows us to
evaluate R̂ via comparison to RP , since DEPIC(R̂, R) ≤ DEPIC(R̂, RP ) + ε. This is particularly
useful for benchmarks, which may be expensive to build but must be cheap to use.

Theorem 4.8. Let RA, R′A, RB , R′B : S × A × S → R be reward functions such that R′A ≡ RA
and R′B ≡ RB . Then 0 ≤ DEPIC(R′A, R

′
B) = DEPIC(RA, RB) ≤ 1.
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Figure 1: Heatmaps of reward functions R(s, a, s′) for a deterministic 3× 3 gridworld. R(s, stay, s)
is given by the central circle in cell s. R(s, a, s′) is given by the triangular wedge in cell s adjacent
to cell s′ in direction a. Optimal action(s) (for infinite horizon, discount γ = 0.99) have bold labels
against a hatched background. See figure A.2 for the distances between all reward pairs.

The following is our main theoretical result, showing EPIC distance gives a bounds on the regret
between policies optimizing for one of the two reward functions relative to the other. In other words,
EPIC bounds the difference in returns for policies optimal for either reward function.
Theorem 4.9. Let M be a γ-discounted MDP\R with discrete state and action spaces S and A. Let
RA, RB : S × A × S → R be bounded rewards, and π∗A, π

∗
B be respective optimal policies. Let

Dπ(t, st, at, st+1) denote the distribution over transitions S ×A× S induced by policy π at time t,
andD(s, a, s′) be the visitation distribution used to computeDEPIC. Suppose there existsK > 0 such
that KD(st, at, s

′
t+1) ≥ Dπ(t, st, at, s

′
t+1) for all times t ∈ N, triples (st, at, st+1) ∈ S × A × S

and policies π ∈ {π∗A, π∗B}. Then the regret under RA from executing π∗B instead of π∗A is at most
GRA(π∗A)−GRA(π∗B) ≤ 16K‖RA‖2 (1− γ)

−1
DEPIC(RA, RB).

The key assumption is that the visitation distribution D spends at least 1/K’th as much time at
each transition as the rollouts of π∗A and π∗B . In finite cases, a uniform D guarantees K ≤ |S|2|A|.
We generalize the regret bound to continuous spaces in theorem A.14 via a Lipschitz assumption.
Importantly, the returns of π∗A and π∗B converge as DEPIC(RA, RB)→ 0 in both cases, no matter
which reward function you evaluate on.

As a pedagogical example, we compute the EPIC distance between the reward functions in figure 1
for a deterministic 3× 3 gridworld. Despite assigning different rewards to each transition, Sparse
and Dense are equivalent and have zero EPIC distance. By contrast, DEPIC (Path, Cliff) = 0.27,
almost as much as DEPIC (Sparse, Cliff) = 0.37. Although Path and Cliff have identical
optimal policies in deterministic settings, the rewards induce very different optimal policies under
stochastic dynamics. See figure A.2 for the distances between all reward pairs.

For this example, we used state and action distributions DS and DA uniform over S and A, and
visitation distribution D uniform over state-action pairs (s, a), with s′ deterministically computed. It
is important these distributions have adequate support. As an extreme example, if DS and D have no
support for a particular state then the reward of that state has no effect on the distance. We can compute
EPIC exactly in a tabular setting, but in general use a sample-based approximation (section A.1.1).

5 Baseline approaches for comparing reward functions

To the best of our knowledge, EPIC is the first method to quantitatively evaluate reward functions
without training a policy. Given the lack of established methods, we develop two alternatives as
baselines: Episode Return Correlation (ERC) and Nearest Point in Equivalence Class (NPEC).

5.1 Episode Return Correlation (ERC)

The goal of an MDP is to maximize expected episode return, so it is natural to compare reward
functions by the returns they induce. If the return of a reward function RA is a positive affine
transformation of another reward RB , then RA and RB have the same set of optimal policies. This
suggests using Pearson distance, which is invariant to positive affine transformations.
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Definition 5.1 (Episode Return Correlation (ERC) pseudometric). Let D be some distribution over
trajectories. Let E be a random variable sampled from D. The Episode Return Correlation distance
between reward functions RA and RB is the Pearson distance between their episode returns on D,
DERC(RA, RB) = Dρ(g(E;RA), g(E;RB)).

Prior work has scatterplot the return of RA against RB over episodes [4, figure 3] and fixed-length
segments [10, section D]. ERC is the Pearson distance of such plots, so is a natural baseline. We
approximate ERC by the correlation of episode returns on a finite collection of rollouts.

Under special conditions, ERC is invariant to shaping. Let R be a reward function and Φ a potential
function, and define the shaped reward R′(s, a, s′) = R(s, a, s′) + γΦ(s′)− Φ(s). The return under
the shaped reward on a trajectory τ = (s0, a0, · · · , sT ) is g(τ ;R′) = g(τ ;R) + γTΦ(sT )− Φ(s0).

If the initial state s0 and terminal state sT are fixed, then γTΦ(sT )−Φ(s0) is constant. Since Pearson
distance is invariant to constant shifts, ERC is invariant to shaping in this case. For infinite-horizon
discounted MDPs, only the initial state s0 need be fixed, since γTΦ(sT )→ 0 as T →∞.

However, if the initial state s0 is stochastic, the ERC distance can take on arbitrary values under
shaping. Let RA and RB be two arbitrary reward functions. Suppose that there are at least two
distinct initial states, sA and sB , with non-zero measure inD. Choose potential Φ(s) = 0 everywhere
except Φ(sA) = Φ(sB) = c, and let R′A and R′B denote RA and RB shaped by Φ. As c → ∞,
the correlation ρ (g(E;R′A), g(E;R′B)) tends to one. This is since the relative difference tends to
zero, even though g(E;R′A) and g(E;R′B) continue to have the same absolute difference as c varies.
Consequently, the ERC pseudometric DERC(R′A, R

′
B)→ 0 as c→∞. By an analogous argument,

setting Φ(sA) = c and Φ(sB) = −c gives DERC(R′A, R
′
B)→ 1 as c→∞.

5.2 Nearest Point in Equivalence Class (NPEC)

NPEC takes the minimum Lp distance between equivalence classes. See section A.3.3 for proofs.

Definition 5.2 (Lp distance). Let D be a visitation distribution over transitions s a→ s′ and let p ≥ 1
be a power. The Lp distance between reward functions RA and RB is the Lp norm of their difference:

DLp,D(RA, RB) =

(
E

s,a,s′∼D

[
|RA(s, a, s′)−RB(s, a, s′)|p

])1/p

.

Proposition 5.3. (1) DLp,D is a pseudometric in Lp space. (2) It is a metric in Lp space when
functions f and g are identified if f = g almost everywhere on D.

The Lp distance is affected by shaping and positive rescaling despite not changing the optimal
policy. A natural solution is to take the distance from the nearest point in the equivalence class:
DU

NPEC(RA, RB) = infR′A≡RA DLp,D(R′A, RB). Unfortunately, DU
NPEC is sensitive to RB’s scale.

It is tempting to instead take the infimum over both arguments of DLp,D. However,
infR′A≡RA,R′B≡RB DLp,D(R′A, RB) = 0 since all equivalence classes come arbitrarily close to
the origin in Lp space. Instead, we fix this by normalizing DU

NPEC.

Definition 5.4. The Nearest Point in Equivalence Class (NPEC) premetric is defined by:
DNPEC(RA, RB) =

DUNPEC(RA,RB)

DUNPEC(Zero,RB)
when DU

NPEC(Zero, RB) 6= 0 and 0 otherwise.

If DU
NPEC(Zero, RB) = 0 then DU

NPEC(RA, RB) = 0 since RA can be scaled arbitrarily close to
Zero. Since all policies are optimal for R ≡ Zero, we choose DNPEC(RA, RB) = 0 in this case.

Theorem 5.5. DNPEC is a premetric. Moreover, let RA, RA′, RB , RB ′ : S × A × S → R
be reward functions such that RA ≡ RA

′ and RB ≡ RB
′. Then 0 ≤ DNPEC(RA

′, RB
′) =

DNPEC(RA, RB) ≤ 1.

Note thatDNPEC may not be symmetric and so is not, in general, a pseudometric: see proposition A.2.

The infimum in DU
NPEC can be computed exactly in a tabular setting, but in general we must

approximate it using gradient descent. This gives an upper bound for DU
NPEC, but the quotient of

upper boundsDNPEC may be too low or too high. See section A.1.2 for details of the approximation.
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Figure 2: Approximate distances between hand-designed reward functions in PointMass. The
visitation distributionD is sampled from rollouts of a policy πunif taking actions uniformly at random.
Key: quadratic control penalty, no control penalty. S is Sparse(x) = 1[|x| < 0.05], D is
shaped Dense(x, x′) = Sparse(x) + |x′| − |x|, while M is Magnitude(x) = −|x|. Width of 95%
confidence interval (see Figure A.3) is less than 0.02 for EPIC and ERC but as large as 0.3 for NPEC.

6 Experiments

We evaluate EPIC and the baselines ERC and NPEC in a variety of continuous control tasks. First, we
compute the distance between hand-designed reward functions, finding EPIC to be the most reliable
distance. Although NPEC produces qualitatively similar results, it has a high degree of approximation
error. Moreover, ERC sometimes suffers from pathological failures, such as assigning a high distance
to equivalent rewards. Second, we find the distance of learned reward functions to a ground-truth
reward predicts the return obtained by policy training, even in an unseen test environment. Finally,
we show EPIC is robust to the exact choice of visitation distribution D, whereas ERC and especially
NPEC are highly sensitive to the choice of D.

6.1 Comparing hand-designed reward functions

We compare procedurally specified reward functions in four tasks. Figure 2 presents results in
the proof-of-concept PointMass task. The results for Gridworld, HalfCheetah and Hopper, in
section A.2.4, are qualitatively similar. In PointMass the agent can accelerate left or right on a line.
The reward functions include ( ) or exclude ( ) a quadratic penalty ‖a‖22. The sparse reward (S)
gives a reward of 1 in the region around the goal state. The dense reward (D) is a shaped version of
the sparse reward. The magnitude reward (M) is the negative distance of the agent from the goal.

We find that EPIC correctly identifies the equivalent reward pairs (S -D and S -D ) with
estimated distance < 1× 10−3. By contrast, NPEC has substantial approximation error:
DNPEC(D , S ) = 0.58. Moreover, NPEC is computationally inefficient: Figure 2(b) took 31
hours to compute. By contrast, the figures for EPIC and ERC were each generated in under an hour.
Unfortunately, DERC(D , S ) = 0.56 due to ERC’s erroneous handling of stochastic initial states.

6.2 Predicting policy performance from reward distance

We train reward models on the PointMaze task from Fu et al. [8], and evaluate the ground-truth (GT)
return of a policy optimized for the learned reward. Table 2 shows that rewards with low distance
from GT achieve high returns. High distance rewards sometimes work but are sensitive to dynamics.

PointMaze is a MuJoCo environment where a point mass agent must navigate around a wall to
reach a goal. The train and test variants differ only in the position of the wall. We evaluate four
reward learning algorithms: Regression onto reward labels [target method from 6, section 3.3],
Preference comparisons on trajectories [6], and adversarial IRL with a state-only (AIRL SO) and
state-action (AIRL SA) reward model [8]. All models are trained using synthetic data from an oracle
with access to the ground-truth; see section A.2.2 for details.

Both Regress and Pref achieve very low distances, producing near-expert policy performance
in both the train and test variants. The AIRL SO and AIRL SA models have distances an order of
magnitude greater. The more expressive AIRL SA achieves near-expert performance in train but fails
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Table 2: Distances of reward models from ground-truth (GT), and the mean GT return of policies
optimized from-scratch for the reward model in the train and test variants of PointMaze. We also
report returns for AIRL’s generator policy, jointly trained with the reward. Distances (1000× scale)
use visitation distribution D from rollouts in the train environment of: a uniform random policy
πunif , an expert π∗ and a Mixture of these policies. DS and DA are computed by marginalizing D.
95% confidence intervals (see Table A.6) are tighter than ±1% for EPIC and ERC but are as large as
±50% for NPEC due to high variance across seeds.

Reward 1000 × DEPIC 1000 × DNPEC 1000 × DERC Episode Return
Model πunif π∗ Mix πunif π∗ Mix πunif π∗ Mix Gen. Train Test
GT 0 0 0 0 0 0 0 0 0 — −5.99 −6.05
Regress 41.9 36.5 25.9 0.519 14.9 0.140 4.78 40.9 1.39 — −6.99 −6.51
Pref 50.5 54.4 32.9 2.99 204 1.78 15.0 180 8.15 — −6.62 −7.02
AIRL SO 488 600 395 684 3550 426 448 382 234 −9.44 −28.5 −11.7
AIRL SA 548 614 390 823 3030 376 506 467 208 −6.69 −6.91 −28.5

to transfer to test. The less-expressive AIRL SO has poor performance in both variants, although the
generator policy (trained simultaneously with the reward) performs reasonably in train.

Due to reward ambiguity, rewards such as AIRL SO/A that are distant from the ground-truth GT can
still produce a good policy. For example, a “memorized” reward function that assigns reward only to
states visited by an expert will induce the expert policy in the train variant. Nonetheless, it will have a
large distance from GT, even if the visitation distribution D only contains transitions from train. This
is appropriate since in test the “expert” policy produced by this reward runs straight into the wall.

6.3 Sensitivity of reward distance to visitation state distribution

We would like the reward distances to be robust to the exact choice of visitation distribution D. In
Table 2, we report distances calculated under distributions induced by rollouts from three different
policies. πunif takes actions uniformly at random, producing broad support over transitions; π∗ is an
expert policy, yielding a distribution concentrated at or near the goal; and Mix is a mixture of the two.
In EPIC, DS and DA are marginalized from D and so also vary between conditions.

We find EPIC is robust to varying D: the distance varies by less than 2×, and the ranking between
the reward models is the same across visitation distributions, except for Mix favoring AIRL SA over
AIRL SO. By contrast, NPEC is highly sensitive to the choice of D: the distance of Pref varies by
over 500× between πunif and π∗. ERC lies somewhere in the middle: the distances vary by as much
as 25×. Overall, EPIC is clearly the least sensitive to choice of D in this environment.

Nonetheless, even with EPIC some care must be taken when choosing D. Typically, D is collected
via rollouts of some exploration policy in an environment. This works well when the deployment
environment has a similar set of reachable states to the rollout environment, even if some details of the
dynamics – such as the position of the wall in PointMaze – differ. However, when the deployment
environment allows a transition (s, a, s′) that is not physically attainable in the rollout environment,
then D will place no support on this transition and the reward R(s, a, s′) can take arbitrary values
without affecting the distance. In general, any black-box method for assessing reward models –
including the rollout method – only has predictive power on transitions visited during testing.

7 Conclusion

Our novel EPIC distance compares reward functions directly, without training a policy. We have
proved it satisfies the axioms of a pseudometric, is bounded and invariant to equivalent rewards, and
bounds the regret of optimal policies. Empirically, we find the EPIC distance between procedurally
specified reward functions is more reliable than the NPEC and ERC baselines. Furthermore, we find
the distance of learned reward functions to the ground-truth reward predicts the return of policies
optimized for the learned reward, in both the train and unseen test environments.
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A Supplementary material

A.1 Approximation Procedures

A.1.1 Sample-based approximation for EPIC distance

We approximate EPIC distance (definition 4.6) by estimating Pearson distance on a set of samples,
canonicalizing the reward on-demand. Specifically, we sample a batch BV of NV samples from the
visitation distribution D, and a batch BM of NM samples from the joint state and action distributions
DS ×DA. For each (s, a, s′) ∈ BV , we approximate the canonically shaped rewards (definition 4.1)
by taking the mean over BM :

CDS ,DA (R) (s, a, s′) = R(s, a, s′) +E [γR(s′, A, S′)−R(s,A, S′)− γR(S,A, S′)]
≈ R(s, a, s′) + γ

NM

∑
(x,u)∈BM R(s′, u, x)

− 1
NM

∑
(x,u)∈BM R(s, u, x)− c.

We drop the constant c from the approximation since it does not affect the Pearson distance; it can also
be estimated in O(N2

M ) time by c = γ
N2
M

∑
(x,·)∈BM

∑
(x′,u)∈BM R(x, u, x′). Finally, we compute

the Pearson distance between the approximate canonically shaped rewards on the batch of samples
BV , yielding an O(NVNM ) time algorithm.

A.1.2 Optimization-based approximation for NPEC distance

DNPEC(RA, RB) (section 5.2) is defined as the infimum of Lp distance over an infinite set of
equivalent reward functions R ≡ RA. We approximate this using gradient descent on the reward
model:

Rν,c,w(s, a, s′) = exp(ν)RA(s, a, s′) + c+ γΦw(s′)− Φw(s),

where ν, c ∈ R are scalar weights and w is a vector of weights parameterizing a deep neural network
Φw. The constant c ∈ R is unnecessary if Φw has a bias term, but its inclusion simplifies the
optimization problem.

We optimize ν, c, w to minimize the mean of the cost J(ν, c, w) = D(Rν,c,w(s, a, s′), RB(s, a, s′))
on samples (s, a, s′) from a visitation distribution D. Note the mean cost upper bounds the true
NPEC distance since Rν,c,w ≡ RA.

We found empirically that ν and c need to be initialized close to their optimal values for gradient
descent to reliably converge. To resolve this problem, we initialize the affine parameters to ν ← log λ
and c found by:

arg min
λ≥0,c∈R

E
s,a,s′∼D

(λRA(s, a, s′) + c−RB(s, a, s′))
2
.

We use the active set method of Lawson and Hanson [11] to solve this constrained least-squares prob-
lem. These initial affine parameters minimize the Lp distance DLp,D(Rν,c,0(s, a, s′), RB(s, a, s′))
under the metric `(x, y) = (x− y)2 with the potential fixed at Φ0(s) = 0.

A.1.3 Confidence Intervals

We report confidence intervals to help measure the degree of error introduced by the approximation.
Since approximate distances may not be normally distributed, we use bootstrapping to produce a
distribution-free confidence interval. For EPIC and NPEC, we compute independent approximate
distances over different seeds, and then compute a bootstrapped confidence interval on the distances
for each seed. We use 30 seeds for EPIC but only 3 seeds for NPEC due to its greater computational
requirements. In ERC, computing the distance is very cheap, so we instead apply bootstrapping to
the collected episodes, computing the ERC distance for each bootstrapped episode sample.

A.2 Experiments

A.2.1 Hyperparameters for Approximate Distances

Table A.1 summarizes the hyperparameters and distributions used to compute the distances between
reward functions. Most parameters are the same across all environments. We use a visitation
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Table A.1: Summary of hyperparameters and distributions used in experiments. The uniform random
visitation distribution Dunif samples states and actions uniformly at random, and samples the next
state from the transition dynamics. Random policy πunif takes uniform random actions. The synthetic
expert policy π∗ was trained with PPO on the ground-truth reward. Mixture samples actions from
either πunif or π∗, switching between them at each timestep with probability 0.05. Warmstart Size is
the size of the dataset used to compute initialization parameters described in section A.1.2.

Parameter Value In experiment

Visitation Distribution D
Random transitions Dunif GridWorld
Rollouts from πunif PointMass, HalfCheetah, Hopper
πunif , π∗ and Mixture PointMaze

Bootstrap Samples 10 000 All
Discount γ 0.99 All

EPIC

State Distribution DS
N(0, 1) standard Gaussian PointMass, HalfCheetah, Hopper
Marginalized from D PointMaze

Action Distribution DA
U [−1, 1] continuous uniform PointMass, HalfCheetah, Hopper
Marginalized from D PointMaze

Seeds 30 All
Samples NV 32 768 All
Mean Samples NM 32 768 All

NPEC
Seeds 3 All
Total Timesteps 1× 106 All
Optimizer Adam All
Learning Rate 1× 10−2 All
Batch Size 4096 All
Warmstart Size 16 386 All

Loss ` `(x, y) = (x− y)2 All

ERC
Episodes 131 072 All

distribution of uniform random transitions Dunif in the simple GridWorld environment with known
determinstic dynamics. In other environments, the visitation distribution is sampled from rollouts
of a policy. We use a random policy πunif for PointMass, HalfCheetah and Hopper in the hand-
designed reward experiments (section 6.1). In PointMaze, we compare three visitation distributions
(section 6.3) induced by rollouts of πunif , an expert policy π∗ and a Mixture of the two policies,
sampling actions from either πunif or π∗ and switching between them with probability 0.05 per
timestep.

A.2.2 Training Learned Reward Models

For the experiments on learned reward functions (sections 6.2 and 6.3), we trained reward models
using adversarial inverse reinforcement learning (AIRL; 8), preference comparison [6] and by regres-
sion onto the ground-truth reward [target method from 6, section 3.3]. For AIRL, we use an existing
open-source implementation [23]. We developed new implementations for preference comparison
and regression, available at https://github.com/HumanCompatibleAI/evaluating-rewards.
We also use the RL algorithm proximal policy optimization (PPO; 18) on the ground-truth reward to
train expert policies to provide demonstrations for AIRL, and on learned reward models to evaluate
their performance.

For PPO and AIRL we used the default hyperparameters in tables A.2 and A.3, finding them
adequate and so performing no further tuning. For preference comparison we performed a sweep
over batch size, trajectory length and learning rate to decide on the hyperparameters in table A.4.
Total timesteps was selected once diminishing returns were observed in loss curves. The exact value
of the regularization weight was found to be unimportant, largely controlling the scale of the output
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Table A.2: Hyperparameters for proximal policy optimisation (PPO) [18]. We used the implemen-
tation and default hyperparameters from Hill et al. [9]. PPO was used to train expert policies on
ground-truth reward and to optimize learned reward functions for evaluation.

Parameter Value In environment

Total Timesteps 1× 106 All

Batch Size 16 384 PointMaze
1024 All others

Discount γ 0.99
Entropy Coefficient 0.01
Learning Rate 2.5× 10−4

Value Function Coefficient 0.5
Gradient Clipping Threshold 0.5
Ratio Clipping Thrsehold 0.2
Lambda (GAE) 0.95
Minibatches 4
Optimization Epochs 4
Parallel Environments 8

Table A.3: Hyperparameters for adversarial inverse reinforcement learning (AIRL) used in Wang
et al. [23].

Parameter Value
RL Algorithm PPO [18]
Total Timesteps 102 400
Discount γ 0.99
Demonstration Timesteps 100 000
Generator Batch Size 2048
Discriminator Batch Size 50
Entropy Weight 1.0
Reward Function Architecture MLP, two 32-unit hidden layers
Potential Function Architecture MLP, two 32-unit hidden layers

Table A.4: Hyperparameters for preference comparison used in our implementation of Christiano
et al. [6].

Parameter Value Range Tested

Total Timesteps 5× 106 [1, 10× 106]
Batch Size 10 000 [500, 250 000]
Trajectory Length 5 [1, 100]
Learning Rate 1× 10−2 [1× 10−4, 1× 10−1]
Discount γ 0.99
Reward Function Architecture MLP, two 32-unit hidden layers
Output L2 Regularization Weight 1× 10−4

Table A.5: Hyperparameters for regression used in our implementation of Christiano et al. [6, target
method from section 3.3].

Parameter Value Range Tested

Total Timesteps 10× 106 [1, 20× 106]
Batch Size 4096 [256, 16 384]
Learning Rate 2× 10−2 [1× 10−3, 1× 10−1]
Discount γ 0.99
Reward Function Architecture MLP, two 32-unit hidden layers
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at convergence. Finally, for regression we performed a sweep over batch size, learning rate and total
timesteps to decide on the hyperparameters in table A.5. We found batch size and learning rate to
be relatively unimportant with many combinations performing well, but regression was found to
converge slowly but steadily requiring a relatively large 10× 106 timesteps for good performance in
our environments.

All algorithms are trained on synthetic data generated from the ground-truth reward function. AIRL
is provided with a large demonstration dataset of 100 000 timesteps from an expert policy trained
on the ground-truth reward, similar in size to the total number of timesteps AIRL is trained for (see
table A.3). In preference comparison and regression, each batch is sampled afresh from the visitation
distribution specified in table A.1 and labeled according to the ground-truth reward.

A.2.3 Computing infrastructure

Experiments were conducted on a small number of n1-standard-96 Google Cloud Platform VM
instances, with 48 CPU cores on an Intel Skylake processor and 360 GB of RAM. It takes less than a
week of compute on a single n1-standard-96 instance to run all the experiments described in this
paper.

A.2.4 Comparing hand-designed reward functions

We compute distances between hand-designed reward functions in four environments: GridWorld,
PointMass, HalfCheetah and Hopper. The reward functions for GridWorld are described in
Figure A.1, and the distances are reported in Figure A.2. We report the approximate distances and
confidence intervals between reward functions in the other environments in Figures A.3, A.4 and A.5.

We find the (approximate) EPIC distance closely matches our intuitions for similarity between the
reward functions. NPEC often produces similar results to EPIC, but unfortunately is dogged by
optimization error. This is particularly notable in higher-dimensional environments like HalfCheetah
and Hopper, where the NPEC distance often exceeds the theoretical upper bound of 1.0 and the
confidence interval width is frequently larger than 0.2.

By contrast, ERC distance generally has a tight confidence interval, but systematically fails in the
presence of shaping. For example, it confidently assigns large distances between equivalent reward
pairs in PointMass such as S -D . However, ERC produces reasonable results in HalfCheetah
and Hopper where rewards are all similarly shaped. In fact, ERC picks up on a detail in Hopper that
EPIC misses: whereas EPIC assigns a distance of around 0.71 between all rewards of different types
(running vs backflipping), ERC assigns lower distances when the rewards are in the same direction
(forward or backward). Given this, ERC may be attractive in some circumstances, especially given
the ease of implementation. However, we would caution against using it in isolation due to the
likelihood of misleading results in the presence of shaping.

A.2.5 Comparing learned reward functions

Previously, we reported the mean approximate distance from a ground-truth reward of four learned
reward models in PointMaze (Table 2). Since these distances are approximate, we report 95% lower
and upper bounds computed via bootstrapping in Table A.6. We also include the relative difference
of the upper and lower bounds from the mean, finding the relative difference to be fairly consistent
across reward models for a given algorithm and visitation distribution pair. The relative difference is
less than 1% for all EPIC and ERC distances. However, NPEC confidence intervals can be as wide as
50%: this is due to the method’s high variance, and the small number of seeds we were able to run
because of the method’s computational expense.
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Figure A.1: Heatmaps of reward functionsR(s, a, s′) for a 3×3 deterministic gridworld. R(s, stay, s)
is given by the central circle in cell s. R(s, a, s′) is given by the triangular wedge in cell s adjacent
to cell s′ in direction a. Optimal action(s) (for infinite horizon, discount γ = 0.99) have bold labels
against a hatched background. See figure A.2 for the distance between all reward pairs.
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Figure A.2: Distances between hand-designed reward functions for the 3×3 deterministic Gridworld
environment. See figure A.1 for definitions of each reward. Distances are computed using tabular
algorithms. We do not report confidence intervals since these algorithms are deterministic and exact
up to floating point error.
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Figure A.3: Approximate distances between hand-designed reward functions in PointMass. The
visitation distributionD is sampled from rollouts of a policy πunif taking actions uniformly at random.
Key: quadratic control penalty, no control penalty. S is Sparse(x) = 1[|x| < 0.05], D is shaped
Dense(x, x′) = Sparse(x) + |x′| − |x|, while M is Magnitude(x) = −|x|. Confidence Interval
(CI): 95% CI computed by bootstraping over 10 000 samples.
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Figure A.4: Approximate distances between hand-designed reward functions in HalfCheetah. The
visitation distributionD is sampled from rollouts of a policy πunif taking actions uniformly at random.
Key: is a reward proportional to the change in center of mass and moving forward is rewarded
when to the right, and moving backward is rewarded when to the left. quadratic control
penalty, no control penalty. Confidence Interval (CI): 95% CI computed by bootstraping over
10 000 samples.
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Figure A.5: Approximate distances between hand-designed reward functions in Hopper. The
visitation distributionD is sampled from rollouts of a policy πunif taking actions uniformly at random.
Key: is a reward proportional to the change in center of mass and is the backflip reward defined
in Amodei et al. [2, footnote]. Moving forward is rewarded when or is to the right, and moving
backward is rewarded when or is to the left. quadratic control penalty, no control penalty.
Confidence Interval (CI): 95% CI computed by bootstraping over 10 000 samples.
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Table A.6: Approximate distances of learned reward models from the ground-truth (GT). We report
the 95% bootstrapped lower and upper bounds, the mean, and a 95% bound on the relative error
from the mean. Distances (1000× scale) use visitation distribution D from rollouts in the train
environment of: a uniform random policy πunif , an expert π∗ and a Mixture of these policies. DS
and DA are computed by marginalizing D.

(a) 95% lower bound DLOW of approximate distance.

Reward 1000 × DLOW
EPIC 1000 × DLOW

NPEC 1000 × DLOW
ERC

Model πunif π∗ Mix πunif π∗ Mix πunif π∗ Mix
Regress 41.7 36.4 25.9 0.506 13.3 0.126 4.75 40.7 1.38
Pref 50.2 54.3 32.7 2.80 159 1.76 15.0 179 8.11
AIRL SO 484 599 393 673 2640 417 446 380 232
AIRL SA 544 614 388 804 1630 370 505 465 206

(b) Mean approximate distanceD. Results are the same as Table 2.

Reward 1000 ×DEPIC 1000 ×DNPEC 1000 ×DERC

Model πunif π∗ Mix πunif π∗ Mix πunif π∗ Mix
Regress 41.9 36.5 25.9 0.519 14.9 0.140 4.78 40.9 1.39
Pref 50.5 54.4 32.9 2.99 204 1.78 15.0 180 8.15
AIRL SO 488 600 395 684 3550 426 448 382 234
AIRL SA 548 614 390 823 3030 376 506 467 208

(c) 95% upper bound DUP of approximate distance.

Reward 1000 × DUP
EPIC 1000 × DUP

NPEC 1000 × DUP
ERC

Model πunif π∗ Mix πunif π∗ Mix πunif π∗ Mix
Regress 42.2 36.5 26.0 0.535 16.8 0.162 4.80 41.1 1.40
Pref 50.9 54.5 33 3.16 240 1.80 15.1 181 8.19
AIRL SO 492 601 397 694 4420 436 450 384 235
AIRL SA 552 614 392 848 4660 385 508 469 209

(d) Relative 95% confidence interval DREL = max
(
Upper
Mean

− 1, 1 − Lower
Mean

)
in percent. The population mean

is contained within ±DREL% of the sample mean in Table A.6b with 95% probability.

Reward DREL
EPIC% DREL

NPEC% DREL
ERC%

Model πunif π∗ Mix πunif π∗ Mix πunif π∗ Mix
Regress 0.662 0.0950 0.352 3.04 12.9 16.0 0.589 0.544 0.620
Pref 0.683 0.158 0.411 6.31 21.8 1.41 0.499 0.538 0.481
AIRL SO 0.875 0.115 0.522 1.60 25.8 2.37 0.449 0.504 0.621
AIRL SA 0.654 0.0331 0.397 3.15 53.9 2.34 0.382 0.445 0.540
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A.3 Proofs

A.3.1 Background

Proposition 3.5. The binary relation≡ is an equivalence relation. LetRA, RB , RC : S×A×S → R
be bounded reward functions. Then ≡ is reflexive, RA ≡ RA; symmetric, RA ≡ RB implies
RB ≡ RA; and transitive, (RA ≡ RB) ∧ (RB ≡ RC) implies RA ≡ RC .

Proof. RA ≡ RA since RA(s, a, s′) = λRA(s, a, s′) + γΦ(s′)− Φ(s) for all s, s′ ∈ S and a ∈ A
for λ = 1 > 0 and Φ(s) = 0, a bounded potential function.

Suppose RA ≡ RB . Then there exists some λ > 0 and a bounded potential function Φ : S → R
such that RB(s, a, s′) = λRA(s, a, s′) + γΦ(s′)− Φ(s) for all s, s′ ∈ S and a ∈ A. Rearranging,
we have:

RA(s, a, s′) =
1

λ
RB(s, a, s′) + γ

(
−1

λ
Φ(s′)

)
−
(
−1

λ
Φ(s)

)
.

Since 1
λ > 0 and Φ′(s) = −1

λ Φ(s) is a bounded potential function, it follows that RB ≡ RA.

Finally, supposeRA ≡ RB andRB ≡ RC . Then there exists some λ1, λ2 > 0 and bounded potential
functions Φ1,Φ2 : S → R such that for all s, s′ ∈ S and a ∈ A:

RB(s, a, s′) = λ1RA(s, a, s′) + γΦ1(s′)− Φ1(s)

RC(s, a, s′) = λ2RB(s, a, s′) + γΦ2(s′)− Φ2(s)

Substituting the expression for RB into the expression for RC :

RC(s, a, s′) = λ2 (λ1RA(s, a, s′) + γΦ1(s′)− Φ1(s)) + γΦ2(s′)− Φ2(s)

= λ1λ2RA(s, a, s′) + γ (λ2Φ1(s′) + Φ2(s′))− (λ2Φ1(s) + Φ2(s))

= λRA(s, a, s′) + γΦ(s′)− Φ(s),

where λ = λ1λ2 > 0 and Φ(s) = λ2Φ1(s) + Φ2(s) is bounded. Thus RA ≡ RC .

A.3.2 Equivalent-Policy Invariant Comparison (EPIC) pseudometric

Proposition 4.2 (The Canonically Shaped Reward is Invariant to Shaping ). Let R : S ×A×S → R
be a reward function and Φ : S → R a potential function. Let γ ∈ [0, 1] be a discount rate,
and DS and DA be distributions over states S and A respectively. Let R′ denote R shaped by
Φ: R′(s, a, s′) = R(s, a, s′) + γΦ(s′) − Φ(s). Then the canonically shaped R′ and R are equal:
CDS ,DA (R′) = CDS ,DA (R).

Proof. Let s, a, s′ ∈ S ×A× S. Then by substituting in the definition of R′ and using linearity of
expectations:

CDS ,DA (R′) (s, a, s′) , R′(s, a, s′) + E [γR′(s′, A, S′)−R′(s,A, S′)− γR′(S,A, S′)]
= (R(s, a, s′) + γΦ(s′)− Φ(s)) + E

[
γR(s′, a, S′) + γ2Φ(S′)− γΦ(s′)

]
− E [R(s,A, S′) + γΦ(S′)− Φ(s)]− E

[
γR(S,A, S′) + γ2Φ(S′)− γΦ(S)

]
= R(s, a, s′) + E [γR(s′, a, S′)−R(s,A, S′)− γR(S,A, S′)]

+ (γΦ(s′)− Φ(s)) + E [Φ(s)− γΦ(s′)]

+ E
[
γ2Φ(S′)− γΦ(S′)

]
− E

[
γ2Φ(S′)− γΦ(S)

]
= R(s, a, s′) + E [γR(s′, a, S′)−R(s,A, S′)− γR(S,A, S′)]

, CDS ,DA (R) (s, a, s′),

where the penultimate step uses E[Φ(S′)] = E[Φ(S)] since S and S′ are identically distributed.

Proposition 4.3. Let S and A be discrete state and action spaces, with |S| ≥ 2. Let R, ν :
S ×A×S → R be reward functions, with ν(s, a, s′) = λI[(s, a, s′) = (x, u, x′)], λ ∈ R, x, x′ ∈ S
and u ∈ A. Let ΦDS ,DA(R)(s, a, s′) = CDS ,DA (R) (s, a, s′)−R(s, a, s′). Then:

‖ΦDS ,DA(R+ ν)− ΦDS ,DA(R)‖∞ = λ (1 + γDS(x))DA(u)DS(x′).
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Proof. Observe that:
ΦDS ,DA(R)(s, a, s′) = E [γR(s′, A, S′)−R(s,A, S′)− γR(S,A, S′)] ,

where S and S′ are random variables independently sampled from DS and A sampled from DA.

Then:
ΦDS ,DA(R+ ν)− ΦDS ,DA(R) = ΦDS ,DA(ν).

Now
‖ΦDS ,DA(R+ ν)− ΦDS ,DA(R)‖∞ = max

s,s′∈S
|E [γν(s′, A, S′)− ν(s,A, S′)− γν(S,A, S′)]|

= max
s,s′∈S

|λ (γI[x = s′]DA(u)DS(x′)

− I[x = s]DA(u)DS(x′)− γDS(x)DA(u)DS(x′))|
= max
s,s′∈S

|λDA(u)DS(x′) (γI[x = s′]− I[x = s]− γDS(x))|

= λ (1 + γDS(x))DA(u)DS(x′),

where the final step follows by substituting s = x and s′ 6= x.

Lemma 4.5. The Pearson distance Dρ is a pseudometric. Moreover, let a, b ∈ (0,∞), c, d ∈ R and
X,Y be random variables. Then it follows that 0 ≤ Dρ(aX + c, bY + d) = Dρ(X,Y ) ≤ 1.

Proof. For a random variable V , define a standardized (zero mean and variance) version:

V̂ =
V − E[V ]√

E
[
(V − E[V ])

2
] .

The Pearson correlation coefficient on random variables X and Y is equal to the expected product of
these standardized random variables:

ρ(X,Y ) = E
[
X̂Ŷ

]
.

Let X , Y and Z be random variables.

Identity. Have ρ(X,X) = 1, so Dρ(X,X) = 0.

Symmetry. Have ρ(X,Y ) = ρ(Y,X) by commutativity of multiplication, so Dρ(X,Y ) =
Dρ(Y,X).

Triangle Inequality. For any random variables A,B:

E
[(
Â− B̂

)2
]

= E
[
Â2 − 2ÂB̂ + B̂2

]
= E

[
Â2 − 2ÂB̂ + B̂2

]
= E

[
Â2
]

+ E
[
B̂2
]
− 2E

[
ÂB̂
]

= 2− 2E
[
ÂB̂
]

= 2 (1− ρ(A,B))

= 4Dρ(A,B)2.

So:

4Dρ(X,Z)2 = E
[(
X̂ − Ẑ

)2
]

= E
[(
X̂ − Ŷ + Ŷ − Ẑ

)2
]

= E
[(
X̂ − Ŷ

)2
]

+ E
[(
Ŷ − Ẑ

)2
]

+ 2E
[(
X̂ − Ŷ

)(
Ŷ − Ẑ

)]
= 4Dρ(X,Y )2 + 4Dρ(Y,Z)2 + 8E

[(
X̂ − Ŷ

)(
Ŷ − Ẑ

)]
.
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Since 〈A,B〉 = E[AB] is an inner product over R, it follows by the Cauchy-Schwarz inequality that
E[AB] ≤

√
E[A2]E[B2]. So:

Dρ(X,Z)2 ≤ Dρ(X,Y )2 +Dρ(Y, Z)2 + 2Dρ(X,Y )Dρ(Y,Z)

= (Dρ(X,Y ) +Dρ(Y, Z))
2
.

Taking the square root of both sides:

Dρ(X,Z) ≤ Dρ(X,Y ) +Dρ(Y,Z),

as required.

Positive Affine Invariant and Bounded Dρ(aX + c, bY + d) = Dρ(X,Y ) is immediate from
ρ(X,Y ) invariant to positive affine transformations. Have−1 ≤ ρ(X,Y ) ≤ 1, so 0 ≤ 1−ρ(X,Y ) ≤
2 thus 0 ≤ Dρ(X,Y ) ≤ 1.

Theorem 4.7. The Equivalent-Policy Invariant Comparison distance is a pseudometric.

Proof. The result follows from Dρ being a pseudometric. Let RA, RB and RC be reward functions
mapping from transitions S ×A× S to real numbers R.

Identity. Have:

DEPIC(RA, RA) = Dρ (CDS ,DA (RA) (S,A, S′), CDS ,DA (RA) (S,A, S′))

= 0,

since Dρ(X,X) = 0.

Symmetry. Have:

DEPIC(RA, RB) = Dρ (CDS ,DA (RA) (S,A, S′), CDS ,DA (RB) (S,A, S′))

= Dρ (CDS ,DA (RB) (S,A, S′), CDS ,DA (RA) (S,A, S′))

= DEPIC(RB , RA),

since Dρ(X,Y ) = Dρ(Y,X).

Triangle Inequality. Have:

DEPIC(RA, RC) = Dρ (CDS ,DA (RA) (S,A, S′), CDS ,DA (RC) (S,A, S′))

≤ Dρ (CDS ,DA (RA) (S,A, S′), CDS ,DA (RB) (S,A, S′))

+Dρ (CDS ,DA (RB) (S,A, S′), CDS ,DA (RC) (S,A, S′))

= DEPIC(RA, RB) +DEPIC(RB , RC),

since Dρ(X,Z) ≤ Dρ(X,Y ) +Dρ(Y, Z).

Theorem 4.8. Let RA, R′A, RB , R′B : S × A × S → R be reward functions such that R′A ≡ RA
and R′B ≡ RB . Then 0 ≤ DEPIC(R′A, R

′
B) = DEPIC(RA, RB) ≤ 1.

Proof. Since DEPIC is defined in terms of Dρ, the bounds 0 ≤ DEPIC(R′A, R
′
B) and

DEPIC(RA, RB) ≤ 1 are immediate from the bounds in lemma 4.5.

Since R′A ≡ RA and R′B ≡ RB , we can write for X ∈ {A,B}:

R′X(s, a, s′) = RλX(s, a, s′) + γΦX(s′)− ΦX(s)

RλX(s, a, s′) = λXRX(s, a, s′)

for some scaling factor λX > 0 and potential function ΦX : S → R.

By proposition 4.2:
CDS ,DA (R′X) = CDS ,DA

(
RλX
)
. (1)

Moreover, since CDS ,DA (R) is defined as an expectation over R and expectations are linear:

CDS ,DA
(
RλX
)

= λXCDS ,DA (RX) . (2)

22



Unrolling the definition of DEPIC and applying this result gives:

DEPIC(R′A, R
′
B) = Dρ (CDS ,DA (R′A) (S,A, S′), CDS ,DA (R′B) (S,A, S′))

= Dρ (λACDS ,DA (RA) (S,A, S′), λBCDS ,DA (RB) (S,A, S′)) eqs. 1 and 2

= Dρ (CDS ,DA (RA) (S,A, S′), CDS ,DA (RB) (S,A, S′)) lemma 4.5
= DEPIC(RA, RB).

A.3.3 Nearest Point in Equivalence Class (NPEC) premetric

Proposition 5.3. (1) DLp,D is a pseudometric in Lp space. (2) It is a metric in Lp space when
functions f and g are identified if f = g almost everywhere on D.

Proof. (1) DLp,D is a metric in the Lp space since Lp is a norm in the Lp space, and
d(x, y) = ‖x− y‖ is always a metric. (2) As f = g at all points implies f = g almost every-
where, certainly DLp,D(R,R) = 0. Symmetry and triangle inequality do not depend on identity so
still hold.

Proposition A.1 (Properties of DU
NPEC). Let RA, RB : S × A × S → R be bounded reward

functions, and λ ≥ 0. Then DU
NPEC:

• Is invariant under ≡ in source:
DU

NPEC(RA, RB) = DU
NPEC(RB , RB) if RA ≡ RB .

• Invariant under scale-preserving ≡ in target:
DU

NPEC(RA, RA) = DU
NPEC(RA, RB) if RA −RB ≡ Zero.

• Scalable in target:
DU

NPEC(RA, λRB) = λDU
NPEC(RA, RB).

• Bounded:
DU

NPEC(R,RB) ≤ DU
NPEC(Zero, RB).

Proof. We will show each case in turn.

Invariance under ≡ in source

If RA ≡ RB , then:

DU
NPEC(RA, RB) , inf

R≡RA
DLp,D(R,RB)

= inf
R≡RB

DLp,D(R,RB)

, DU
NPEC(RB , RB),

since R ≡ RA if and only if R ≡ RB as ≡ is an equivalence relation.

Invariance under scale-preserving ≡ in target

If RA − RB ≡ Zero, then we can write RA(s, a, s′) − RB(s, a, s′) = γΦ(s′) − Φ(s) for some
potential function Φ : S → R. Then for any reward function R, since D is induced by a norm:

DLp,D(R,RA) , E
s,a,s′∼D

[D (R(s, a, s′), RA(s, a, s′))]

= E
s,a,s′∼D

[‖R(s, a, s′)−RA(s, a, s′)‖]

= E
s,a,s′∼D

[‖R(s, a, s′)− (RB(s, a, s′) + γΦ(s′)− Φ(s))‖]

= E
s,a,s′∼D

[‖(R(s, a, s′)− γΦ(s′) + Φ(s))−RB(s, a, s′)‖]

= E
s,a,s′∼D

[D (R(s, a, s′)− γΦ(s′) + Φ(s), RB(s, a, s′))]

, DLp,D(f(R), RB), (3)

23



where f(R)(s, a, s′) = R(s, a, s′) − γΦ(s′) + Φ(s). Crucially, note f(R) is a bijection on the
equivalence class [R]. Now, substituting this into the expression for NPEC premetric:

DU
NPEC(RA, RA) , inf

R≡RA
DLp,D(R,RA)

= inf
R≡RA

DLp,D(f(R), RB) eq. 3

= inf
f(R)≡RA

DLp,D(f(R), RB) f bijection on [R]

= inf
R≡RA

DLp,D(R,RB) f bijection on [R]

, DU
NPEC(RA, RB).

Scalable in target First, note that DLp,D is absolutely scalable in both arguments:

DLp,D(λRA, λRB) , E
s,a,s′∼D

[D (λRA(s, a, s′), λRB(s, a, s′))] (4)

= E
s,a,s′∼D

[‖λRA(s, a, s′)− λRB(s, a, s′)‖] (5)

= E
s,a,s′∼D

[|λ|‖RA(s, a, s′)−RB(s, a, s′)‖] ‖·‖absolutely scalable (6)

= |λ| E
s,a,s′∼D

[‖RA(s, a, s′)−RB(s, a, s′)‖] (7)

, |λ|DLp,D(RA, RB). (8)

Now, for λ > 0, applying this to NPEC premetric:

DU
NPEC(RA, λRB) , inf

R≡RA
DLp,D(R, λRB)

= inf
R≡RA

DLp,D(λR, λRB) R ≡ λR

= inf
R≡RA

λDLp,D(R,RB)

= λ inf
R≡RA

DLp,D(R,RB)

, λDU
NPEC(RA, RB).

In the case λ = 0, then:

DU
NPEC(RA, 0) , inf

R≡RA
DLp,D(R, 0)

= inf
R≡RA

DLp,D

(
1

2
R, 0

)
R ≡ 1

2
R

= inf
R≡RA

1

2
DLp,D(R, 0)

=
1

2
inf

R≡RA
DLp,D(R, 0)

=
1

2
DU

NPEC(RA, 0).

Rearranging, we have:
DU

NPEC(RA, 0) = 0.

Boundedness

Suppose RA is bounded by B: |RA(s, a, s′)| ≤ B for all s, s′ ∈ S and a ∈ A. Suppose the NPEC
premetric DNPEC(0, RB) = d. Then for any ε > 0, there exists some potential function Φ : S → R
such that the Lp of the potential shaping R(s, a, s′) , γΦ(s)− Φ(s) from RB satisfies:

DLp,D(R,RB) ≤ d+ ε. (9)

Let λ ∈ [0, 1]. Define:
R′λ(s, a, s′) , λRA(s, a, s′) +R(s, a, s′),
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and:
fλ(s, a, s′) = D (R′λ(s, a, s′), R(s, a, s′)) .

Note that:
lim
λ→0

R′λ = R′0 pointwise,

and R′0 = R. Since D is a metric it is continuous, and so:

lim
λ→0

fλ = f0 pointwise.

Moreover, f0(s, a, s′) = 0 everywhere since D(x, x) = 0. Now:

|fλ(s, a, s′)| = D(R′λ(s, a, s′), R(s, a, s′))

= ‖R′λ(s, a, s′)−R(s, a, s′)‖
= ‖λRA(s, a, s′)‖
≤ λB.

It follows by the bounded convergence theorem that:

lim
λ→0+

DLp,D(R′λ, R) = lim
λ→0+

E
s,a,s′∼D

[fλ(s, a, s′)]

= E
s,a,s′∼D

[
lim
λ→0+

fλ(s, a, s′)

]
= E
s,a,s′∼D

[f0(s, a, s′)]

= 0.

So in particular, for any ε > 0 there exists some λ > 0 such that:

DLp,D(R′λ, R) ≤ ε. (10)

Note that RA ≡ R′λ for all λ > 0. So:

DNPEC(RA, RB) ≤ DLp,D(R′λ, RB)

≤ DLp,D(R′λ, R) +DLp,D(R,RB) prop. 5.3
≤ ε+ (d+ ε) eq. 9 and eq. 10
= d+ 2ε.

Since ε > 0 can be made arbitrarily small, it follows:

DNPEC(RA, RB) ≤ d. (11)

Theorem 5.5. DNPEC is a premetric. Moreover, let RA, RA′, RB , RB ′ : S × A × S → R
be reward functions such that RA ≡ RA

′ and RB ≡ RB
′. Then 0 ≤ DNPEC(RA

′, RB
′) =

DNPEC(RA, RB) ≤ 1.

Proof. We will first prove DNPEC is a premetric, and then prove it is invariant and bounded.

Premetric

First, we will show that DNPEC is a premetric. Let RA, RB be bounded reward functions on
S ×A× S → R.

Respects identity: DNPEC(RA, RA) = 0

If DU
NPEC(Zero, RA) = 0 then DNPEC(RA, RA) = 0 as required. Suppose from now on that

DNPEC(RA, RA) 6= 0. It follows from prop 5.3 that DLp,D(RA, RA) = 0. Since X ≡ X , 0 is an
upper bound for DU

NPEC(RA, RA). By prop 5.3 DLp,D is non-negative, so this is also a lower bound
for DU

NPEC(RA, RA). So DU
NPEC(RA, RA) = 0 and:

DNPEC(RA, RA) =
DU

NPEC(RA, RA)

DU
NPEC(Zero, RA)

=
0

DU
NPEC(Zero, RA)

= 0.
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Well-defined: DNPEC(RA, RB) ≥ 0

By prop 5.3, it follows that DLp,D(R,RB) ≥ 0 for all reward functions R : S × A × S. Thus 0
is a lower bound for {DLp,D(R,RB) | R : S × A × S}, and thus certainly a lower bound for
{DLp,D(R, Y ) | R ≡ X} for any reward function X . Since the infimum is the largest lower bound,
it follows that for any reward function X:

DU
NPEC(X,RB) , inf

R≡X
DLp,D(R,RB) ≥ 0.

In the case that DU
NPEC(Zero, RB) = 0, then DNPEC(RA, RB) = 0 which is non-negative. From

now on, suppose that DU
NPEC(Zero, RB) 6= 0. The quotient of a non-negative value with a positive

value is non-negative, so:

DNPEC(RA, RB) =
DU

NPEC(RA, RB)

DU
NPEC(Zero, RB)

≥ 0.

Invariant and Bounded

Since R′B ≡ RB , we have R′B − λRB ≡ Zero for some λ > 0. By proposition A.1, DU
NPEC is

invariant under scale-preserving ≡ in target and scalable in target. That is, for any reward R:

DU
NPEC(R,R′B) = DU

NPEC(R, λRB) = λDU
NPEC(R,RB). (12)

In particular, DU
NPEC(Zero, RB ′) = λDU

NPEC(Zero, RB). As λ > 0, it follows that
DU

NPEC(Zero, RB ′) = 0 ⇐⇒ DU
NPEC(Zero, RB) = 0.

Suppose DU
NPEC(Zero, RB) = 0. Then DNPEC(R,RB) = 0 = DNPEC(R,RB

′) for any reward R,
so the result trivially holds. From now on, suppose DU

NPEC(Zero, RB) 6= 0.

By proposition A.1, DU
NPEC is invariant to ≡ in source. That is, DU

NPEC(RA, RB) =
DU

NPEC(R′A, RB), so:

DNPEC(R′A, RB) =
DU

NPEC(R′A, RB)

DU
NPEC(Zero, RB)

=
DU

NPEC(RA, RB)

DU
NPEC(Zero, RB)

= DNPEC(RA, RB).

By eq. (12):

DNPEC(RA, R
′
B) =

λDU
NPEC(RA, RB)

λDU
NPEC(Zero, RB)

=
DU

NPEC(RA, RB)

DU
NPEC(Zero, RB)

= DNPEC(RA, RB).

Since DNPEC is a premetric it is non-negative. By the boundedness property of proposition A.1,
DU

NPEC(R,RB) ≤ DU
NPEC(Zero, RB), so:

DNPEC(RA, RB) =
DU

NPEC(RA, RB)

DU
NPEC(Zero, RB)

≤ 1.

Note when DLp,D is a metric, then DNPEC(X,Y ) = 0 if and only if X = Y .
Proposition A.2. DNPEC is not symmetric in the undiscounted case.

Proof. We will provide a counterexample showing that DNPEC is not symmetric.

Choose the state space S to be binary {0, 1} and the actions A to be the singleton {0}. Choose the
visitation distribution D to be uniform on s 0→ s for s ∈ S . Take γ = 1, i.e. undiscounted. Note that
as the successor state is always the same as the start state, potential shaping has no effect on Ddirect,
so WLOG we will assume potential shaping is always zero.

Now, take RA(s) = 2s and RB(s) = 1. Take p = 1 for the Lp distance. Observe that
DLp,D(Zero, RA) = 1

2 (|0|+ |2|) = 1 and DLp,D(Zero, RB) = 1
2 (|1|+ |1|) = 1. Since po-

tential shaping has no effect, DU
NPEC(Zero, R) = DLp,D(Zero, R) and so D(Zero, RA) = 1 and

D(Zero, RB) = 1.
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Now:

DU
NPEC(RA, RB) = inf

λ>0
DLp,D(λRA, RB)

= inf
λ>0

1

2
(|1|+ |2λ− 1|)

=
1

2
,

with the infimum attained at λ = 1
2 . But:

DU
NPEC(RB , RA) = inf

λ>0
DLp,D(λRB , RA)

= inf
λ>0

1

2
f(λ)

=
1

2
inf
λ>0

f(λ),

where:
f(λ) = |λ|+ |2− λ|, λ > 0.

Note that:

f(λ) =

{
2 λ ∈ (0, 2],

2λ− 2 λ ∈ (2,∞).

So f(λ) ≥ 2 on all of its domain, thus:

DU
NPEC(RB , RA) = 1.

Consequently:

DNPEC(RA, RB) =
1

2
6= 1 = DNPEC(RB , RA).

A.4 Direct Distance Variant of EPIC

Previously, we used Pearson distance to compare the canonicalized rewards. Pearson distance is
naturally invariant to scaling. An alternative is to explicitly normalize the canonicalized rewards, and
then compare them using any metric over functions.
Definition A.3 (Normalized Reward). LetR be a reward function mapping from transitions S×A×S
to real numbers R. Let ‖·‖ be some norm on the vector space of reward functions over the real field.
Then the normalized R is:

RN (s, a, s′) =
R(s, a, s′)

‖R‖

Note that (λR)
N

= RN for any λ > 0 as norms are absolutely homogeneous.

We say a reward is standardized if it has been canonicalized and then normalized.
Definition A.4 (Standardized Reward). Let R be a reward function mapping from transitions S ×
A× S to real numbers R. Then the standardized R is:

RS = (CDS ,DA (R))
N
.

Now, we can define a pseudometric based on the direct distance between the standardized rewards.
Definition A.5 (Direct Distance Standardized Reward). Let D be some visitation distribution over
transitions s a→ s′. Let DS and DA be some distributions over states S and A respectively. Let
S,A, S′ be random variables jointly sampled fromD. The Direct Distance Standardized Reward pseu-
dometric between two reward functions RA and RB is the direct distance between their standardized
versions over D:

DDDSR(RA, RB) =
1

2
DLp,D

(
RSA(S,A, S′), RSB(S,A, S′)

)
,

where the norm used for direct distance is the same norm used for normalization in RN .
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For brevity, we omit the proof that DDDSR is a pseudometric, but this follows from DLp,D being
a pseudometric in a similar fashion to theorem 4.7. Note it additionally is invariant to equivalence
classes, similarly to EPIC.
Theorem A.6. Let RA, RA′, RB and RB ′ be reward functions mapping from transitions S ×A×S
to real numbers R such that RA ≡ RA′ and RB ≡ RB ′. Then:

0 ≤ DDDSR(R′A, R
′
B) = DDDSR(RA, RB) ≤ 1.

Proof. The invariance under the equivalence class follows from RS being invariant to potential
shaping and scale in R. The non-negativity follows from DLp,D being a pseudometric. The upper
bound follows from the rewards being normalized to norm 1 and the triangle inequality:

DDDSR(RA, RB) =
1

2
‖RSA −RSB‖

≤ 1

2

(
‖RSA‖+ ‖RSB‖

)
=

1

2
(1 + 1)

= 1.

Since both DDSR and EPIC are pseudometrics and invariant on equivalent rewards, it is interesting to
consider the connection between them. In fact, under the L2 norm with D chosen to be i.i.d. samples
from the joint distribution DS × DA × DS , then DDSR recovers EPIC. First, we will show that
canonical shaping centers the reward functions.
Lemma A.7 (The Canonically Shaped Reward is Mean Zero). Let R be a reward function mapping
from transitions S ×A× S to real numbers R. Then:

E [CDS ,DA (R) (S,A, S′)] = 0.

Proof. Let X , U and X ′ be random variables that are independent of S, A and S′ but identically
distributed.
E [CDS ,DA (R) (S,A, S′)] = E [R(S,A, S′) + γR(S′, U,X ′)−R(S,U,X ′)− γR(X,U,X ′)]

= E [R(S,A, S′)] + γE [R(S′, U,X ′)]− E [R(S,U,X ′)]− γE [R(X,U,X ′)]

= E [R(S,U,X ′)] + γE [R(X,U,X ′)]− E [R(S,U,X ′)]− γE [R(X,U,X ′)]

= 0,

where the penultimate step follows since A is identically distributed to U , and S′ is identically
distributed to X ′ and therefore to X .

Recall from the proof of lemma 4.5 that:

Dρ(U, V ) =
1

2

√
E
[(
Û − V̂

)2
]

=
1

2

∥∥∥Û − V̂ ∥∥∥
2
,

where ‖·‖2 is the L2 norm (treating the random variables as functions on a measure space) and Û is a
centered (zero-mean) and rescaled (unit variance) random variable. By lemma A.7, the canonically
shaped reward functions are already centered under the joint distribution DS × DA × DS , and
normalization by the L2 norm also ensures they have unit variance. Consequently:

DEPIC(RA, RB) = Dρ (CDS ,DA (RA) (S,A, S′), CDS ,DA (RB) (S,A, S′))

=
1

2

∥∥∥(CDS ,DA (RA) (S,A, S′))
N − (CDS ,DA (RB) (S,A, S′))

N
∥∥∥

2

=
1

2

∥∥RSA(S,A, S′)−RSB(S,A, S′)
∥∥

2

=
1

2
DLp,D

(
RSA(S,A, S′), RSB(S,A, S′)

)
= DDDSR(RA, RB).
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A.5 Regret Bound

In this section, we derive an upper bound on the regret in terms of EPIC distance. Specifically, given
two reward functions RA and RB with optimal policies π∗A and π∗B , we show that the regret (under
reward RA) of using policy π∗B instead of a policy π∗A is bounded by a function of DEPIC(RA, RB).
First, in section A.5.1 we derive a bound for MDPs with discrete state and action spaces. In
section A.6 we then present an alternative bound for MDPs with arbitrary state and action spaces and
Lipschitz reward functions. Finally, in section A.7 we show that in both cases the regret tends to 0 as
DEPIC(RA, RB)→ 0.

A.5.1 Discrete MDPs

We start in lemma A.8 by showing that L2 distance upper bounds L1 distance. Next, in lemma A.9
we show regret is bounded by the L1 distance between reward functions using an argument similar
to [20]. Then in lemma A.10 we relate regret bounds for standardized rewards RS to the original
reward R. Finally, in theorem 4.9 we use section A.4 to express DEPIC in terms of the L2 distance
on standardized rewards, deriving a bound on regret in terms of the EPIC distance.
Lemma A.8. Let (Ω,F , p) be a probability space and f : Ω → R a measurable function whose
absolute value raised to the p-th power for p ∈ {1, 2} has a finite expectation. Then the L1 norm of
f is bounded above by the L2 norm:

‖f‖1 ≤ ‖f‖2. (13)

Proof. Let X be a random variable sampled from µ, and consider the variance of f(X):

E
[
(|f(X)| − E [|f(X)|])2

]
= E

[
|f(X)|2 − 2|f(X)|E [|f(X)|] + E [|f(X)|]2

]
= E

[
|f(X)|2

]
− 2E [|f(X)|]E [|f(X)|] + E [|f(X)|]2

= E
[
|f(X)|2

]
− E [|f(X)|]2

≥ 0.

Rearranging terms, we have

‖f‖22 = E
[
|f(X)|2

]
≥ E [|f(X)|]2 = ‖f‖21.

Taking the square root of both sides gives:

‖f‖1 ≤ ‖f‖2.
Lemma A.9. Let M be an MDP\R with discrete state and action spaces S and A. Let RA, RB :
S ×A× S → R be rewards. Let π∗A and π∗B be policies optimal for rewards RA and RB in M . Let
Dπ(t, st, at, st+1) denote the distribution over trajectories that policy π induces in M at time step t.
Let D(s, a, s′) be the (stationary) visitation distribution over transitions S ×A× S used to compute
DEPIC. Suppose that there exists some K > 0 such that KD(st, at, s

′
t+1) ≥ Dπ(t, st, at, s

′
t+1) for

all time steps t ∈ N, triples st, at, st+1 ∈ S × A × S and policies π ∈ {π∗A, π∗B}. Then the regret
under RA from executing π∗B optimal for RB instead of π∗A is at most:

GRA(π∗A)−GRA(π∗B) ≤ 2K

1− γ
DL1,D(RA, RB).

Proof. Noting GRA(π) is maximized when π = π∗A, it is immediate that

GRA(π∗A)−GRA(π∗B) = |GRA(π∗A)−GRA(π∗B)|
= |(GRA(π∗A)−GRB (π∗B)) + (GRB (π∗B)−GRA(π∗B))|
≤ |GRA(π∗A)−GRB (π∗B)|+ |GRB (π∗B)−GRA(π∗B)| . (14)

We will show that both these terms are bounded above by K
1−γDL1,D(RA, RB), from which the

result follows.

First, we will show that for policy π ∈ {π∗A, π∗B}:

|GRA(π)−GRB (π)| ≤ K

1− γ
DL1,D(RA, RB).
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Writing R(τ) =
∑T
t=0 γ

tR(st, at, s
′
t) for convenience, we have that for π ∈ {π∗A, π∗B}:

|GRA(π)−GRB (π)| =

∣∣∣∣∣Eτ∼Dπ
[ ∞∑
t=0

γt (RA(st, at, s
′
t)−RB(st, at, s

′
t))

]∣∣∣∣∣
≤ E
τ∼Dπ

[ ∞∑
t=0

γt |RA(st, at, s
′
t)−RB(st, at, s

′
t)|

]

=

∞∑
t=0

γt E
st,at,st+1∼Dπ

[|RA(st, at, s
′
t)−RB(st, at, s

′
t)|]

=

∞∑
t=0

γt
∑

st,at,st+1∈S×A×S
Dπ(t, st, at, st+1) |RA(st, at, s

′
t)−RB(st, at, s

′
t)|

≤ K
∞∑
t=0

γt
∑

st,at,st+1∈S×A×S
D(st, at, st+1) |RA(st, at, s

′
t)−RB(st, at, s

′
t)|

= K

∞∑
t=0

γtDL1,D(RA, RB)

=
K

1− γ
DL1,D(RA, RB),

as required.

In particular, substituting π = π∗B gives:

|GRA(π∗B)−GRB (π∗B)| ≤ K

1− γ
DL1,D(RA, RB). (15)

Rearranging gives:

GRA(π∗B) ≥ GRB (π∗B)− K

1− γ
DL1,D(RA, RB).

So certainly:

GRA(π∗A) = max
π

GRA(π) ≥ GRB (π∗B)− K

1− γ
DL1,D(RA, RB).

By a symmetric argument, substituting π = π∗A gives:

GRB (π∗B) = max
π

GRB (π) ≥ GRA(π∗A)− K

1− γ
DL1,D(RA, RB).

It follows that

|GRA(π∗A)−GRB (π∗B)| ≤ K

1− γ
DL1,D(RA, RB). (16)

Substituting inequalities 15 and 16 into eq. 14 yields the required result.

Note that if D = Dunif , uniform over S ×A× S, then K ≤ |S|2|A|.
Lemma A.10. LetM be an MDP\R with state and action spaces S andA. LetRA, RB : S×A×S →
R be bounded rewards. Let π∗A and π∗B be policies optimal for rewards RA and RB in M . Suppose
the regret under the standardized reward RSA from executing π∗B instead of π∗A is upper bounded by
some U ∈ R:

GRSA(π∗A)−GRSA(π∗B) ≤ U. (17)

Then the regret under the original reward RA is bounded by:

GRA(π∗A)−GRA(πB) ≤ 4U‖RA‖2.
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Proof. Recall that

RS =
CDS ,DA (R)

‖CDS ,DA (R)‖2
,

where CDS ,DA (R) is simply R shaped with some (bounded) potential Φ. It follows that:

GRS (π) =
1

‖CDS ,DA (R)‖2
GCDS ,DA (R)(π)

=
1

‖CDS ,DA (R)‖2
(GR(π)− Es0∼µ [Φ(s0)]) ,

where s0 depends only on the initial state distribution µ. (In the finite-horizon case, there is also a
term γTΦ(sT ), where sT is the fixed terminal state; this term can be neglected in the discounted
infinite-horizon case as γTΦ(sT )→ 0 as T →∞ for any bounded Φ.) Since s0 does not depend on
π, the terms cancel when taking the difference in returns:

GRSA(π∗A)−GRSA(π∗B) =
1

‖CDS ,DA (RA)‖2
(GRA(π∗A)−GRA(π∗B)) .

Combining this with eq 17 gives

GRA(π∗A)−GRA(π∗B) ≤ U‖CDS ,DA (RA)‖2. (18)

Finally, we will bound ‖CDS ,DA (RA)‖2 in terms of ‖RA‖2, completing the proof. Recall:

CDS ,DA (R) (s, a, s′) = R(s, a, s′) + E [γR(s′, A, S′)−R(s,A, S′)− γR(S,A, S′)] ,

where S and S′ are random variables independently sampled from DS and A sampled from DA. By
the triangle inequality on the L2 norm and linearity of expectations, we have:

‖CDS ,DA (R)‖2 ≤ ‖R‖2 + γ‖f‖2 + ‖g‖2 + γ|c|,

where f(s, a, s′) = E [R(s′, A, S′)], g(s, a, s′) = E [R(s,A, S′)] and c = E [R(S,A, S′)]. Letting
X ′ be a random variable sampled from DS independently from S and S′, have

‖f‖22 = EX′
[
E [R(X ′, A, S′)]

2
]

≤ EX′
[
E
[
R(X ′, A, S′)2

]]
= E

[
R(X ′, A, S′)2

]
= ‖R‖22.

So ‖f‖2 ≤ ‖R‖2 and, by an analogous argument, ‖g‖2 ≤ ‖R‖2. Similarly

|c| = |E [R(S,A, S′)]|
≤ E [|R(S,A, S′)|]
= ‖R‖1
≤ ‖R‖2.

Combining these results, we have

‖CDS ,DA (R)‖2 ≤ 4‖R‖2. (19)

Substituting eq. 19 into eq. 18 yields the required result:

GRA(π∗A)−GRA(π∗B) ≤ 4U‖RA‖2.

Theorem 4.9. Let M be a γ-discounted MDP\R with discrete state and action spaces S and A. Let
RA, RB : S × A × S → R be bounded rewards, and π∗A, π

∗
B be respective optimal policies. Let

Dπ(t, st, at, st+1) denote the distribution over transitions S ×A× S induced by policy π at time t,
andD(s, a, s′) be the visitation distribution used to computeDEPIC. Suppose there existsK > 0 such
that KD(st, at, s

′
t+1) ≥ Dπ(t, st, at, s

′
t+1) for all times t ∈ N, triples (st, at, st+1) ∈ S × A × S

and policies π ∈ {π∗A, π∗B}. Then the regret under RA from executing π∗B instead of π∗A is at most
GRA(π∗A)−GRA(π∗B) ≤ 16K‖RA‖2 (1− γ)

−1
DEPIC(RA, RB).
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Proof. Recall from section A.4 that:

DEPIC(RA, RB) =
1

2

∥∥RSA(S,A, S′)−RSB(S,A, S′)
∥∥

2
.

Applying lemma A.8 we obtain:

DL1,D(RSA, R
S
B) =

∥∥RSA(S,A, S′)−RSB(S,A, S′)
∥∥

1
≤ 2DEPIC(RA, RB). (20)

Note that π∗A is optimal for RSA and π∗B is optimal for RSB since the set of optimal policies for RS is
the same as for R. Applying lemma A.9 and eq. 20 gives

GRSA(π∗A)−GRSA(π∗B) ≤ 2K

1− γ
DL1,D(RSA, R

S
B) ≤ 4K

1− γ
DEPIC(RA, RB). (21)

Applying lemma A.10 yields the required result:

GRA(π∗A)−GRA(π∗B) ≤ 16K‖RA‖2
1− γ

DEPIC(RA, RB).

A.6 Lipschitz Reward Functions

In this section, we generalize the previous results to MDPs with continuous state and action spaces.
The challenge is that even though the spaces may be continuous, the distribution Dπ∗ induced by an
optimal policy π∗ may still be a discrete distribution on some finite set of transitions T .. However,
the expectation over a continuous distribution D is unaffected by the reward at any finite subset of
points. Accordingly, the reward can be varied arbitrarily on transitions T – causing arbitrarily small
or large regret – while leaving the EPIC distance fixed. To rule out this pathological case, we assume
the rewards are Lipschitz smooth. This guarantees that if the expected difference between rewards is
small on a given region, then all points in this region have bounded reward difference.

We start by defining a relaxation of the Wasserstein distance Wα in definition A.11. In lemma A.12
we then bound the expected value under distribution µ in terms of the expected value under alternative
distribution ν plus Wα(µ, ν). Next, in lemma A.13 we bound the regret in terms of the L1 distance
between the rewards plus Wα; this is analogous to lemma A.9 in the discrete case. Finally, in
theorem A.14 we use the previous results to bound the regret in terms of the EPIC distance plus Wα.

Definition A.11. Let S be some set and let µ, ν ∈ ∆(S) be probability distributions on S. We define
the relaxed Wasserstein distance between µ and ν by:

Wα(µ, ν) , inf
p∈Γα(µ,ν)

∫
‖x− y‖ dp(x, y),

where Γα(µ, ν) ⊆ ∆(S×S) is the set of probability distributions on S×S satisfying for all x, y ∈ S:∫
S

p(x, y)dy = µ(x), (22)∫
S

p(x, x)dx ≤ αν(y). (23)

Note that W1 is equal to the (unrelaxed) Wasserstein distance (in the `1 norm).

Lemma A.12. Let S be some set and let µ, ν ∈ ∆(S) be probability distributions on S. Let
f : S → R be an L-Lipschitz function on norm ‖·‖. Then, for any α ≥ 1:

EX∼µ [|f(X)|] ≤ αEY∼ν [|f(Y )|] + LWα(µ, ν).
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Proof. Let p ∈ Γα(µ, ν). Then:

EX∼µ [|f(X)|] ,
∫
|f(x)|dµ(x) definition of E

=

∫
|f(x)|dp(x, y) µ is a marginal of p

≤
∫
|f(y)|+ L ‖x− y‖ dp(x, y) f L-Lipschitz

=

∫
|f(y)|dp(x, y) + L

∫
‖x− y‖ dp(x, y)

=

∫
|f(y)|

∫
p(x, y)dxdy + L

∫
‖x− y‖ dp(x, y)

≤
∫
|f(y)|αν(y)dy + L

∫
‖x− y‖ dp(x, y) eq. 23

= αEY∼ν [|f(Y )|] + L

∫
‖x− y‖ dp(x, y) definition of E.

Since this holds for all choices of p, we can take the infimum of both sides, giving:

EX∼µ [|f(X)|] ≤ αEY∼ν [|f(Y )|] + L inf
p∈Γα(µ,ν)

∫
‖x− y‖ dp(x, y)

= αEY∼ν [|f(Y )|] + LWα(µ, ν).

Lemma A.13. LetM be an MDP\R with state and action spaces S andA. LetRA, RB : S×A×S →
R be L-Lipschitz rewards on some norm ‖·‖ on S ×A× S. Let π∗A and π∗B be policies optimal for
rewards RA and RB in M . Let Dπ,t(st, at, st+1) denote the distribution over trajectories that policy
π induces inM at time step t. LetD(s, a, s′) be the (stationary) visitation distribution over transitions
S ×A× S used to compute DEPIC. Let α ≥ 1, and let Bα(t) = maxπ∈π∗A,π∗B Wα (Dπ,t,D). Then
the regret under RA from executing π∗B optimal for RB instead of π∗A is at most:

GRA(π∗A)−GRA(π∗B) ≤ 2α

1− γ
DL1,D(RA, RB) + 4L

∞∑
t=0

γtBα(t).

Proof. By the same argument as lemma A.9 we have for any policy π:

|GRA(π)−GRB (π)| ≤
∞∑
t=0

γtDL1,Dπ,t(RA, RB).

Let f(s, a, s′) = RA(s, a, s′)−RB(s, a, s′), and note f is 2L-Lipschitz since RA and RB are both
L-Lipschitz. Now, by lemma A.12, letting µ = Dπ,t and ν = D, we have:

DL1,Dπ,t(RA, RB) ≤ αDL1,D(RA, RB) + 2LWα(Dπ,t,D).

So, for π ∈ {π∗A, π∗B}, it follows that

|GRA(π)−GRB (π)| ≤ α

1− γ
DL1,D(RA, RB) + 2L

∞∑
t=0

γtBα(t).

By the same argument as for lemma A.9, it follows that

GRA(π∗A)−GRA(π∗B) ≤ 2α

1− γ
DL1,D(RA, RB) + 4L

∞∑
t=0

γtBα(t).

Theorem A.14. Let M be an MDP\R with state and action spaces S and A. Let RA, RB : S ×
A × S → R be bounded, L-Lipschitz rewards on some norm ‖·‖ on S × A × S. Let π∗A and π∗B
be policies optimal for rewards RA and RB in M . Let Dπ(t, st, at, st+1) denote the distribution
over trajectories that policy π induces in M at time step t. Let D(s, a, s′) be the (stationary)
visitation distribution over transitions S × A × S used to compute DEPIC. Let α ≥ 1, and let
Bα(t) = maxπ∈π∗A,π∗B Wα (Dπ,t,D). Then the regret under RA from executing π∗B optimal for RB
instead of π∗A is at most:

GRA(π∗A)−GRA(π∗B) ≤ 16 ‖RA‖2

(
α

1− γ
DEPIC(RA, RB) + L

∞∑
t=0

γtBα(t)

)
.
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Proof. By a similar argument, applying theorem A.13 and eq. 20 gives

GRSA(π∗A)−GRSA(π∗B) ≤ 2α

1− γ
DL1,D(RSA, R

S
B) + 4L

∞∑
t=0

γtBα(t)

≤ 4α

1− γ
DEPIC(RA, RB) + 4L

∞∑
t=0

γtBα(t).

Applying lemma A.10 yields the required result:

GRA(π∗A)−GRA(π∗B) ≤ 16 ‖RA‖2

(
α

1− γ
DEPIC(RA, RB) + L

∞∑
t=0

γtBα(t)

)
.

A.7 Limiting Behavior of Regret

Theorem 4.9 – the regret bound for discrete MDPs – directly implies that, as EPIC distance tends to
0, the regret also tends to 0. By contrast, our regret bound in theorem A.14 for (possibly continuous)
MDPs with Lipschitz reward functions includes the relaxed Wasserstein distance Wα as an additive
term. At first glance, it might therefore appear possible for the regret to be positive even with a
zero EPIC distance. However, in this section we will show that in fact the regret tends to 0 as
DEPIC(RA, RB)→ 0 in the Lipschitz case as well as the discrete case.

A key insight is that the relaxed Wasserstein distance Wα tends to 0 as α→∞ However, the first
term becomes arbitrarily large as α→∞. In lemma A.15, we choose α to balance these competing
demands. We conclude in theorem A.16 by showing the regret tends to 0 as EPIC distance tends to 0.

Lemma A.15. Let S be a set bounded on norm ‖·‖. Let µ, ν ∈ ∆(S) be probability distributions on
S. Let δ > 0 and suppose ν(y) ≥ δ for all y ∈ S; moreover, assume ν is not degenerate (i.e. does
not contain point mass probabilities). Let f : S → R be an L-Lipschitz function on norm ‖·‖. Then
as EY∼ν [|f(Y )|]→ 0, EX∼µ [|f(X)|]→ 0 for arbitrary µ ∈ ∆(S).

Proof. Suppose EY∼ν [|f(Y )|] ≤ ε2 for some ε > 0. Choose α = 1/ε, then by lemma A.12:

EX∼µ [|f(X)|] ≤ ε+ LW1/ε(µ, ν).

It remains to show that Wα(µ, ν)→ 0 as α→∞. Define A(r, z) , {s ∈ S | ‖s− z‖ ≤ r} and

V (r, x) ,
∫
A(r,x)

ν(y)dy.

Note V (r, x) is continuous in r since ν is not a degenerate distribution. Moreover, V (0, x) = 0 while
V (R, x) = 1 for sufficiently large R (noting that S is bounded). By the intermediate value theorem,
it follows that for any α ≥ 1 there always exists an r ∈ [0, R] for which V (r, x) = 1

α , although this
r need not be unique. We let r∗(x) denote some mapping such that V (r∗(x), x) = 1

α . Now, define a
joint distribution

p(x, y) =

{
αµ(x)ν(y), ‖x− y‖ ≤ r∗(y)

0, otherwise,

Note that p ∈ Γα(µ, ν) since, for all x, y ∈ S:∫
S

p(x, y)dy = αµ(x)V (r∗(x), x)

= µ(x),∫
S

p(x, y)dx = αν(y)

∫
A(r∗(y),y)

µ(x)dx

≤ αν(y)

∫
S

µ(x)dx

= αν(y).
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Substituting p gives:

Wα(µ, ν) ≤
∫
‖x− y‖ dp(x, y)

=

∫
y∈S

∫
x∈S
‖x− y‖ p(x, y)dxdy

=

∫
y∈S

∫
x∈A(r∗(y),y)

‖x− y‖ p(x, y)dxdy

≤
∫
y∈S

r∗(y)

∫
x∈A(r∗(y),y)

p(x, y)dxdy

≤ α
∫
y∈S

r∗(y)ν(y)dy.

Noting that r∗(y)→ 0 for all y ∈ S as the target volume 1
α → 0 completes the proof.

Theorem A.16. Let M be an MDP\R with state and action spaces S and A bounded on norm ‖·‖.
Let RA, RB : S ×A×S → R be bounded rewards on some norm ‖·‖ on S ×A×S . Let π∗A and π∗B
be policies optimal for rewardsRA andRB inM . LetDπ(t, st, at, st+1) denote the distribution over
trajectories that policy π induces in M at time step t. Let D(s, a, s′) be the (stationary) visitation
distribution over transitions S ×A× S used to compute DEPIC.

Suppose that either:

1. Discrete: S and A are discrete. Moreover, suppose that there exists some K > 0 such
that KD(st, at, s

′
t+1) ≥ Dπ(t, st, at, s

′
t+1) for all time steps t ∈ N, triples st, at, st+1 ∈

S ×A× S and policies π ∈ {π∗A, π∗B}.

2. Lipschitz: RA and RB are L-Lipschitz. Moreover, suppose there exists some δ > 0 such
that D(s, a, s′) ≥ δ for all s, a, s′ ∈ S ×A× S and that D is not degenerate (i.e. does not
contain point mass probabilities).

Then as DEPIC(RA, RB)→ 0, GRA(π∗A)−GRA(π∗B)→ 0.

Proof. In case (1) Discrete, by theorem 4.9:

GRA(π∗A)−GRA(π∗B) ≤ 16K‖RA‖2
1− γ

DEPIC(RA, RB).

Moreover, by optimality of π∗A we have 0 ≤ GRA(π∗A)−GRA(π∗B). So by the squeeze theorem, as
DEPIC(RA, RB)→ 0, GRA(π∗A)−GRA(π∗B)→ 0.

From now on, suppose we are in case (2) Lipschitz. By the same argument as lemma A.9, we have
for any policy π:

|GRA(π)−GRB (π)| ≤
∞∑
t=0

γtDL1,Dπ,t(RA, RB).

Applying lemma A.10 we have:

|GRA(π)−GRB (π)| ≤ 4 ‖RA‖2
∞∑
t=0

γtDL1,Dπ,t(R
S
A, R

S
B).

By equation 20, we know that DL1,D(RSA, R
S
B) → 0 as DEPIC(RA, RB) → 0. By lemma A.15,

we know that DL1,Dπ,t(RA
S , RB

S) → 0 as DL1,D(RSA, R
S
B) → 0. So we can conclude that as

DEPIC(RA, RB)→ 0:
|GRA(π)−GRB (π)| → 0.
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