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ABSTRACT

Offline reinforcement learning (RL), which aims at learning good policies from
historical data, has received significant attention over the past years. Much effort
has focused on improving offline RL practicality by addressing the prevalent issue
of partial data coverage through various forms of conservative policy learning.
While the majority of algorithms do not have finite-sample guarantees, several
provable conservative offline RL algorithms are designed and analyzed within the
single-policy concentrability framework that handles partial coverage. Yet, in the
nonlinear function approximation setting where confidence intervals are difficult
to obtain, existing provable algorithms suffer from computational intractability,
prohibitively strong assumptions, and suboptimal statistical rates. In this paper,
we leverage the marginalized importance sampling (MIS) formulation of RL and
present the first set of offline RL algorithms that are statistically optimal and prac-
tical under general function approximation and single-policy concentrability, by-
passing the need for uncertainty quantification. We identify that the key to suc-
cessfully solving the sample-based approximation of the MIS problem is ensuring
that certain occupancy validity constraints are nearly satisfied. We enforce these
constraints by a novel application of the augmented Lagrangian method and prove
the following result: with the MIS formulation, augmented Lagrangian is enough
for statistically optimal offline RL. In stark contrast to prior algorithms that induce
additional conservatism through methods such as behavior regularization, our ap-
proach provably eliminates this need and reinterprets regularizers as “enforcers of
occupancy validity” than “promoters of conservatism.”

1 INTRODUCTION

The goal of offline RL is to design agents that learn to achieve competence in a task using only
a previously-collected dataset of interactions (Lange et al., 2012). Offline RL is a promising tool
for many critical applications, from healthcare to autonomous driving to scientific discovery, where
the online mode of learning by interacting with the environment is dangerous, impractical, costly,
or even impossible (Levine et al., 2020). Despite this, offline RL has not yet been truly successful
in practice (Fujimoto et al., 2019) and impressive RL performance has been limited to settings with
known environments (Silver et al., 2017; Moravčík et al., 2017), access to accurate simulators (Mnih
et al., 2015; Degrave et al., 2022; Fawzi et al., 2022), or expert demonstrations (Vinyals et al., 2017).

One of the central challenges in offline RL is the lack of uniform coverage in real datasets and the
distribution shift between the occupancy of candidate policies and offline data distribution, which
pose difficulties in accurately evaluating the candidate policies. Over the past years, a body of liter-
ature has focused on addressing this challenge through developing conservative algorithms, which
aim at picking a policy among those well-covered in the data. On the practical front, various forms
of conservatism are proposed such as behavior regularization through policy constraints (Kumar
et al., 2019; Fujimoto et al., 2019; Nachum & Dai, 2020), learning conservative values (Kumar
et al., 2020; Liu et al., 2020; Agarwal et al., 2020), or learning pessimistic models (Kidambi et al.,
2020; Yu et al., 2020; 2021); see Appendix B for further discussion on related work.
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From a theoretical standpoint, partial data coverage has recently been studied within variants of the
single-policy concentrability framework (Rashidinejad et al., 2021; Xie et al., 2021; Uehara & Sun,
2021), which characterizes the distribution shift between offline data and occupancy of a target (often
optimal) policy, in contrast to all-policy concentrability commonly used in earlier works (Scherrer,
2014; Chen & Jiang, 2019; Liao et al., 2020; Zhang et al., 2020a; Xie & Jiang, 2021). Within this
framework and in the tabular and linear function approximation settings, pessimistic algorithms that
leverage uncertainty quantifiers to construct lower confidence bounds (Jin et al., 2021; Rashidinejad
et al., 2021; Yin et al., 2021; Shi et al., 2022; Li et al., 2022) enjoy optimal statistical rate. In
the general function approximation setting, pessimistic algorithms largely assume oracle access to
uncertainty quantification, either for constructing penalties that are subtracted from rewards (Jin
et al., 2021; Jiang & Huang, 2020) or selecting the most pessimistic option among those that fall
within the confidence region implied by the offline data (Uehara & Sun, 2021; Xie et al., 2021;
Chen & Jiang, 2022). However, uncertainty quantifiers are difficult to obtain in non-linear function
approximation and existing heuristics are empirically observed to be unreliable (Rashid et al., 2019;
Tennenholtz et al., 2021; Yu et al., 2021). Recent works by Cheng et al. (2022) and Zhan et al. (2022)
propose provable alternatives to uncertainty-based methods, but leave achieving optimal statistical
rate of 1/

√
N , where N is the dataset size, as an open problem.

Among all, the marginal importance sampling (MIS) methods, which aim at learning weights w that
estimate the distribution shift between induced policy occupancy dw and data distribution µ, lend
themselves well to the single-policy concentrability framework. Though more popular in off-policy
evaluation (Liu et al., 2018; Xie et al., 2019; Uehara et al., 2020; Zhang et al., 2020b), MIS has also
been used for conservative offline RL such as AlgaeDICE (Nachum et al., 2019b) and OptiDICE
(Lee et al., 2021), both of which incorporate behavior regularization. Recently, Zhan et al. (2022)
theoretically studied a variant of OptiDICE, showing that MIS with behavior regularization enjoys
finite-sample guarantees (though achieving a suboptimal 1/N1/6 rate) and circumvents certain fun-
damental difficulties observed in value-based offline RL with function approximation (Du et al.,
2019; Wang et al., 2020; 2021; Weisz et al., 2021; Zanette, 2021; Foster et al., 2021).

1.1 CONTRIBUTIONS AND RESULTS

Motivated by the benefits offered by MIS, we study designing statistically optimal offline learning
algorithms under the MIS formulation with general function approximation and single-policy con-
centrability. We conduct theoretical investigations and design algorithms starting from multi-armed
bandits (MABs), going forward to contextual bandits (CBs), and finally Markov decision processes
(MDPs). In the rest of this section, we present a preview of our contributions and results.

Multi-armed bandits. Empirical MIS algorithms often incorporate behavior regularization, whose
role is justified as promoting conservatism by keeping the occupancies of learned and behavior
policies close (Nachum et al., 2019b; Lee et al., 2021). Yet, whether and why these regularizers
are necessary from a theoretical perspective remain unclear. Zhan et al. (2022) motivates behav-
ior regularization as a way of introducing curvature in an otherwise linear optimization problem.
We extensively investigate the effect of regularization, starting from the simplest setting of MABs
with function approximation, as existing algorithms when specialized to offline MABs, are either
intractable, have suboptimal finite-sample guarantees, or require access to uncertainty quantifiers.

We state our results on offline MABs with general function approximation and single-policy con-
centrability in the informal theorem below.

Theorem (informal) (I) There exists an offline MAB instance where the unregularized MIS fails
to achieve a suboptimality that decays with N . (II) MIS with behavior regularization (PRO-MAB
Algorithm 1) achieves O(1/

√
N) suboptimality. (III) If one searches only over the space of weights

that induce valid occupancies (dw = 1), then unregularized MIS achieves O(1/
√
N) suboptimality.

Here, we prove that unregularized MIS fails even in bandits and provide a tight analysis of PRO-
MAB, a special case of PRO-RL algorithm, improving over the original 1/N1/6 rate shown by Zhan
et al. (2022). In our analysis, we find that the key to the success of PRO-MAB is near-validity of the
learned occupancy dw. In MABs, the validity constraint simply requires the learned occupancy to
be a probability distribution: dw =

∑
a w(a)µ(a) = 1, where a is an arm. With a proper choice of

hyperparameter, we show that behavior regularization enforces learned occupancy to be nearly valid:
dw = Ω(1). We further prove that regularization is not required if validity is otherwise satisfied.
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Given that occupancy validity is the constraint of the optimization problem solved by MIS (see e.g.
(1)), we ask whether there are any methods for solving empirical optimization problems that find
more constraint-adhering solutions compared to those yielded by Lagrange multipliers adopted in
prior works (Lee et al., 2021; Zhan et al., 2022). The augmented Lagrangian method (ALM), which
adds a quadratic loss on the constraints (dw − 1)2, is a natural choice for our purpose. The ALM
term can be easily estimated from offline data and forms Algorithm 1. We show that ALM results in
dw = Ω(1), ensuring near-validity of learned occupancy and leading to the following guarantee.

Theorem (informal) The policy returned by an algorithm that combines ALM with MIS (ALMIS)
for offline MABs (Algorithm 1) achieves O(1/

√
N) suboptimality.

ALMIS offers several benefits over PRO-MAB such as eliminating the need for picking the reg-
ularizer and only requiring single-policy concentrability instead of the two-policy requirement of
PRO-MAB, which can be strong (Section 5.3). Additionally, behavior regularization introduces
bias in the solution even with infinite data (Chen & Jiang, 2022) and the bias-variance tradeoff must
be carefully handled. However, ALM merely enforces the optimization constraints and leads to
provably unbiased solutions (Lemma 14). More importantly, as we see shortly, going beyond the
single-state MABs, behavior regularization becomes suboptimal while ALMIS maintains optimality.

Contextual bandits. In offline CBs, we analyze two approaches: MIS with behavior regularization,
and an extension of ALMIS. We state our results in the following informal theorem.

Theorem (informal) (I) There exists a CB instance where MIS with behavior regularization (PRO-
CB Algorithm 6) suffers from suboptimality Ω(Nβ) with β > −1/2. (II) Policy returned by ALMIS
for offline CBs (Algorithm 2) achieves suboptimality of O(1/

√
N).

Informally, the failure of PRO-CB to achieve the optimal rate is because the regularization parame-
ter has to be small to control bias, but such small regularization is not strong enough to ensure the
validity of learned occupancy in most states. Therefore, one must choose larger regularization, lead-
ing to an overall suboptimal rate. Prior works Chen & Jiang (2022); Cheng et al. (2022) also allude
to this phenomenon, explaining that regularizers appear to be the culprit behind suboptimal rates.
In CBs, the occupancy validity constraints require conditional occupancy to be a valid probability
distribution in every state. In Algorithm 2, we incorporate ALM in offline CBs by adding a weighted
sum of quadratic losses describing the validity constraint in each state, where the weights are set to
the state occupancies to capture their relative importance. Enforcement of the constraints by ALM
without introducing any bias is the key to the optimality of our algorithm.

MDPs. Validity constraints in MDPs ensure that the learned state occupancy dw(s) =∑
a w(s, a)µ(s, a) is close to the actual state occupancy dπw(s), where πw is the policy computed

from weights w.1 Directly enforcing this constraint results in an ALM term that cannot easily be es-
timated from offline data. We address this difficulty by expressing the ALM term in the variational
form. From there, we derive two variants, one model-based and one model-free, of the ALMIS
algorithm for offline RL, that enjoy the following guarantee.

Theorem (informal) Both variants of ALMIS for offline RL achieve O(1/
√
N) suboptimality.

This marks ALMIS as the first practical and statistically optimal offline RL algorithm that operates
in the general function approximation and partial data coverage setting, while avoiding uncertainty
quantification and additional regularizers. Conservatism of ALMIS is baked into the MIS formula-
tion and supported by the ALM: bounded MIS weights prevent learned occupancy to deviate sig-
nificantly from data distribution, and ALM ensures closeness of the learned and actual occupancies.
When combined, ALMIS learns a policy whose actual occupancy is close to the data distribution.

We thus proved that ALM improves sample complexity compared to alternatives such as behavior
regularization. This is in addition to the benefits on optimization stability that are likely to be
offered by the ALM, as the ALM improves over the ill-posed Lagrange multiplier objective (Ben-
Tal & Nemirovski, 2022). Our theoretical findings can explain the empirical observations of Yang
et al. (2020), who find MIS with behavior regularization to be unstable and propose regularizers
in “the spirit of ALM” that gain superior performance and attribute performance gain to improved
optimization. In this work, we present a theoretically-founded way of introducing ALM in offline
RL and our analysis shows that ALM also leads to optimal sample complexity.

1Notice that the validity constraints in MAB and CB are special cases of this constraint.
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2 BACKGROUND

Markov decision process. An infinite-horizon discounted MDP is described by a tuple M =
(S,A, P,R, ρ, γ), where S is the state space, A is the action space, P : S×A 7→ ∆(S) is the transi-
tion kernel, R : S×A 7→ ∆([0, 1]) encodes a family of reward distributions with r : S×A 7→ [0, 1]
as the expected reward function, ρ : S 7→ ∆(S) is the initial state distribution, and γ ∈ [0, 1) is the
discount factor. We assume S and A are finite however, our results do not depend on their cardinal-
ities and can be naturally extended to infinite sets. A stationary (stochastic) policy π : S 7→ ∆(A)
specifies a distribution over actions in each state. Each policy π induces an occupancy density over
state-action pairs dπ : S ×A 7→ [0, 1] defined as dπ(s, a) := (1−γ)

∑∞
t=0 γ

tPt(st = s, at = a;π),
where Pt(st = s, at = a;π) denotes (s, a) visitation probability at step t, starting at s0 ∼ ρ(·) and
following π. We abuse notation and also write dπ(s) =

∑
a∈A dπ(s, a) to denote the discounted

state occupancy. Additionally, operator Pπ is applied to any function u : S ×A → R and is defined
as (Pπu)(s, a) :=

∑
s′,a′ P (s′|s, a)π(a′|s′)u(s′, a′).

An important quantity is the value a policy π, which is the discounted sum of rewards V π(s) :=
E[
∑∞

t=0 γ
trt | s0 = s, at ∼ π(· | st), ∀ t ≥ 0] starting at s ∈ S. Q-function Qπ(s, a) of a policy is

similarly defined. We write J(π) := (1 − γ)Es∼ρ[V
π(s)] = Es,a∼dπ [r(s, a)] to represent a scalar

summary of the performance of a policy π. We denote by π⋆ an optimal policy that maximizes the
above objective and use the shorthand V ⋆ := V π⋆

to denote the optimal value function.

Offline reinforcement learning. We focus on the offline RL, where the agent is only provided with
a previously-collected offline dataset D = {(si, ai, ri, s′i)}Ni=1. Here, ri ∼ R(si, ai), s′i ∼ P (· |
si, ai), and we assume si, ai pairs are generated i.i.d. according to a data distribution µ ∈ ∆(S×A).
To streamline the analysis, we assume that the conditional distribution µ(a|s) is known.2 The goal
of offline RL is to learn a policy π̂ based on the offline dataset so as to minimize the sub-optimality
with respect to an optimal policy π⋆, i.e. J(π⋆)− J(π̂) with high probability.

Marginalized importance sampling. In this paper, we consider marginalized importance sampling
(MIS) formulation that aims at learning weights w(s, a) to represent policy occupancy when mul-
tiplied by data distribution: dw(s, a) = w(s, a)µ(s, a). Also denote dw(s) =

∑
a∈A dw(s, a). We

define the policy induced by w as πw(a|s) = dw(s, a)/dw(s) for dw(s) > 0 and πw(a|s) = 1/|A|
for dw(s) = 0.

Offline data coverage assumption. We design and analyze our algorithms within the single-policy
concentrability framework (Rashidinejad et al., 2021), stated below.

Definition 1 (Single-policy concentrability) Given a policy π, define Cπ to be the smallest con-
stant that satisfies dπ(s,a)

µ(s,a) ≤ Cπ for all s ∈ S and a ∈ A.

Cπ⋆

= C⋆ captures coverage of π⋆ in the offline data and is much weaker than the widely used
all-policy concentrability that assumes bounded maxπ C

π; see Appendix B for further discussion.

Notation. We write ∆(S) to denote the probability simplex over a set S. For a function class F ,
we write |F| to denote its complexity (such as cardinality in the discrete case or covering number in
the continuous case). We use the notation x ≲ y when there exists constant c > 0 such that x ≤ cy
and x ≍ y if constants c1, c2 > 0 exist such that c1|x|≤ |y|≤ c2|x|. We write f(x) = O(g(x)) if
M > 0, x0 exist such that |f(x)|≤ Mg(x) for all x ≥ x0 and use Õ(·) to be the big-O notation
ignoring logarithmic factors. Define clip(x, a, b) ≜ max{a,min{x, b}} for x, a, b ∈ R.

3 MULTI-ARMED BANDITS

We start by considering the offline learning problem in the multi-armed bandit (MAB) setting, which
is a special case of MDP with γ = 0, |S|= 1, and D = {(ai, ri)}Ni=1, where ai ∼ µ(·), ri ∼ R(ai).
The goal of offline learning in MABs can be described as the following constrained optimization
problem, where d represents occupancy over actions (arms)

max
d≥0

Ea∼d [r(a)] s.t.
∑
a

d(a) = 1. (1)

2When µ(a|s) is unknown, behavioral cloning can be used (Ross & Bagnell, 2014; Zhan et al., 2022).
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3.1 PRIMAL-DUAL REGULARIZED OFFLINE BANDITS

To solve (1), the MIS approach with behavior regularization defines importance weights w(a) =
d(a)/µ(a) and converts the problem (1) to its dual form by introducing the Lagrange multiplier v:

max
w≥0

min
v

LMAB
α (w, v) := Ea∼µ [w(a)r(a)]− v (Ea∼µ[w(a)]− 1)− αEa∼µ [f (w(a))] . (2)

The last term in (2) is the behavior regularizer that characterizes the f -divergence between the
learned occupancy d and data distribution µ. This term was originally proposed to induce conser-
vatism by keeping the learned policy close to behavior policy (Nachum et al., 2019b; Lee et al.,
2021). Problem (2) satisfies strong duality and we denote optimal primal and dual variables by w⋆

α
and v⋆α (Appendix C.2). When α = 0, weights w⋆ := w⋆

0 (might not be unique) induce optimal
policy and v⋆ := v⋆0 is the optimal reward. Approximating w and v to belong to classes W ⊆ R|A|

and V ∈ R and solving the empirical version of (2) yields primal-dual regularized offline MAB
(PRO-MAB Algorithm 5), a special case of PRO-RL algorithm of Zhan et al. (2022).

One might wonder whether the unregularized algorithm (α = 0) is sufficient for solving the offline
learning problem in MABs, particularly under the natural and common assumption that elements of
the function class W are bounded: w(a) = d(a)/µ(a) ≤ Bw. In the following proposition, we show
that the answer is negative and there exist a MAB instance in which the unregularized algorithm finds
a policy that suffers from a constant suboptimality. The proof is provided in Appendix C.3.

Proposition 1 (Unregularized MIS fails in MABs) Assume 0 ≤ w(a) ≤ Bw for w ∈ W and
|v|≤ Bv for v ∈ V . Suppose realizability of any one of w⋆ ∈ W and v⋆ ∈ V and concentrability
of π⋆ := πw⋆ . For any N ≥ 2, there exists a MAB instance where π̂ returned by Algorithm 5 with
α = 0 satisfies J(π⋆)− J(π̂) = 1/6 with a constant probability.

We note that Zhan et al. (2022) also argues the failure of the unregularized algorithm by giving a
counterexample in the MDP setting. We discuss this example in detail in Section 5.3. Proposition 1
reveals additional insights: the objective (16) with α = 0 fails not just in MDPs but also in bandits,
even when the optimal policy is unique and data are collected by running a behavior policy.

Given the failure of the unregularized algorithm, we conduct a tight analysis of PRO-MAB with
α > 0. In the next theorem, we prove that under similar assumptions as Zhan et al. (2022) and with
a proper choice of α, PRO-MAB returns a policy that enjoys optimal sample complexity.

Theorem 1 (Suboptimality of PRO-MAB) Let f be Mf -strongly convex and non-negative with
bounded value |f(x)|≤ Bf and derivative |f ′(x)|≤ Bf ′ . Assume 0 ≤ w(a) ≤ Bw for w ∈ W and
|v|≤ Bv for v ∈ V . Fix δ ≥ 0 and set α ≍ Bw(Bv + 1) +Bf )/Mf

√
log(|V||W|/δ)/N. Suppose

realizability of w⋆
α ∈ W and v⋆α ∈ V and concentrability of π⋆ := πw⋆ and π⋆

α := πw⋆
α

. Then, with
probability at least 1− δ, policy π̂ returned by Algorithm 5 achieves

J(π⋆)− J(π̂) ≲
(Bf +Bw(Bv + 1))(Bf +Bf ′Bw)

Mf

√
log(|V||W|/δ)

N
.

To our knowledge, this is the first statistically optimal guarantee for a practical offline MAB algo-
rithm with function approximation and partial coverage and improves over the 1/N1/6 guarantee
given by Zhan et al. (2022). We now briefly explain the differences between the analysis methods;
a complete proof is deferred to Appendix C.4. Zhan et al. (2022) bounds policy suboptimality by
α+1/(α1/2N1/4), where the first term stems from the bias caused by the regularizer and the second
term emerges from bounding the difference of ŵ and w⋆

α via strong convexity of Lα. Optimizing
the bound over α gives the final 1/N1/6 guarantee. In contrast, our analysis connects subopti-
mality to occupancy validity. We prove that suboptimality is bounded by α + 1/(dŵ

√
N), where

dŵ =
∑

a ŵ(a)µ(a). We then show that setting α ≍ 1/
√
N is sufficient to ensure near-validity of

occupancy dŵ = Ω(1), yielding the optimal rate. We observe a similar phenomenon in Proposition
1 that small dw for certain w ∈ W can cause the unregularized MIS to fail. In the following section,
we investigate this phenomenon further, leading to a new offline learning algorithm.

3.2 AUGMENTED LAGRANGIAN REPLACES BEHAVIOR REGULARIZATION

The next proposition further affirms the importance of policy validity and shows that if the occu-
pancy is valid, such as by searching only over the weights that induce valid occupancies, then the
unregularized algorithm enjoys an optimal rate. Proof of this result can be found in Appendix C.5.

5



Published as a conference paper at ICLR 2023

Algorithm 1 ALM with MIS (ALMIS) for offline MAB
1: Inputs: Dataset D = {(ai, ri)}Ni=1, classes W and V .
2: Find a solution ŵ, v̂ to the following problem

max
w∈W

min
v∈V

L̂MAB
AL (w, v) :=

1

N

N∑
i=1

w(ai)ri − v(w(ai)− 1)−
( 1

N

N∑
i=1

w(ai)− 1
)2

. (3)

3: Return: π̂ = πŵ.

Proposition 2 (Constraint satisfaction is sufficient in MAB) Assume as in Theorem 1. Let π̂ be
the output of Algorithm 5 with α = 0 and assume that

∑
a µ(a)ŵ(a) = 1. Then, for any δ > 0, the

following holds with probability of at least 1− δ

J(π⋆)− J(π̂) ≲ (Bw(Bv + 1) + αBf )

√
log|V||W|/δ

N
.

Motivated by the discussion above, we take a step back and ask: are there any other methods for solv-
ing constrained optimization problems that find more constraint-satisfying solutions when applied
to the empirical approximation of the original problem? A promising candidate is the augmented
Lagrangian method (ALM) which adds a quadratic loss on the constraints to the objective. Applied
to (1), ALM forms the following objective, whose empirical version leads to Algorithm 1.

max
w≥0

min
v

LMAB
AL (w, v) := Ea∼µ [w(a)r(a)]− v (Ea∼µ[w(a)]− 1)− (Ea∼µ[w(a)]− 1)

2
. (4)

The following theorem establishes an upper bound on the suboptimality of the policy returned by
Algorithm 1. This theorem is a special case of Theorem 3, whose proof is given in Appendix D.3.
Theorem 2 (Suboptimality of Algorithm 1) Assume that 0 ≤ w(a) ≤ Bw for any w ∈ W and
|v|≤ Bv for any v ∈ V . Further suppose realizability of any one of w⋆ ∈ W and v⋆ ∈ V and
concentrability of π⋆ = πw⋆ . For any fixed δ > 0, policy π̂ returned by Algorithm 1 achieves the
following bound with probability of at least 1− δ

J(π⋆)− J(π̂) ≲ B2
w(Bv + 1)

√
log(|W||V|/δ)

N
. (5)

In the proof, we show that ALM results in near-validity of ŵ by ensuring that dŵ = Ω(1), lead-
ing to the optimal rate. Note that Algorithm 1 does not include any explicit form of conservatism
through regularizers or uncertainty quantifiers. Colloquially, the MIS formulation and boundedness
of W elements ensure that dŵ(a)/µ(a) = ŵ(a) ≤ Bw and ALM ensures that dŵ is close to the
actual occupancy. Thus, Algorithm 1 seeks a policy whose actual occupancy is within data distribu-
tion. Algorithm 1 offers several benefits compared to PRO-MAB: it only requires π⋆-concentrability
instead of the π⋆, π⋆

α-concentrability requirement of PRO-MAB, removes the need to design regu-
larization function f and adjust α, and does not introduce bias in the objective. The main advantage
of ALM, however, becomes more evident as we move beyond bandits, where the behavior regular-
ization provably fails to achieve the optimal statistical rate while ALM maintains optimality.

4 CONTEXTUAL BANDITS

The problem offline contextual bandits (CB) is a special case of offline RL with γ = 0 and offline
dataset D = {(si, ai, ri)}Ni=1, where si ∼ µ(·) = ρ(·), ai ∼ µ(· | ai), and ri ∼ R(si, ai). The
linear programming constrained optimization problem for CB is given by

max
d≥0

Es,a∼d [r(s, a)] s.t.
∑
a

d(s, a) = ρ(s) ∀s ∈ S. (6)

4.1 ANALYSIS OF PRIMAL-DUAL REGULARIZED OFFLINE CONTEXTUAL BANDITS

In the following proposition, we prove a performance lower bound on the primal-dual regularized
offline CB (PRO-CB) presented in Algorithm 6, which is MIS with behavior regularization.

Proposition 3 (PRO-CB is suboptimal) Let f be Mf -strongly convex, differentiable, and non-
negative with bounded values |f(x)|≤ Bf and derivative |f ′(x)|≤ Bf ′ . Assume 0 ≤ w(s, a) ≤ Bw

for w ∈ W , |v(s)|≤ Bv , realizability w⋆, w⋆
α ∈ W , v⋆, v⋆α ∈ V , and concentrability of π⋆, π⋆

α. Let
π̂ be the output of Algorithm 6. Then, for N ≥ poly(δ,Bw, Bv, Bf , Bf ′) and any α ≥ 0 there exists
a CB instance such that J(π⋆)− J(π̂) ≳ Nβ with a constant probability, where β > −1/2.
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Algorithm 2 ALM with MIS (ALMIS) for offline CB
1: Inputs: Dataset D = {(si, ai, ri)}Ni=1, function classes W,V
2: Find a solution ŵ, v̂ to the following problem

max
w∈W

min
v∈V

L̂CB
AL(w, v) :=

1

N

N∑
i=1

w(si, ai)(ri − v(si)) + v(si)−
( ∑

a∈A

w(si, a)µ(a|si)− 1
)2

(8)

3: Return: π̂ = πŵ.

Proposition 3 shows that behavior regularization is statistically suboptimal regardless of α. The
proof is presented in Appendix D.2. The main takeaway is that ensuring occupancy validity∑

a ŵ(s, a)µ(a|s) = Ω(1) for nearly all states appears to be critical in achieving the optimal rate.
Yet, without introducing a large bias, behavior regularization is insufficient for such a guarantee.

4.2 OFFLINE CONTEXTUAL BANDITS WITH AUGMENTED LAGRANGIAN

To encourage occupancy validity, we extend ALM to CBs and propose the following objective:
max
w≥0

min
v

LCB
AL(w, v)

:= Eµ [w(s, a)r(s, a)]− Eµ[v(s)(w(s, a)− 1)]− Es∼µ[(Ea∼µ(·|s)[w(s, a)]− 1)2]
(7)

When |S|= 1, (7) simplifies to the ALM objective (2) for MABs. The ALM term can be understood
as follows. Each element encourages the validity of occupancy in each state

∑
a w(s, a)µ(s, a) ≈ 1

and the elements are weighted according to the true state distribution: validity is more important in
states that are actually more likely to be visited. Denote by w⋆ an optimal solution to (7), which is
equal to the optimal solution of (6), and define v⋆(s) := V ⋆(s). The following theorem states that
ALMIS achieves optimal rate in offline CBs, whose proof is in Appendix D.3.
Theorem 3 (Suboptimality of Algorithm 2) Assume 0 ≤ w(s, a) ≤ Bw for w ∈ W and v(s) ≤
Bv for v ∈ V . Moreover, suppose realizability of any one of w⋆ ∈ W and v⋆ ∈ V and concentra-
bility of π⋆ = πw⋆ . For any fixed δ ≥ 0, policy π̂ returned by Algorithm 2 achieves the following
suboptimality bound with probability of at least 1− δ

J(π⋆)− J(π̂) ≲ B2
w(Bv + 1)

√
log(|W||V|/δ)

N
.

5 MARKOV DECISION PROCESSES

We now turn to offline RL. In addition to the offline dataset, we assume access to a dataset D0 =
{si}Ni=1 with i.i.d. samples from the initial distribution ρ, similar to prior works (Lee et al., 2021;
Zhan et al., 2022). The linear programming formulation of RL (Puterman, 2014) solves

max
d≥0

Es,a∼d[r(s, a)] s.t. d(s) = (1− γ)ρ(s) + γ
∑
s′,a′

P (s|s′, a′)d(s′, a′) ∀s ∈ S. (9)

The constraints are known as Bellman flow equations and restrict the search to the space of valid
occupancy distributions dπ that can be induced in the MDP by running a policy π.

5.1 CONSERVATIVE OFFLINE RL WITH AUGMENTED LAGRANGIAN

Motivated by the success of ALM in bandits, we propose the following extension to offline RL:

max
w≥0

min
v

LMDP
AL (w, v) := (1− γ)Eρ[v(s)] + Eµ [w(s, a)ev(s, a)]− Edπw

[[
dw(s)

dπw(s)
− 1

]2]
(10)

where ev(s, a) := r(s, a) + γ
∑

s′ P (s′|s, a)v(s′) − v(s). One can check that the first two terms
are the Lagrange dual of (9) and the last term is a generalization of the ALM terms in bandits. The
ALM elements encourage occupancy dw(s) to be close in ratio to the actual occupancy dπw(s) in
each state and as before, the ALM elements are weighted according to their actual visitation dπw(s).
Our particular ALM construction can be intuitively understood as follows. The MIS formulation
learns bounded weights ŵ(s, a) = dŵ(s, a)/µ(s, a) ≤ Bw. The ALM term ensures that the ratio
dŵ(s)/d

πŵ(s) = Ω(1) which roughly translates to dπŵ(s, a)/µ(s, a) ≲ Bw.

The ALM term in (10) is difficult to estimate as it involves the expectation over unknown occupancy
dπw and the computation of the ratio dw(s)/d

πw(s). We resolve this difficulty in the next sections.
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Algorithm 3 ALM with MIS (ALMIS) for offline RL — Model-based

1: Inputs: Datasets D, D0, Dm, function classes W,V,U ,P , f−1
∗ (x) = 2

√
x+ 1− 2.

2: Estimate transitions via maximum likelihood: P̂ = argmaxP∈P
∑Nm

i=1 lnP (s′i|si, ai).
3: Find a solution ŵ, v̂, û to the following problem

max
w∈W

min
v∈V

min
u∈U

L̂model-based
AL (w, v) :=

(1− γ)

N0

N0∑
i=1

(
v(si) +

∑
a

u(si, a)πw(a|si)
)

+
1

N

N∑
i=1

w(si, ai)
[
ri + γv(s′i)− v(si)− f−1

∗

(
u(si, ai)− γ(P̂πwu)(si, ai)

)] (14)

4: Return: π̂ = πŵ.

5.2 ESTIMATING THE ALM TERM AND ALMIS ALGORITHMS FOR OFFLINE RL

We view the ALM term as the negative f -divergence between dw and dπw with f(x) := (x − 1)2

and express it in the variational form (Nguyen et al., 2010):

−Edπw

(
dw(s)

dπw(s)
− 1

)2

= −Df (dw∥dπw) = min
x

Edπw [f∗(x(s, a))]− Edw
[x(s, a)]. (11)

Here, f∗ is the convex conjugate of f and we used the fact that dw(s, a)/dπw(s, a) = dw(s)/d
πw(s).

Notice that Edπw [f∗(x(s, a))] is the value of πw in the same MDP but with rewards f∗(x(s, a)).
Define u as the fixed point of the following Bellman equation

u(s, a) := f∗(x(s, a)) + γ(Pπwu)(s, a). (12)
Since u(s, a) is the Q-function of πw with rewards f∗(x(s, a)), we can rewrite (11) as

(11) = min
u

(1− γ)Es∼ρ,a∼πw
[u(s, a)]− Eµ

[
w(s, a)f−1

∗ (u(s, a)− γ(Pπwu)(s, a))
]
. (13)

Equation (13) involves expectations over ρ and µ, which can be estimated empirically. Below,
we discuss model-free and model-based methods for estimating the term involving the transition
operator Pπw . We include some details on practical implementations in Appendix E.1.

Model-based ALMIS. For the model-based route, we assume access to a class P that contains
the true transitions and an additional dataset Dm = {(si, ai, s′i)}

Nm
i=1, where si, ai ∼ µ and s′i ∼

P (.|si, ai). Given Dm, we obtain a maximum likelihood estimate of transitions and approximate
the expectations using D0 and D, which leads to model-based ALMIS for offline RL (Algorithm 3).

Model-free ALMIS. As an alternative, we consider developing a model-free that uses a single-
sample estimate of f−1

∗ (u(s, a) − γ(Pπwu)(s, a)). This, however, roughly leads to the infamous
double sampling problem (Baird, 1995). To circumvent this difficulty, in Appendix E.2 we use the
dual embedding trick of Nachum et al. (2019a), to derive model-free ALMIS (Algorithm 4).

Theorem 4 shows that ALMIS for offline RL enjoys optimal rates; see Appendix E.3 for the proof.
Theorem 4 (Suboptimality of ALMIS for offline RL) Assume 0 ≤ w(s, a) ≤ Bw for w ∈ W ,
|v(s)|≤ Bv for v ∈ V , and |u(s, a)|≤ Bu. Suppose realizability of any one of w⋆ ∈ W and v⋆(s) =
V ⋆(s) ∈ V and concentrability of π⋆ = πw⋆ . Let x̃w(s, a) = clip(x⋆

w(s, a),−Bx, Bx), where x⋆
w

is a solution to (11) and Bx = (1 − γ)/4, and define u⋆
w as the fixed-point solution to (12) when

x = x̃w. Assume u⋆
w ∈ U for any w ∈ W . Then, Bu satisfies (1 − γ)−1(B2

x/4 + Bx) ≤ Bu ≤ 1
2 .

Moreover, for any fixed δ ≥ 0, the following statements hold:

(I) Assume N = N0 = Nm for simplicity. If P ⋆ ∈ P , then π̂ returned by Algorithm 3 achieves

J(π⋆)− J(π̂) ≲
Bv +Bu + (1 +Bv)Bw

(1− γ)3

√
Bu log(|P||U||W||V|/δ)

N
.

(II) Assume N = N0 for simplicity. Let ζ⋆w,u = argmaxζ<0 L
model-free
AL (w, v, u, ζ) defined in

(54). Assume ζ⋆w⋆,u ∈ Z for u ∈ U and Bζ,L ≤ |ζ(s, a)|≤ Bζ,U for ζ ∈ Z , where
Bζ,L ∈ (0, 2/(2 + Bx)) and Bζ,U ≥ 2/(2 − Bx). Let Bζ = max{Bζ,U , B

−1
ζ,L}. Then, π̂

returned by Algorithm 4 achieves

J(π⋆)− J(π̂) ≲
Bv +Bu + (1 +Bv +Bζ(Bu + 1))Bw

(1− γ)3

√
log(|U||W||V||Z|/δ)

N
.
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Algorithm 4 ALM with MIS (ALMIS) for offline RL — Model-free
1: Inputs: Datasets D, D0, function classes W,V,U ,Z , g∗(x) = −x− 2− 1

x .
2: Find a solution ŵ, v̂, û, ζ̂ to maxw∈W minv∈V minu∈U maxζ∈Z L̂model-free

AL (w, v, u, ζ) defined as

(1− γ)

N0

N0∑
i=1

v(si) +
∑
a

u(si, a)πw(a|si) +
1

N

N∑
i=1

w(si, ai)
[
ri + γv(s′i)− v(si)

+ ζ(si, ai)
(
u(si, ai)− γ

∑
a′∈A

u(s′i, a
′)πw(a

′|s′i)
)
− g∗(ζ(si, ai))

] (15)

3: Return: π̂ = πŵ.

In Theorem 4, we make realizability assumptions on u⋆
w for w ∈ W and ζ⋆w⋆,u for u ∈ U . Such

assumptions are common in theory of RL with function approximation (Munos & Szepesvári, 2008;
Xie et al., 2021; Jiang & Huang, 2020) and removing them can be difficult or impossible (Foster
et al., 2021). Recently, Zhan et al. (2022); Chen & Jiang (2022) propose algorithms that only require
optimal solution realizability, however, these algorithms are either intractable or suboptimal.

5.3 EXAMPLE: BEHAVIOR REGULARIZATION VS. AUGMENTED LAGRANGIAN

A

CB

+1 +0
+1

+1
+0

RL

L

R

Figure 1: The agent starts
from A. Action L leads to B,
from where the agent collects
+1 reward. Action R leads
to C, from where only one
action leads to a +1 reward.
Nature decides which MDP is
presented to the learner. Data
distribution is µ(A,L) =
1/4, µ(A,R) = 1/2, µ(B) =
1/4, µ(C) = 0, which satis-
fies πw1

-concentrability.

We examine the MDP example in Figure 1 presented by Zhan et al.
(2022). Assume V = {v⋆} and W = {w1, w2}, where w1 always
selects L from A and w2 always selects R from A. One can check
w1(A,L) = 2, w1(A,R) = 0 and w2(A,L) = 0, w2(A,R) = 1.

Unregularized algorithm. As Zhan et al. (2022) state, the unregu-
larized algorithm fails to distinguish between w1 and w2 even with
infinite data as the objectives at w1 and w2 are exactly equal.

Behavior regularization. Consider an instantiation of PRO-
RL with regularizer −αEµ[w

2(s, a)]. Since in this example
Eµ[w

2
1(s, a)] > Eµ[w

2
2(s, a)], PRO-RL picks the wrong weight

w2, suffering constant suboptimality. Note, however, that PRO-
RL guarantees assume π⋆

α-concentrability. Intuitively, behavior
regularization causes π⋆

α to be more stochastic and thus requiring
µ(s, a) > 0 for more states and actions. Here, since µ covers both
(A,L) and (A,R), behavior regularization causes π⋆

α(R|A) > 0
and thus dπ

⋆
α(C) > 0. To handle the MDP in Figure 1, PRO-RL

additionally requires µ(C) > 0 to satisfy π⋆
α-concentrability.

ALM. In this example, ALM successfully picks the optimal w1, as
it avoids a mismatch between the actual and learned occupancies.
This is because in (10) the ALM term is zero at w1 due to realiz-
ability whereas at w2, it has a lower bound Es∼dπ2 (dw2(C)/dπ2(C)− 1)

2 ≥ dπ2(C) > 0.

6 DISCUSSION

We present a set of practical and statistically optimal algorithms for offline MAB, CB, and RL, un-
der general function approximation and single-policy concentrability. Our algorithms are designed
within the MIS formulation combined with a novel application of augmented Lagrangian method.
Importantly, our optimality guarantees hold under MIS combined with ALM alone, without any ad-
ditional form of conservatism such as via regularization or uncertainty quantification. Furthermore,
we investigate the role of regularizers in MIS algorithms. Although the empirical benefits of such
regularizers are often attributed to conservatism, our analysis suggests that conservatism stems from
the MIS formulation while the role of regularizers is to ensure the validity of learned occupancy.
Interesting future directions include conducting empirical evaluations of ALM, examining the pos-
sibility of removing strong realizability assumptions, and investigating practical and optimal offline
RL algorithms whose guarantees hold under milder variants of single-policy concentrability more
suited to function approximation.
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A RESULTS SUMMARY

Table 1: Summary of suboptimality bounds on the MIS objective with different added terms.
Setting Algorithm Added term Concentrability Suboptimality

MAB Unregularized MIS — single-policy π⋆ Ω(1) (Proposition 1)

MIS + behavior reg.

(Algorithm 5)

−αEµ[f(w(a))]

(α ≍ 1/
√
N)

two-policy π⋆, π⋆
α O

(
1√
N

)
(Theorem 1)

MIS + ALM

(Algorithm 1)
(Eµ[w(a)]− 1)2 single-policy π⋆ O

(
1√
N

)
(Theorem 2)

CB
MIS + behavior reg.

(Algorithm 6)

−αEµ[f(w(s, a))]

(α ≥ 0)
two-policy π⋆, π⋆

α Ω(Nβ≥− 1
2 ) (Proposition 3)

MIS + ALM

(Algorithm 2)
Eµ(

∑
a w(s, a)µ(a|s)− 1)2 single-policy π⋆ O

(
1√
N

)
(Theorem 3)

MDP
MIS + ALM

(Algorithms 3, 4)
Edπw

[(
dw(s)
dπw (s) − 1

)2]
single-policy π⋆ O

(
1√
N

)
(Theorem 4)

B RELATED WORK

We covered a number of related works in the introduction and throughout the paper. In this section,
we review more related literature.

B.1 CONCENTRABILITY ASSUMPTIONS

The lack of sufficient coverage in the offline dataset is one of the main challenges in offline RL. In RL
theory, dataset coverage has often been characterized by concentrability definitions (Munos, 2007;
Scherrer, 2014). Earlier works on offline RL impose all-policy concentrability on the density ratio
for all states and actions (Scherrer, 2014; Liu et al., 2019a; Chen & Jiang, 2019; Jiang, 2019; Wang
et al., 2019; Liao et al., 2020; Zhang et al., 2020a), with some requiring this ratio to be bounded
for every time step (Szepesvári & Munos, 2005; Munos, 2007; Antos et al., 2008; Farahmand et al.,
2010; Antos et al., 2007). The works Xie & Jiang (2021); Feng et al. (2019); Uehara et al. (2020)
use slightly milder definitions, such as requiring a bound on a weighted norm of density ratios. The
work Xie & Jiang (2021) makes even stronger assumptions such as lower bounded conditionals
µ(a|s) and exploratoriness of state marginals to circumvent the Bellman completeness requirement.

To handle partial coverage, recent algorithms are analyzed based on variants of single-policy con-
centrability (Rashidinejad et al., 2021). Some variants such as the ones presented in works Uehara
& Sun (2021) (model-based) or Xie et al. (2021); Song et al. (2022) (model-free) are more suited
to function approximation as they avoid bounded ratio assumption for all states and actions. How-
ever, existing offline RL algorithms based on these weaker definitions are either computationally
intractable (Uehara & Sun, 2021; Xie et al., 2021) or their statistical rate is suboptimal (Cheng et al.,
2022). The most related works are Zhan et al. (2022), which requires two-policy concentrability,
and Chen & Jiang (2022), which requires single-policy concentrability on density ratio for all states
and actions.

B.2 CONSERVATIVE OFFLINE RL

A series of recent works on offline RL have focused on addressing partial coverage of offline dataset
through conservative algorithm design. Broadly speaking, these methods can be broken down into
several categories. The first category of methods applies policy constraints, enforcing the learned
policy to be close to the behavior policy. Such constraints are applied either explicitly (Fujimoto
et al., 2019; Ghasemipour et al., 2020; Jaques et al., 2019; Siegel et al., 2020; Kumar et al., 2019;
Wu et al., 2019; Fujimoto & Gu, 2021), implicitly (Peng et al., 2019; Nair et al., 2020), or through
importance sampling (Liu et al., 2019b; Swaminathan & Joachims, 2015; Nachum et al., 2019b;
Lee et al., 2021; Zhang et al., 2020c;b). Another category involves learning conservative values
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such as conservative Q-learning (Kumar et al., 2020), fitted Q-iteration with conservative update
(Liu et al., 2020), subtracting penalties (Rezaeifar et al., 2022), and critic regularization (Kostrikov
et al., 2021). The last category includes model-based methods such as learning pessimistic models
(Kidambi et al., 2020; Guo et al., 2022), adversarial model learning (Rigter et al., 2022), forming
penalties using model ensembles (Yu et al., 2020), or incorporating a combination of model and
values (Yu et al., 2021).

On the theoretical side, as discussed in the introduction, the majority of works design pessimistic
offline RL algorithms that rely on some form of uncertainty quantification (Yin & Wang, 2021; Ue-
hara et al., 2021; Zhang et al., 2022; Yan et al., 2022; Yin et al., 2022; Kumar et al., 2021; Shi & Chi,
2022; Wang et al., 2022). One exception is the work of Zanette et al. (2021) that uses value-function
perturbation with actor-critic in linear function approximation setting. Other examples include the
recent theoretical works on MIS (Zhan et al., 2022; Chen & Jiang, 2022) and adversarially trained
actor-critic (Cheng et al., 2022).

Most related to our work are methods that focus on provable conservative offline RL under general
function approximation and partial coverage, summarized under the pessimistic algorithms segment
of Table B.2. Uehara & Sun (2021) propose a pessimistic model-based algorithm that under a
generalization of single-policy concentrability to bounded TV distance ratio, enjoys a 1/

√
N rate

but is computationally intractable. The work of Xie et al. (2021) presents a pessimistic model-
free algorithm under a variant of single-policy concentrability framework that requires a bounded
ratio of average Bellman error and Bellman completeness. While the original version of the algo-
rithm achieves the optimal 1/

√
N rate, it is computationally intractable. A practical version of the

algorithm is presented and has a suboptimal 1/N1/5 guarantee. Another related work by Chen &
Jiang (2022) studies MIS combined with value function approximation under π⋆-concentrability and
proves a 1/

√
gap(Q⋆)N rate, yet the guarantee degrades with Q⋆ gap and the algorithm is compu-

tationally intractable. Cheng et al. (2022) propose an adversarially trained actor-critic method that
enjoys provable 1/N1/3 rate under the single-policy concentrability definition of Xie et al. (2021)
and Bellman completeness and performs well in offline RL benchmarks when combined with deep
neural networks.

Table 2: Comparison of provable offline RL algorithms with general function approximation.
Algorithm Computation Uncertainty Assumption Coverage Unbiased Suboptimality

Uniform coverage algorithms

Munos & Szepesvári (2008) Efficient N/A Completeness all-policy Yes O
(

1√
N

)
Antos et al. (2008) Efficient N/A Completeness all-policy Yes O

(
1√
N

)
Pessimistic algorithms

Xie et al. (2021) Intractable Required Completeness single-policy Yes O
(

1√
N

)
Uehara & Sun (2021) Intractable Required Completeness single-policy Yes O

(
1√
N

)
Chen & Jiang (2022) Intractable Required Realizability only single-policy Yes O

(
1√

Ngap(Q⋆)

)
Zhan et al. (2022) Efficient No Realizability only two-policy No O

(
1

N1/6

)
Cheng et al. (2022) Efficient No Completeness single-policy No O

(
1

N1/3

)
ALMIS (this work) Efficient No Completeness single-policy Yes O

(
1√
N

)

B.3 OTHER TOPICS

Apart from RL, our work on bandits is related to the selection problem (Hong et al., 2021), though
the majority of works in this area are in the online setting. Additionally, in our analysis, we solve
a subset of stochastic optimization problems with possibly large or infinite stochastic constraints
involving conditional expectations. To our knowledge, finite-sample properties of such stochastic
optimization problems have not been addressed (Shapiro et al., 2021) and our work may open up
avenues for further research in this area.
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C SUPPLEMENTARY MATERIALS FOR MULTI-ARMED BANDITS

We start by presenting a pseudocode for the behavior regularized MIS algorithm in Appendix C.1. In
Appendix C.2, we characterize the bias caused by adding the behavior regularization in the primal-
dual objective (2). In Appendix C.3, we prove Proposition 1 that demonstrates the failure of unregu-
larized MIS for solving offline MABs, even when the optimal solutions are realizable and an optimal
policy is covered in the offline data. Appendix C.4 is devoted to the proof of Theorem 1, which gives
a tight performance upper bound of the PRO-MAB algorithm. Finally in Appendix C.5, we prove
Proposition 2, showing that constraint satisfaction is sufficient for the success of unregularized MIS.

C.1 PRIMAL-DUAL REGULARIZED OFFLINE MULTI-ARMED BANDITS (PRO-MAB)

Algorithm 5 Primal-dual Regularized Offline Multi-Armed Bandits (PRO-MAB)
1: Inputs: Dataset D = {(ai, ri)}Ni=1, classes V = [−Bv, Bv] and W , function f(·), parameter α.
2: Find a solution ŵ, v̂ to the following problem

max
w∈W

min
v∈V

L̂MAB
α (w, v) :=

1

N

N∑
i=1

w(ai)ri − αf(w(ai))− v(w(ai)− 1). (16)

3: Return: π̂(a) = ŵ(a)µ(a)∑
a ŵ(a)µ(a) if

∑
a ŵ(a)µ(a) > 0, and 1

|A| otherwise.

C.2 SOLUTIONS TO THE PRIMAL-DUAL REGULARIZED OBJECTIVE

In the following lemma, we characterize the optimal solution (w⋆
α, v

⋆
α) to the behavior-regularized

population objective (2) as well as the suboptimality of the policy induced by w⋆
α.

Lemma 1 (Regularized primal-dual solutions, MAB) Let f be differentiable, strictly convex,
nonnegative, and bounded by Bf . Denote r⋆ := maxa∈A r(a). Then, the following statements
hold:

(I) w⋆
0 = w⋆, where w⋆ is the importance weight corresponding to an optimal policy;

(II) v⋆α = r⋆ − cα, where 0 ≤ c ≤ f ′(C⋆);

(III) policy π⋆
α := πw⋆

α
satisfies J(π⋆)− J(π⋆

α) ≤ αBf .

Proof. Part (I) follows directly by strong duality. For part (II), notice that KKT conditions imply the
following relation between w⋆

α(a) and v⋆α:

w⋆
α(a) = max

{
0, (f ′)−1

(
r(a)− v⋆α

α

)}
.

Since f is strictly convex, f ′ is a monotonically increasing function. Therefore, the optimal arm a⋆

has the largest w⋆
α(a), which should be nonzero due to realizability of w⋆

α. In other words,

w⋆
α(a

⋆) = (f ′)−1

(
r⋆ − v⋆α(s)

α

)
⇒ v⋆α = r⋆ − αf ′(w⋆

α(a
⋆)). (17)

We now proceed to find a bound on f ′(w⋆
α(a

⋆)). Since w⋆
α is the optimal solution to (2), it must

satisfy the constraint ∑
a∈A

µ(a)w⋆
α(a) = 1 ⇒ w⋆

α(a
⋆) ≤ 1

µ(a⋆)
≤ C⋆,

where the last inequality stems from the single-policy concentrability assumption of π∗. Since f ′

is an increasing function, we have f ′(w⋆
α(a

⋆)) ≤ f ′(C⋆), which combined with (17) yields the
following lower bound on v⋆α

v⋆α ≥ r⋆ − αf ′(C⋆).
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Moreover, the convexity of f immediately gives the upper bound on v⋆α ≤ r⋆, which completes the
proof of part (II).

We now prove the last part. Since w⋆
α is the optimal solution to the regularized population objective

(2), by strong duality, we have

Ea∼dw⋆
α
[r(a)]− αEa∼µ[f(w

⋆
α(a))] ≥ Ea∼d⋆ [r(a)]− αEa∼µ[f(w

⋆(a))]

where dw⋆
α
(a) = µ(a)w⋆

α(a) by definition given in Section 2 and we used the fact that
Ea∼µ[w

⋆
α(a)] − 1 = Ea∼µ[w

⋆(a)] − 1 = 0. Therefore, the suboptimality of π⋆
α can be bounded as

follows

J(π⋆)− J(π⋆
α) = Ea∼d⋆ [r(a)]− Ea∼dw⋆

α
[r(a)]

≤ αEa∼µ[f(w
⋆(a))]− αEa∼µ[f(w

⋆
α(a))]

≤ αEa∼µ[f(w
⋆(a))] ≤ αf(C⋆) ≤ αBf ,

where in the second to last inequality we used the non-negativity of f and in the last equality, we
used the boundedness of f . □

C.3 PROOF OF PROPOSITION 1

Consider a 2-armed bandit instance with the following reward distributions, data distribution, and
function classes.

• Reward distributions: The first arm is optimal with deterministic reward and the second
arm has a Bernoulli distribution:

r(1) =
1

2
w.p. 1, r(2) ∼ Bernoulli(1/3).

• Data distribution: We consider a scenario where most data are concentrated on the optimal
arm:

µ(1) = 1− 2

N
, µ(2) =

2

N
.

Here, the single-policy concentrability coefficient is C⋆ = 1/µ(1) and is finite for N > 2.
Let N(a) denote the number of samples on arm a. To obtain upper and lower bounds on
N(a), we resort to the following lemma, which is a direct consequence of the Chernoff
bound for binomial variables.

Lemma 2 (Chernoff bounds, binomial)
(I) With probability at least 1 − exp(−Nµ(a)δ2u/(2 + δu)), one has N(a) ≤ (1 +

δu)Nµ(a) for any δu > 0;
(II) With probability at least 1− exp(−Nµ(a)δ2l /2), one has (1− δl)Nµ(a) ≤ N(a) for

any 0 < δl < 1.

We condition on the event that the number of samples on the second arm is between 1 and 5
which occurs with probability larger than 1− exp

(
−2 · 0.92

2

)
− exp

(
−2 · 1.952

1.95+2

)
≥ 0.4

due to Lemma 2 when setting δl = 0.9 and δu = 1.95:

(1− 0.9) ·Nµ(2) ≤ N(2) ≤ (1 + 1.95) ·Nµ(2) ⇒ 1 ≤ N(2) ≤ 5.

• Function classes: Assume that W = {w1 = (C⋆, 0), w2 = (0, Bw)} and V = {1/2}.
By Lemma 1, we have v⋆0 = r⋆ = 1/2. Therefore, the problem is realizable as
v⋆0 ∈ V and w⋆

0 = w⋆ = (C⋆, 0) ∈ W . Furthermore, notice that for the second
candidate w2 = (0, Bw) ∈ W , the normalization factor is small for a constant Bw as
dw2

=
∑

a w2(a)µ(a) = 2Bw/N .

Consider the case where all N(a) samples on the second arm observe a reward of 1, which happens
with a probability of at least 1

35 as we conditioned on the event that 1 ≤ N(2) ≤ 5. We now compute
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ŵ by solving the empirical objective (16) with α = 0. Note that since |V|= 1, it suffices to compute
ŵ = argmaxw∈W L̂MAB

0 (w, v = 1/2). We have

L̂MAB
0 (w1, 1/2) =

N(1)

N

[
C⋆ · 1

2
− 1

2
(C⋆ − 1)

]
+

N(2)

2N
=

1

2

L̂MAB
0 (w2, 1/2) =

N(1)

2N
+

N(2)

N

[
Bw − 1

2
(Bw − 1)

]
=

1

2
+

N(2)Bw

2N

Since we conditioned on the event with N(2) ≥ 1, solving the optimization problem
maxw∈W L̂MAB

0 (w, v = 1/2) finds ŵ = (0, Bw), leading to a policy that picks the second arm
with probability one. Therefore, with constant probability of 0.4× 1/35 > 0.001, we have

J(π⋆)− J(π̂) =
1

2
− 1

3
=

1

6
.

C.4 PROOF OF THEOREM 1

Before embarking on the main proof, we present two lemmas related to the primal-dual regularized
approach. The first lemma shows the closeness of population objective (2) to its empirical approx-
imation used in Algorithm 1, which is a direct consequence of Hoeffding’s inequality. We also
show that closeness of objectives results in the closeness of w⋆

α and ŵ, which are respectively the
optimums to (2) and (16). The proof of this lemma is deferred to the end of this subsection.

Lemma 3 (Empirical and population closeness, PRO-MAB) Fix δ > 0 and define

ϵMAB
stat,α := ((Bw + 1)(Bv + 1) + αBf )

√
log|V||W|/δ

N
. (18)

For any w ∈ W and v ∈ V , the following bounds hold with probability at least 1− δ

(I) |LMAB
α (w, v)− L̂MAB

α (w, v)|≤ ϵMAB
stat,α;

(II) LMAB
α (w⋆

α, v)− LMAB
α (ŵ, v) ≤ 2ϵMAB

stat,α.

The second lemma finds a lower bound on the occupancy normalization factor dŵ =
∑

a ŵ(a)µ(a)
enforced by the behavior regularization.

Lemma 4 (Occupancy validity enforced by behavior regularization) Let f be an Mf -strongly-
convex function and fix δ > 0. Then, with probability at least 1− δ, one has

dŵ ≥ 1−

√
4ϵMAB

stat,α

αMf
,

where ϵMAB
stat,α is defined in (18).

For the rest of this proof, we condition on the high probability events of Lemmas 3 and 4. Define

ϵŵ,r :=
∑
a

w⋆
α(a)µ(a)r(a)− ŵ(a)µ(a)r(a). (19)

By part (II) of Lemma 3, we have LMAB
α (v⋆α, w

⋆
α)− LMAB

α (v⋆α, ŵ) ≤ 2ϵMAB
stat,α. Therefore,

ϵŵ,r − αEµ[f(w
⋆
α(a))− f(ŵ(a))] + v⋆α(dŵ − 1) ≤ 2ϵMAB

stat,α. (20)

Recall from Lemma 1 that we have v⋆α = r⋆ − αc, where c ≤ f ′(C⋆). Thus, combined with (20),
we write

ϵŵ,r + r⋆(dŵ − 1) ≤ 2ϵMAB
stat,α + αEµ[f(w

⋆
α(a))− f(ŵ(a))] + αc(dŵ − 1)

≤ 2ϵMAB
stat,α + α(2Bf + αf ′(C⋆)Bw), (21)

where in the second line we used the bounds |f(x)|≤ Bf and dŵ ≤ Bw. Note that setting α =
16ϵMAB

stat,1/Mf , Lemma 4 asserts that dŵ ≥ 1/2. Since dŵ ≥ 1/2, the learned policy is written as
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π̂ = ŵ(a)µ(a)/dŵ. With simple algebraic manipulations, we find the following expression for the
suboptimality of π̂ with respect to π⋆

α:

J(π⋆
α)− J(π̂) =

∑
a

w⋆
α(a)µ(a)r(a)−

1

dŵ
ŵ(a)µ(a)r(a)

=
∑
a

w⋆
α(a)µ(a)r(a)− ŵ(a)µ(a)r(a) +

∑
a

(
1− 1

dŵ

)
ŵ(a)µ(a)r(a)

= ϵŵ,r + (dŵ − 1)
∑
a

1

dŵ
ŵ(a)µ(a)r(a)

= ϵŵ,r + (dŵ − 1) J(π̂)

= ϵŵ,r + (dŵ − 1) J(π⋆
α)− (dŵ − 1) [J(π⋆

α)− J(π̂)] .

Let ϵreg = J(π⋆)− J(π⋆
α) = r⋆ − J(π⋆

α) denote the suboptimality suffered due to behavior regular-
ization. Suboptimality J(π⋆

α)− J(π̂) can be expressed as

J(π⋆
α)− J(π̂) =

1

dŵ
(ϵŵ,r + (dŵ − 1) J(π⋆

α))

=
1

d̂
(ϵŵ,r + (dŵ − 1) (r⋆ − ϵreg))

≤ 1

dŵ
(ϵŵ,r + (dŵ − 1) r⋆)− 1

dŵ
(dŵ − 1) ϵreg.

We use the above inequality to bound the suboptimality with respect to an optimal policy:

J(π⋆)− J(π̂) = J(π⋆)− J(π⋆
α) + J(π⋆

α)− J(π̂)

= ϵreg + J(π⋆
α)− J(π̂)

≤ ϵreg +
1

dŵ
(ϵŵ,r + (dŵ − 1) r⋆)− 1

dŵ
(dŵ − 1) ϵreg

≤ 1

dŵ
(ϵŵ,r + (dŵ − 1) r⋆) +

1

dŵ
ϵreg.

Recall that we have 1/dŵ ≤ 2 and that ϵreg is bounded by αBf by Lemma 1. Therefore,

J(π⋆)− J(π̂) ≤ 1

dŵ
(ϵŵ,r + (dŵ − 1) r⋆) +

1

dŵ
ϵreg

≤ 2 (ϵŵ,r + (dŵ − 1) r⋆) + 2αBf

≤ 4ϵMAB
stat,α + α(4Bf + 2f ′(C⋆)Bw)) + 2αBf

≲ α(Bf + f ′(C⋆)Bw).

where the penultimate inequality relies on the bound derived in (21).

Proof of Lemma 3. L̂MAB
α (w, v) is an empirical average over independent and bounded random

variables, where the bound on individual variables is computed as

|w(ai)ri − αf(w(ai))− v(w(ai)− 1)| ≤ Bw + αBf +Bv(Bw + 1)

≤ (Bw + 1)(Bv + 1) + αBf .

It is easy to see that ED[L̂
MAB
α (w, v)] = LMAB

α (w, v), where the expectation is taken with respect to
the randomness in dataset D. Part (I) of this lemma is proved by applying Hoeffding’s inequality
along with a union bound on w and v.

The proof of part (II) is similar to Lemma 7 of Zhan et al. (2022) and relies on decomposing the
objective difference and using the fact that (ŵ, v̂) correspond to the saddle points of LMAB

α and L̂MAB
α .

For any w ∈ W , define

v̂w = argmin
v∈V

L̂MAB
α (w, v) (22)
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We write
LMAB
α (w⋆

α, v)− LMAB
α (ŵ, v) = LMAB

α (w⋆
α, v)− LMAB

α (w⋆
α, v̂w⋆

α
)︸ ︷︷ ︸

:=T1

+LMAB
α (w⋆

α, v̂w⋆
α
)− L̂MAB

α (w⋆
α, v̂w⋆

α
)︸ ︷︷ ︸

:=T2

+ L̂MAB
α (w⋆

α, v̂w⋆
α
)− L̂MAB

α (ŵ, v̂)︸ ︷︷ ︸
:=T3

+ L̂MAB
α (ŵ, v̂)− L̂MAB

α (ŵ, v)︸ ︷︷ ︸
:=T4

+ L̂MAB
α (ŵ, v)− LMAB

α (ŵ, v)︸ ︷︷ ︸
:=T5

,

Each term is bounded as follows:

• T1 = 0 because w⋆
α satisfies the constraint

∑
a w

⋆
α(a)µ(a) = 1 and for any v1, v2 we have

LMAB
α (w⋆

α, v1) = LMAB
α (w⋆

α, v2).
• T2 ≤ ϵstat due to Lemma 3.

• T3 ≤ 0 because ŵ = argmaxw∈W L̂α(v̂w, w).

• T4 ≤ 0 because v̂ = argminv∈V L̂MAB
α (v, ŵ).

• T5 ≤ ϵstat due to Lemma 3.

Summing up the bounds on each term yields the desired bound. □

Proof of Lemma 4. This lemma is a direct consequence of Lemma 8 in Zhan et al. (2022). For
completeness, we present a simplified proof for the multi-armed bandit setting.

First, observe that since f is Mf -strongly-convex, the function LMAB
α (v⋆α, w) is αMf -strongly-

concave with respect to w and norm ∥·∥2,µ. Furthermore, since w⋆
α = argmaxw LMAB

α (v⋆, w),
we have

∥ŵ − w⋆
α∥2,µ≤

√
2(LMAB

α (w⋆
α, v

⋆
α)− LMAB

α (ŵ, v⋆α))

αMf
.

The above bound along with the bound on LMAB
α (w⋆

α, v
⋆
α) − LMAB

α (ŵ, v⋆α) ≤ 2ϵMAB
stat,α showed in

Lemma 1, give the following bound on |dŵ − 1|

|dŵ − 1| =

∣∣∣∣∣∑
a

ŵ(a)µ(a)−
∑
a

w⋆
α(a)µ(a)

∣∣∣∣∣ ≤ ∥ŵ − w⋆
α∥1,µ≤ ∥ŵ − w⋆

α∥2,µ≤

√
4ϵMAB

stat,α

αMf
,

which completes the proof. □

C.5 PROOF OF PROPOSITION 2

Consider the difference between population objective with α = 0 at w⋆
0 = w⋆ and ŵ, which is

bounded by Lemma 3:
L(w⋆, v⋆)− L(ŵ, v⋆) = Ea∼µ[r(a)(w

⋆(a)− ŵ(a))]− v⋆Ea∼µ[w
⋆(a)− ŵ(a)] ≲ ϵMAB

stat,α. (23)

We have Ea∼µ[w
⋆(a)] = 1 due to realizability and Ea∼µ[ŵ(a)] = 1 is our assumption. Thus

the second term in (23) is zero. Moreover, note that π̂(a) = ŵ(a)µ(a)/Ea∼µ[w(a)] = ŵ(a).
Substituting the expression for ϵMAB

stat,α from (18) with α = 0, we obtain

J(π⋆)− J(π̂) = Ea∼µ[r(a)(w
⋆(a)− ŵ(a))] ≲ Bw(Bv + 1)

√
log|V||W|/δ

N
,

where we used the fact that Bw ≍ Bw + 1 since Bw ≥ 1 due to realizability of w⋆.

D PROOFS FOR CONTEXTUAL BANDITS

This section of the appendix is organized as follows. In Appendix D.1, we present details of the
PRO-CB algorithm. Appendix D.2 is devoted to the proof of Proposition 1, which shows that the
PRO-CB algorithm fails to achieve the statistically optimal rate of 1/

√
N . The proof of subopti-

mality upper bound for the conservative offline CB algorithm with ALM is presented in Theorem
3.
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D.1 PRIMAL-DUAL REGULARIZED OFFLINE CONTEXTUAL BANDITS (PRO-CB)

Define importance weights w(s, a) = d(s, a)/µ(s, a) to denote the ratio of occupancy and data dis-
tribution. The primal-dual regularized approach (Zhan et al., 2022) solves the following population
objective

max
w≥0

min
v

LCB
α (w, v) := Es,a∼µ [w(s, a)r(s, a)]− Es,a∼µ[v(s)(w(s, a)− 1)]− αEs,a∼µ [f (w(s, a))] ,

(24)

The above optimization problem satisfies strong duality. We define w⋆
α, v

⋆
α to respectively denote the

optimal solutions to the primal and dual variables. Approximating w, v to belong to function classes
W,V and solving the empirical version of objective (24) leads to the PRO-CB given in Algorithm
6.

Algorithm 6 Primal-dual Regularized Offline Contextual Bandits (PRO-CB)
1: Inputs: Dataset D = {(si, ai, ri)}Ni=1, function classes W,V , function f(·), parameter α
2: Find a solution ŵ, v̂ to the following problem

max
w∈W

min
v∈V

L̂CB
α (w, v) :=

1

N

N∑
i=1

w(si, ai)ri − αf(w(si, ai))− v(si)(w(si, ai)− 1). (25)

3: Return: π̂ = πŵ.

D.2 PROOF OF PROPOSITION 3

We separate the proof into two cases: α ≥ Nβ for β > −1/2 and α ≤ Õ(N−1/2). When α is large,
we show that the large bias caused by regularization results in suboptimality of α even in MABs.
When α is small, we construct a two-state CB instance (as the single-state case is indeed successful
due to Theorem 1), showing that such small α does not sufficiently enforce occupancy validity in
states with a relatively small but still significant state distribution ρ(s).

D.2.1 PROOF FOR LARGE α

If there exists − 1
2 < β such that α ≥ Nβ , then we consider a simple single-state two-arm contextual

bandit (equivalently multi-armed bandit) instance:

• Reward distribution: Both arms have deterministic rewards and the suboptimal arm has a
value gap of α:

r(1) = 1 w.p. 1, r(2) = max{0, 1− α} w.p. 1.

• Data distribution: We construct the data distribution such that both arms have constant
probability density, which implies a constant concentrability ratio C⋆. Here we assume
Mf < 100 for convenience, but if Mf is larger we can use the same construction with an
even larger constant as the denominator.

µ(1) =
Mf

100
, µ(2) = 1− Mf

100
.

• Function classes: We assume both W and V contain only the optimal regularized solutions
(w⋆

α, v
⋆
α) and the optimal unregularized solutions (w⋆, v⋆), which satisfy the realizability

requirements of PRO-CB:

W = {w⋆
α, w

⋆}, V = {v⋆α, v⋆}.

Our argument is broken down in two steps. In the first step, we show that the suboptimality of the
optimal regularized policy, which is the policy induced by the regularized optimal weights π⋆

α :=
πw⋆

α
, is at least of order min{1, α}. Then, in the second step, we prove that w⋆

α is chosen with a
constant probability.

23



Published as a conference paper at ICLR 2023

Step 1: Suboptimality of π⋆
α. In the particular offline bandit instance above, we show the follow-

ing lower bound on suboptimality of π⋆
α

J(π⋆)− J(π⋆
α) = π⋆

α(2) · (r(1)− r(2)) = µ(2)w⋆
α(2) ·min{1, α} = Ω(min{1, α}). (26)

To establish (26), we show that w⋆
α(2) > c for a fixed constant c = 1

2 . We prove this by contradic-
tion. Suppose

w⋆
α(2) ≤ c. (27)

By KKT conditions we have

w⋆
α(2) = max

{
0, (f ′)−1

(
r(2)− v⋆α

α

)}
≥ (f ′)−1

(
r(2)− v⋆α

α

)
.

Therefore, using the fact that f ′ is strictly increasing since f is strictly convex, we lower bound v⋆α
according to

v⋆α ≥ r(2)− αf ′(w⋆
α(2)) ≥ r(1)− (r(1)− r(2))− αf ′ (c) .

Combining the above bound on v⋆α with the KKT condition on w⋆
α(1), we then obtain

w⋆
α(1) =(f ′)−1

(
r(1)− v⋆α

α

)
≤ (f ′)−1

(
r(1)− r(2)

α
+ f ′ (c)

)
. (28)

Here, we used the fact that v⋆α ≥ r⋆ = r(1) and that f(0) = 0 so (f ′)−1((r(1) − v⋆α)/α) ≥ 0.
Moreover, since the regularization function f is Mf -strongly convex, we write

f ′
(
1− cµ(2)

µ(1)

)
− f ′ (c) ≥ Mf

(
1− cµ(2)

µ(1)
− c

)
= Mf

1− c

µ(1)
= 100(1− c) > 1,

⇒ r(1)− r(2)

α
+ f ′ (c) ≤ 1 + f ′ (c) < f ′

(
1− cµ(2)

µ(1)

)
. (29)

Therefore, we can continue to upper bound the RHS of (28):

w⋆
α(1) ≤ (f ′)−1

(
r(1)− r(2)

α
+ f ′ (c)

)
<︸︷︷︸

by (29)

(f ′)−1

(
f ′
(
1− cµ(2)

µ(1)

))
=

1− cµ(2)

µ(1)
,

which further implies that

w⋆
α(1)µ(1) < 1− cµ(2) ≤︸︷︷︸

by (27)

1− w⋆
α(2)µ(2) ⇒

∑
a

w⋆
α(a)µ(a) < 1. (30)

Note that (30) contradicts with the fact that (w⋆
α, v

⋆
α) is the optimal min-max solution of LMAB

α
because it violates the constraint Eµ[w(a)] = 1. Therefore, (27) should not hold in the first place,
and we must have

J(π⋆)− J(π⋆
α) = µ(2)w⋆

α(2) · (r(1)− r(2)) > c

(
1− Mf

100

)
min{1, α} ≳ min{1, α} (31)

Step 2: w⋆
α is picked with large probability. We now show that w⋆

α is picked by the algorithm
with at least a constant probability. Note that since w⋆

α and w⋆ both satisfy the constraint Eµ[w]−1 =
0, objectives LMAB

α (w⋆
α, v) and LMAB

α (wα, v) do not depend on the Lagrange multiplier variable v.
We argue that at the population level, we have the following lower bound on the gap LMAB

α (w⋆
α, v)−

LMAB
α (w⋆, v) ≳ α. Using the definition of LMAB

α , one has

LMAB
α (w⋆

α, ·)− LMAB
α (w⋆, ·)

=αEµ[f(w
⋆(a))− f(w⋆

α(a))]− µ(2)w⋆
α(2)(r(1)− r(2))

=α

(
µ(1)

(
f(w⋆(1))− f(w⋆

α(1))
)
+ µ(2)

(
f(w⋆(2))− f(w⋆

α(2))
))

− µ(2)w⋆
α(2)(r(1)− r(2))

≥α
(
µ(1)

(
w⋆(1)− w⋆

α(1)
)
· f ′(w⋆

α(1))− µ(2)f(w⋆
α(2))

)
− µ(2)w⋆

α(2)(r(1)− r(2)) (32)

=αµ(2)

(
f ′(w⋆

α(1)) · w⋆
α(2)− f(w⋆

α(2))− w⋆
α(2) ·

r(1)− r(2)

α

)
, (33)
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In (32), we used the convexity of regularization function f as well as the fact that f(w⋆(2)) =
f(0) = 0. Moreover, (33) holds because

µ(1) (w⋆(1)− w⋆
α(1)) = µ(1)

(
1

µ(1)
− w⋆

α(1)

)
= 1− µ(1)w⋆

α(1) = µ(2)w⋆
α(2).

By KKT conditions we also have

f ′(w⋆
α(1)) =

r(1)− v⋆α
α

=
r(1)− r(2) + αf ′(w⋆

α(2))

α
=

r(1)− r(2)

α
+ f ′(w⋆

α(2)). (34)

Plugging (34) back into (33), we obtain

LMAB
α (w⋆

α, ·)− LMAB
α (w⋆, ·) ≥αµ(2)

(
f ′(w⋆

α(2)) · w⋆
α(2)− f(w⋆

α(2))
)

≥αµ(2) · Mf

2
w⋆

α(2)
2 > αµ(2) · Mf

2
c2 ≳ α, (35)

where (35) is based on the fact that f is Mf -strongly convex, and that w⋆
α(2) > c proved in Step 1.

We now prove that such large lower bound on population objective difference leads the algorithm to
select w⋆

α. Recall from Lemma 3 that with at least constant probability (e.g. setting δ = 0.1), for any
v ∈ V, w ∈ W , one has the following bound on difference between the population and empirical
objectives ∣∣∣LMAB

α (w, v)− L̂MAB
α (w, v)

∣∣∣ ≲ 2ϵMAB
stat,α,

where ϵMAB
stat,α is of order 1/

√
N as defined in (18). Combining the above inequality with (35), for any

v, v′ ∈ V we have

L̂MAB
α (w⋆

α, v)− L̂MAB
α (w⋆, v′)

≳ α− ϵMAB
stat,α ≳ α− (1 + α)N− 1

2 ≳ Nβ −N− 1
2 .

Therefore, since β > −1/2, we conclude that w⋆
α is chosen by the algorithm with constant proba-

bility:

min
v∈V

L̂MAB
α (w⋆

α, v)−min
v∈V

L̂MAB
α (w⋆, v) > 0 ⇒ w⋆

α = argmax
w∈W

min
v∈V

L̂MAB
α (w, v).

Combining the above result with the suboptimality lower bound of π⋆
α in (31) completes the proof

for α ≥ Nβ .

D.2.2 PROOF FOR SMALL α

Now suppose α ≤ Õ(N− 1
2 ), where Õ hides the logarithmic factors. In this case, we consider the

following two-state two-arm contextual bandit instance:

• State and reward distributions: We construct the states such that state 1 has a very small
probability mass. For state 1, the first arm is optimal with a Bernoulli-distributed reward
and the second arm is suboptimal with a deterministic reward. For state 2, both arms have
deterministic rewards. Importantly, state 1 has a constant value gap in its suboptimal action.

ρ(1) = N− 1
4 , r(1, 1) ∼ Bernoulli

(
1

2

)
, r(1, 2) ≡ 1

3
;

ρ(2) = 1−N− 1
4 , r(2, 1) ≡ 1

2
, r(2, 2) ≡ 1

3
.

• Data distribution: We assume that for both states, most of the probability density is con-
centrated on the optimal arm.

µ(s) = ρ(s), s = 1, 2.

µ(1|1) = µ(1|2) = 1− 2

N
, µ(2|1) = µ(2|2) = 2

N
.
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• Function classes: Let w be defined as w̃(2, a) = w⋆
α(2, a) and w̃(1, a) = 0 for a = 1, 2.

Consider the following function classes W and V:

W = {w⋆
α, w̃}, V = {v⋆α, v⋆}. (36)

The proof is broken down into 4 steps. In the first step, we show that when α ≤ Õ(N− 1
2 ) and N

is sufficiently large, the regularized optimal policy is the same as the unregularized optimal policy,
i.e., w⋆

α = w⋆. Therefore, the function class W defined in (36) is realizable w⋆
α = w⋆ ∈ W . In the

second step, we prove that with constant probability v⋆α = argminv∈V L̂CB
α (w̃, v). Then, we show

that solving the saddle point of the empirical objective L̂CB
α (w, v) selects w̃ over w⋆

α with a constant
probability. Finally, we prove that w̃ induces a policy πw̃ that suffers from suboptimality of order
N−1/4, which completes the proof.

Step 1: Regularized optimal weights coincides with unregularized optimal weights. Since the
population optimization problem (24) is independent across states at a population level, we can use
the result of Lemma 1 to conclude that

v⋆α(s) = r⋆(s)− c(s)α, and

w⋆
α(s, a) = max

{
0, (f ′)−1

(
r(s, a)− v⋆α(s)

α

)}
= max

{
0, (f ′)−1

(
c(s)− r⋆(s)− r(s, a)

α

)}
,

where 0 ≤ c(s) ≤ f ′(C⋆) for s ∈ {1, 2}. Since r⋆(s)− r(s, 2) = 1
6 = Θ(1), for N ≥ (6f ′(C⋆))2,

we have w⋆
α(s, 2) = 0 for the suboptimal arm 2. Thus w⋆

α(s) = w⋆(s) = 1
µ(1|s) . Correspondingly,

we can use the KKT conditions to compute v⋆α(s) = r⋆(s)− αf ′
(

1
µ(1|s)

)
.

Step 2: v⋆α = argminv∈V L̂CB
α (w̃, v) with constant probability. Let µ̂ denote the empirical state-

arm distribution and r̂ denote the empirical mean reward. Define the following event:

E :=

{∑
a

µ̂(a|s)w̃(s, a) ≤ 1 for s ∈ {1, 2}

}
. (37)

Recall that we defined w̃(1, a) = 0 and w̃(2, a) = w⋆(2, a). Thus, the above event can be equiva-
lently written as∑

a

µ̂(a|2)w⋆
α(2, a) ≤ 1 ⇐⇒

∑
a

(µ̂(a|2)− µ(a|2))w⋆
α(2, a) ≤ 0. (38)

Here we used the fact that
∑

a µ(a|2)w⋆
α(s, 2) = 1. Moreover, in Step 1 we showed that w⋆

α = w⋆,
thus w⋆

α(2, 2) = 0 and (38) corresponds to the following event

E = {µ̂(1|2)− µ(1|2) ≤ 0} . (39)

Since µ̂(1|2) is an empirical version of the conditional probability µ(1|2), event E happens with
probability 1

2 .

We condition on the event E for the rest of the proof. Using the fact that v⋆α(s) ≤ r⋆(s) = v⋆(s),
we conclude that

L̂CB
α (w̃, v⋆α) ≤ L̂CB

α (w̃, v⋆) ⇒ L̂CB
α (w̃, v⋆α) = min

v∈V
L̂CB
α (w̃, v). (40)

Step 3: Analyzing the probability of picking w⋆
α. Now we compare the value of L̂CB

α (·, v⋆α)
evaluated at w̃ and w⋆

α. We use the definition w̃(2, a) = w⋆
α(2, a) and write

L̂CB
α (w⋆

α, v
⋆
α)− L̂CB

α (w̃, v⋆α)

=µ̂(1)

[
r̂(1, 1)µ̂(1|1)w⋆

α(1, 1) + αµ̂(1|1)f(w⋆
α(1, 1)) + v⋆α(1)

(∑
a

µ̂(a|1) (w(1, a)− w⋆
α(1, a))

)]
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Noting that v⋆α(1) = r(1, 1) − αf ′ (w⋆
α(s1, a1)), w̃(1, a) = 0, and w⋆

α(1, 1) = w⋆(1, 1) = 1
µ(1|1) ,

we further simplify the above equation

L̂CB
α (w⋆

α, v
⋆
α)− L̂CB

α (w̃, v⋆α)

=µ̂(1)

[(
r̂(1, 1)− r(1, 1) + αf ′

(
1

µ(1|1)

))
µ̂(1|1)
µ(1|1)

+ αµ̂(1|1)f
(

1

µ(1|1)

)]
(41)

=µ̂(1, 1)

[
r̂(1, 1)− r(1, 1)

µ(1|1)
+ α ·

(
1

µ(1|1)
f ′
(

1

µ(1|1)

)
+ f

(
1

µ(1|1)

))]
. (42)

We then prove that with constant probability, the first term in (42) is negative with a magnitude
larger than the second term:

r̂(1, 1)− r(1, 1)

µ(1|1)
≲ −N−3/8. (43)

The proof of this inequality relies on anti-concentration bounds of binomial random variables and is
presented at the end of this section. By Inequality (43) combined with (40), we conclude that

min
v∈V

L̂CB
α (w̃, v) = L̂CB

α (w̃, v⋆α) > L̂CB
α (w⋆

α, v
⋆
α) ≥ min

v∈V
L̂CB
α (w⋆

α, v), (44)

which guarantees that the algorithm picks w̃ with a constant probability.

Step 4: Suboptimality of πw Finally, for the policy πw induced by w, we have

J(π⋆
α)− J(πw) = µ(s1)πw(2|1)(r(1, 1)− r(1, 2)) =

N− 1
4

12
≥ Ω(Nβ),

for β = − 1
4 > − 1

2 , as desired. The proof for small α is thus complete.

Proof of Inequality (43). Using the Chernoff bounds for binomial random variables given in Lemma
2 (adapted from Proposition 7.3.2 of Matoušek & Vondrák (2001)), one can conclude that the fol-
lowing event E ′ happens with probability at least 0.5:

E ′ :=
{
N(1, 1) ≥ 0.1Nµ(1, 1) ≥ 0.05N

3
4

}
. (45)

Furthermore, E and E ′ are independent because the random variable r̂(s1, a1) is independent from
the arm distribution within state s2. Therefore, conditioning on E ∩E ′ which happens with probabil-
ity 0.5 × 0.5 = 0.25, we use the anti-concentration bounds for Binomial random variables Lemma
5 to obtain the following lower bound:

Pr

(
r̂(1, 1)− r(1, 1) ≤ −

√
log(2c1)

c2N(1, 1)
≤ −c′N− 3

8

∣∣∣∣∣ E ∩ E ′

)
≥ 0.5, (46)

where c′ =
√

20 log(2c1)
c2

is a universal constant. Therefore, we have established that (43) holds with
constant probability.

Lemma 5 (Anti-concentration of Binomial random variables) Let X1, · · · , Xn be independent
random variables following the Bernoulli distribution with mean 1

2 , and let X = 1
n

∑n
i=1 Xi be

the empirical mean. Then we have that for any t ∈ [0, 1
8 ] and universal constants c1, c2,

Pr
(
X ≤ E[X]− t

)
≥ c1e

−c2t
2n. (47)

D.3 PROOF OF THEOREM 3

Proof of this theorem largely follows similar steps as the proof we presented for Theorem 1. In
particular, we start by presenting two lemmas. The first lemma leverages Hoeffding’s inequality to
establish the closeness of the population objective (7) and empirical objective (8). Additionally, we
show that this result leads to the closeness of population objective at w⋆ and ŵ. Proof of this lemma
is presented at the end of this subsection.
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Lemma 6 (Empirical and population closeness, CB) Fix δ > 0 and define

ϵCB
stat := 3(Bw + 1)2(Bv + 1)

√
log(|W||V|/δ)

N
. (48)

For any w ∈ W and v ∈ V , the following statements hold with probability at least 1− δ

(I)
∣∣∣LCB

AL (w, v)− L̂CB
AL (w, v)

∣∣∣ ≤ ϵCB
stat;

(II) LCB
AL (w

⋆, v)− LCB
AL (ŵ, v) ≤ 2ϵCB

stat.

In the second lemma, we prove that the ALM term enforces a lower bound on normalization factors
dŵ

µ (s) :=
∑

a ŵ(s, a)µ(a|s) for significant states.

Lemma 7 (Occupancy validity enforced by the ALM) Define the state space subset

Ss :=

{
s

∣∣∣∣ dŵµ (s) ≤ 1

2

}
. (49)

For any fixed δ > 0, the following statements hold with probability at least 1− δ,

(I) Es,a∼µ [(r
⋆(s)− r(s, a))ŵ(s, a)] ≲ ϵCB

stat;

(II)
∑

s∈Ss
µ(s) ≲ ϵCB

stat;

where ϵCB
stat is defined in (48).

Given the two lemmas above, our suboptimality analysis can be broken down into two simple steps.
First, we partition the states based on Ss defined in (49) and decompose the policy suboptimality
accordingly:∑

s

µ(s)V ⋆(s)−
∑
s

µ(s)V π̂(s) =
∑
s∈Ss

µ(s)(V ⋆(s)− V π̂(s)) +
∑
s̸∈Ss

µ(s)(V ⋆(s)− V π̂(s)),

≲ ϵCB
stat +

∑
s̸∈Ss

µ(s)(V ⋆(s)− V π̂(s)) (50)

≤ ϵCB
stat + 2

∑
s

dŵ(s)(V
⋆(s)− V π̂(s)) (51)

In (50), we used part (II) in Lemma 7 to bound the first term and (51) uses the fact that by definition,
for all s ̸∈ Ss we have µ(s) < 2d̂(s) and V ⋆(s)− V π̂(s) ≥ 0. Moreover, the second term in (51) is
bounded by part (I) of Lemma 7 since

∑
s

dŵ(s)(V
⋆(s)− V π̂(s)) =

∑
s:dŵ(s)>0

dŵ(s)

(
r⋆(s)−

∑
a

π̂(a|s)r(s, a)

)

=
∑

s:dŵ(s)>0

∑
a

dŵ(s, a)r
⋆(s)− dŵ(s)

ŵ(s, a)µ(s, a)

dŵ(s)
r(s, a)

=
∑

s:dŵ(s)>0

∑
a

ŵ(s, a)µ(s, a)r⋆(s)− ŵ(s, a)µ(s, a)r(s, a)

≤
∑
s,a

µ(s, a)ŵ(s, a)(r⋆(s)− r(s, a)) ≲ ϵCB
stat,

where the equations follow from the definition of π̂. The final suboptimality bound is proved by
noting that (Bw + 1)2 ≍ B2

w since Bw ≥ 1 due to realizability of w⋆(s, a⋆) ≥ 1.
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Proof of Lemma 6. To prove part (I), notice that Eµ

[
L̂CB

AL(w, v)
]

= LCB
AL(w, v). Furthermore,

L̂CB
AL(w, v) is an empirical average of i.i.d. random variables which are bounded by∣∣∣∣∣∣w(s, a)r(s, a)− v(s)(w(s, a)− 1)−

(∑
a

w(s, a)µ(a|s)− 1

)2
∣∣∣∣∣∣

≤ Bw +Bv(Bw + 1) +B2
w

≤ 3(Bw + 1)2(Bv + 1)

Applying Hoeffding’s inequality along with a union bound on w ∈ W and v ∈ V finishes the proof
of part (I).

We now prove part (II). For the primal-dual objective without the AL term

max
w≥0

min
v

LCB(w, v) := Es,a∼µ [w(s, a)r(s, a)]− Es,a∼µ[v(s)(w(s, a)− 1)],

we have (w⋆, v⋆) ∈ argmaxw≥0 argminv L
CB(w, v) by strong duality. Moreover, since w⋆ is

realizable, it satisfies the validity constraint Ea∼µ(·|s)[w
⋆(s, a)] = 1 for all s. Therefore, by

Lemma 14 adding the ALM term does not change the optimal solution and we have (w⋆, v⋆) ∈
argmaxw≥0 argminv L

CB
AL(w, v).

We follow similar steps as in the proof of Lemma 1 and decompose LCB
AL(w

⋆, v) − LCB
AL(ŵ, v) ac-

cording to

LCB
AL(w

⋆, v)− LCB
AL(ŵ, v)

= LCB
AL(w

⋆, v)− LCB
AL(w

⋆, v̂(w⋆))︸ ︷︷ ︸
:=T1

+LCB
AL(w

⋆, v̂(w⋆))− L̂CB
AL(w

⋆, v̂(w⋆))︸ ︷︷ ︸
:=T2

+ L̂CB
AL(w

⋆, v̂(w⋆))− L̂CB
AL(ŵ, v̂)︸ ︷︷ ︸

:=T3

+ L̂CB
AL(ŵ, v̂)− L̂CB

AL(ŵ, v)︸ ︷︷ ︸
:=T4

+ L̂CB
AL(ŵ, v)− LCB

AL(ŵ, v)︸ ︷︷ ︸
:=T5

,

where v̂w = argminv∈V L̂CB
AL(w, v). Each term is bounded as follows:

• T1 = 0 because w⋆ satisfies the optimization constraints.

• T2 ≤ ϵCB
stat due to Lemma 6.

• T3 ≤ 0 because ŵ = argmaxw∈W L̂CB
AL(v̂w, w).

• T4 ≤ 0 because v̂ = argminv∈V L̂CB
AL(v, ŵ).

• T5 ≤ ϵCB
stat due to Lemma 6.

Summing up the bounds on each term proves part (II). □

Proof of Lemma 7. We leverage the closeness of the objective at w⋆ and ŵ established in Lemma 6
to show that the ALM term at ŵ is small. Since w⋆ satisfies the validity constraints, the objective at
w⋆ simplifies to

LCB
AL(w

⋆, v) = Es,a∼µ[r(s, a)w
⋆(s, a)] + Es,a∼µ[v(s)(1− w⋆(s, a))]︸ ︷︷ ︸

=0

−Es∼µ[(Ea∼µ(·|s)[w(s, a)]− 1)2]︸ ︷︷ ︸
=0

= Es,a∼µ[r(s, a)w
⋆(s, a)].
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Consider the objective difference at v(s) = r⋆(s) := maxa r(s, a):

LCB
AL(w

⋆, r⋆)− LCB
AL(ŵ, r

⋆)

=
∑
s

µ(s)r⋆(s)−
∑
s,a

µ(s, a)r(s, a)ŵ(s, a)−
∑
s

r⋆(s)

(
µ(s)−

∑
a

µ(s, a)ŵ(s, a)

)

+ Es∼µ

[(
dŵ
µ

(s)− 1

)2
]

=
∑
s,a

µ(s, a)[r⋆(s)− r(s, a)]ŵ(s, a) + Es∼µ

[(
dŵ
µ

(s)− 1

)2
]
.

Since LCB
AL(w

⋆, v)− LCB
AL(ŵ, v) ≲ ϵCB

stat by Lemma 6, we conclude that∑
s,a

µ(s, a)[r⋆(s)− r(s, a)]ŵ(s, a) + Es∼µ

[(
dŵ
µ

(s)− 1

)2
]
≲ ϵCB

stat

Moreover, since the first term is nonnegative due to ŵ(s, a) ≥ 0 and r⋆(s) − r(s, a) ≥ 0, both of
the terms in the above inequality are bounded by ϵCB

stat and thereby proving part (I).

The above result also allows us to bound the mass on the subset Ss that contains the states that violate
state occupancy validity

ϵCB
stat ≳

∑
s

µ(s)

[(
dŵ
µ

(s)− 1

)2
]
≥
∑
s∈Ss

µ(s)

[(
dŵ
µ

(s)− 1

)2
]
≥ 1

4

∑
s∈Ss

µ(s) ≳
∑
s∈Ss

µ(s),

where we used the fact that dŵ

µ (s) ≤ 1
2 and thus

(
dŵ

µ (s)− 1
)2

≥ 1
4 by definition of Ss. This

concludes the proof of part (II). □

E PROOFS FOR MDPS

In this section, we begin by introducing some additional notation. The original primal-dual objective
without ALM term is given by

max
w≥0

min
v

LMDP(w, v) := (1− γ)Es∼ρ[v(s)] + Es,a∼µ [w(s, a)ev(s, a)] . (52)

Define w⋆(s, a) = dπ
⋆

(s, a)/µ(s, a) and v⋆(s) = V ∗(s). By strong duality,
one has (w⋆, v⋆) ∈ argmaxw≥0 argminv L

MDP(w, v). Additionally, define ζ⋆w,u =

argmaxζ<0 L
model-free
AL (w, v, u, ζ), ∀w ∈ W, u ∈ U and ζ⋆w = ζ⋆w,u⋆

w
∀w ∈ W where u⋆

w is de-
fined in Theorem 4. Also, denote ζ⋆ = ζ⋆w⋆ and u⋆ = u⋆

w⋆ .

The rest of this section is organized as follows. In Appendix E.1, we provide some details regarding
practical implementation of the offline learning algorithm with ALM. In Appendix E.2, we derive the
objective of model-free ALMIS algorithm. Appendix E.3 contains the proof of performance upper
bound on model-based and model-free ALMIS algorithms (Theorem 4), which relies on several
lemmas subsequently proved in Appendices E.4 through E.7.

E.1 ON PRACTICAL IMPLEMENTATIONS

In our algorithms for CB and MDP, we need to compute summations of form
∑

a∈A. This can
be implemented efficiently when |A| is small. When |A| is large or even infinite, one can utilize
numerical methods to estimate the summation with desired precision. Additionally, in Algorithm
3, we need to evaluate a term

∑
s′,a′ P (s′|s, a)πw(a

′|s′)u(s′, a′). In practice, we can evaluate this
term by numerical integration.

For MAB, CB, and model-based RL, our algorithms need to solve a max-min(-min) problem. For
model-free RL, the max-min-min-max can be converted to a max(-max)-min(-min) problem. This is
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because we can first exchange minu and maxζ since Lmodel-free
AL as defined in (54) is convex-concave

w.r.t. (u, ζ). Then, we can exchange minv and maxζ since v and ζ are not coupling in Lmodel-free
AL .

Therefore, our algorithms only require a max-min oracle, which is also required in prior works on
provable conservative offline RL with general function approximators such as (Zhan et al., 2022).
Moreover, many practically successful offline RL algorithms also solve minimax problems such as
the DICE family (Nachum et al., 2019b;a; Yang et al., 2020; Lee et al., 2021)

E.2 DERIVATION OF THE MODEL-FREE ALMIS OBJECTIVE

For f(x) = (x− 1)2, the Fenchel conjugate f∗ is given by

f∗(x) = max
y

(xy − f(y)) = max
y

(
xy − y2 + 2y − 1

)
=

(
x+ 2

2

)2

− 1. (53)

Since dw(s)/d
πw(s) ≥ 0, we have x⋆

w(s, a) ≥ −2 and thus it is sufficient to only consider domain
x(s, a) ≥ −2, over which f∗(x) is invertible.

Let g(x) = −f−1
∗ (x) = 2−2

√
x+ 1, which is a convex function on [−1,+∞). Similar to Nachum

et al. (2019a), we use Fenchel duality to estimate g (u(s, a)− γPπwu(s, a)). By Fenchel duality,
any convex function g(x) can be written as g(x) = maxζ xζ − g∗(ζ). In the case of g(x), the
Fenchel conjugate is given by g∗(x) = −x− 2− 1/x with domain x < 0. Therefore, we write

Eµ[w(s, a)g (u(s, a)− γPπwu(s, a))]

= Eµ[w(s, a)max
ζ<0

(u(s, a)− γ(Pπwu)(s, a)) ζ − g∗(ζ)]

= Eµ[w(s, a)max
ζ<0

(u(s, a)− γ(Pπwu)(s, a)) ζ + ζ + 1/ζ + 2].

The interchangeability principle (Rockafellar & Wets, 2009; Dai et al., 2017) allows us to convert the
inner maximization step over scalar ζ to an overall maximization over ζ : S ×A → R−. Replacing
this term in the objective (13) results in the following objective:

max
w≥0

min
v

min
u

max
ζ<0

Lmodel-free
AL (w, v, u, ζ) = (1− γ)Es∼ρ

[
v(s) +

∑
a

u(s, a)πw(a|s)

]
+ E(s,a,s′)∼µ,a′∼πw(·|s′)[w(s, a) (ev(s, a) + (u(s, a)− γu(s′, a′))ζ(s, a)− g∗(ζ(s, a)))],

(54)

E.3 PROOF OF THEOREM 4

We start by deriving an expression for x⋆
w and characterizing bounds on u⋆

w and ζ⋆w,v in the following
lemma. The proof is presented in Appendix E.4.

Lemma 8 For any w ∈ W and v ∈ V , one has x⋆
w(s, a) = 2dw(s)/d

πw(s) − 2, |u⋆
w(s, a)|≤

1
1−γ (B

2
x/4 +Bx), and |ζ⋆w,v(s, a)|∈

[
2

2+Bx
, 2
2−Bx

]
.

Bounding the suboptimality of policies returned by both model-based and model-free variants of
ALMIS follow a similar analysis. We first characterize the statistical error in approximating popu-
lation objectives by their empirical versions and use it to establish the closeness of ŵ and w⋆. The
lemma below captures these approximation errors for the model-based objective, whose proof can
be found Appendix E.5.

Lemma 9 (Empirical and population closeness, model-based ALMIS) Fix δ > 0 and define

ϵmodel-based
stat := (Bu + (1 +Bv)Bw)

√
Bu log(|P||U||W||V|/δ)

N
. (55)

For any w ∈ W, v ∈ V, and u ∈ U , the following statements hold with probability at least 1− δ

(I)
∣∣∣Lmodel-based

AL (w, v, u)− L̂model-based
AL (w, v, u)

∣∣∣ ≤ ϵmodel-based
stat ;

(II) Lmodel-based
AL (w⋆, v⋆, u⋆)− Lmodel-based

AL (ŵ, v⋆, u⋆
ŵ) ≤ 2ϵmodel-based

stat .
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In Appendix E.6, we prove a similar lemma for the model-free objective.

Lemma 10 (Empirical and population closeness, model-free ALMIS) Fix δ > 0 and define

ϵmodel-free
stat := (Bu + (1 +Bv +Bζ(Bu + 1))Bw)

√
log(|U||W||V||Z|/δ)

N
. (56)

For any w ∈ W, v ∈ V, and u ∈ U , the following statements hold with probability at least 1− δ

(I)
∣∣∣Lmodel-free

AL (w, v, u)− L̂model-free
AL (w, v, u)

∣∣∣ ≤ ϵmodel-free
stat ;

(II) Lmodel-free
AL (w⋆, v⋆, u⋆)− Lmodel-free

AL (ŵ, v⋆, u⋆
ŵ) ≤ 2ϵmodel-free

stat .

The final key lemma demonstrates that in model-based and model-free ALMIS, the ALM terms
enforce lower bounds on the ratio of the estimated occupancy of learned weights dŵ(s) and the
actual occupancy of the learned policy dπŵ(s) in most states. The proof of this lemma is given in
Appendix E.7.

Lemma 11 (Occupancy validity by the ALM, MDP) For ŵ computed by the model-based ALMIS
Algorithm 3, define the state space subspace Ss :=

{
s
∣∣dŵ(s) ≤ 1

2d
πŵ(s)

}
. For any fixed δ > 0,

the following statements hold with probability at least 1− δ

(I) Es,a∼µ [−A⋆(s, a)ŵ(s, a)] ≲ ϵmodel-based
stat ;

(II)
∑

s∈Ss
dπŵ(s) ≲ (1− γ)−2ϵmodel-based

stat .

Similarly, for ŵ computed by the model-free ALMIS Algorithm 4, define the state space subspace
Ss :=

{
s
∣∣dŵ(s) ≤ 1

2d
πŵ(s)

}
. For any fixed δ > 0, the following statements hold with probability

at least 1− δ

(I) Es,a∼µ [−A⋆(s, a)ŵ(s, a)] ≲ ϵmodel-free
stat ;

(II)
∑

s∈Ss
dπŵ(s) ≲ (1− γ)−2ϵmodel-free

stat .

Given the above lemmas, we proceed to prove the suboptimality bounds in terms of statistical errors
defined in (55) and (56). In the rest of this section, we drop the superscripts model-based and
model-free from statistical errors to avoid cluttered notation.

In view of the performance difference lemma in Kakade & Langford (2002, Lemma 6.1), one has

J(π⋆)− J(π̂) = Es∼dπ̂

[∑
a

A⋆(s, a) (π⋆(a|s)− π̂(a|s))

]
= Es∼dπ̂

[∑
a

−A⋆(s, a)π̂(a|s)

]
,

where dπ̂ = dπŵ . Here, we used the fact that the expectation of the optimal advantage over opti-
mal policy is zero

∑
a A

⋆(s, a)π⋆(a|s) = 0. Lemma 11 links an expectation of −A⋆(s, a) to the
statistical error. With this lemma at hand and using the definition Ss = {s | dŵ(s) ≤ dπ̂(s)/2}, we
continue to decompose and bound the suboptimality

Es∼dπ̂

[∑
a

−A⋆(s, a)π̂(a|s)

]

=
∑
s∈Ss

dπ̂(s)

[∑
a

−A⋆(s, a)π̂(a|s)

]
+
∑
s̸∈Ss

dπ̂(s)

[∑
a

−A⋆(s, a)π̂(a|s)

]

≲
1

(1− γ)3
ϵstat +

∑
s̸∈Ss,dŵ(s)̸=0

dπ̂(s)

dŵ(s)

[∑
a

−A⋆(s, a)ŵ(s, a)µ(s, a)

]
(57)

+
∑

s̸∈Ss,dŵ(s)=0

dπ̂(s)

[∑
a

− 1

|A|
A⋆(s, a)

]

≤ 1

(1− γ)3
ϵstat + 2

∑
s̸∈Ss

[∑
a

−A⋆(s, a)ŵ(s, a)µ(s, a)

]
(58)
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In (57), we used part (II) in Lemma 11 and that −A⋆(s, a) ≤ 1/(1 − γ) and in (58) we used
the definition of Ss to bound the ratio dπ̂(s)/dŵ(s) by 2 and the fact that dŵ(s) = 0 implies
dπ̂(s) = 0 for s /∈ Ss. We then apply part (I) in in Lemma 11 to bound the second term by
Es,a∼µ[−A⋆(s, a)ŵ(s, a)] and thus the overall suboptimality:

J(π⋆)− J(π̂) ≲
1

(1− γ)3
ϵstat + Es,a∼µ [−A⋆(s, a)ŵ(s, a)] ≲

1

(1− γ)3
ϵstat.

E.4 PROOF OF LEMMA 8

Derivation of x⋆
w. Recall from Appendix E.2 that for f(x) = (x − 1)2, the Fenchel conjugate is

f∗(x) =
(
x+2
2

)2 − 1. Therefore, for any (s, a),

x⋆
w(s, a) = argmax

x

(
dw(s)x− dπw(s)

((
x+ 2

2

)2

− 1

))
= 2

dw(s)

dπw(s)
− 2

⇒ x̃w(s, a) = clip

(
2
dw(s)

dπw(s)
− 2,−Bx, Bx

)
.

Bound on u⋆
w. Recall that u⋆

w is defined as the fixed point of the following Bellman-like equation

u(s, a) = f∗(x̃w(s, a)) + γ(Pπwu)(s, a). (59)

The above equation has a solution since f∗(x̃w(s, a)) is bounded(
2−Bx

2

)2

− 1 ≤ f∗(x̃w(s, a)) ≤
(
Bx + 2

2

)2

− 1.

One can view u⋆
w as the Q-function of policy πw with the reward function f∗(x̃w(s, a)), which leads

to |u⋆
w(s, a)|≤ 1

1−γ max
{
1−

(
2−Bx

2

)2
,
(
Bx+2

2

)2 − 1
}
= 1

1−γ (B
2
x/4 +Bx).

Bound on ζ⋆w,u. To see the bound on ζ⋆w,u, recall that by definition,

ζ⋆w,u = argmax
ζ<0

E(s,a,s′)∼µ,a′∼πw(·|s′)[w(s, a) ((u(s, a)− γu(s′, a′) + 1)ζ(s, a) + 1/ζ(s, a))].

(60)

It is easy to show that |ζ⋆w,u(s, a)|= (u(s, a)−γ(Pπwu)(s′, a′)+1)−1/2 = (f∗(x̃w(s, a))+1)−1/2.

Since x̃w(s, a) ∈ [−Bx, Bx], we have |ζ⋆w,u(s, a)|∈
[

2
2+Bx

, 2
2−Bx

]
.

E.5 PROOF OF LEMMA 9

E.5.1 PROOF OF PART (I)

We decompose the difference between the population and empirical objective into three terms
Lmodel-based

AL − L̂model-based
AL = T1 + T2 + T3 defined as follows

T1 := (1− γ)Eρ

[
v(s) +

∑
a

u(s, a)πw(a|s)

]
− (1− γ)

1

N0

N0∑
i=1

(
v(si) +

∑
a

u(si, a)πw(a|si)

)

T2 := Eµ

[
w(s, a)(r(s, a) + γ

∑
s′

P (s′|s, a)v(s′)− v(s))

]
− 1

N

N∑
i=1

w(si, ai) [ri + γv(s′i)− v(si)]

T3 := Eµ

[
w(s, a)

(
f−1
∗ (u(s, a)− γPπwu(s, a))

)]
− 1

N

N∑
i=1

w(si, ai)
[
f−1
∗

(
u(si, ai)− γP̂πwu(si, ai)

)]
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We subsequently show that the absolute values of the above error terms satisfy the following high
probability upper bounds:

|T1| ≲ (Bv +Bu)

√
log|V||U|/δ

N0
, (61a)

|T2| ≲ (1 +Bv)Bw

√
log|V||W|/δ

N
, (61b)

|T3| ≲ Bw

√
Bu log|P||U||W|/δ

N
(61c)

Taking N0 = N and noting that Bw ≥ 1 due to realizability of w⋆ yield that

∣∣∣Lmodel-based
AL − L̂model-based

AL

∣∣∣ ≲ (Bv +Bu)

√
log|V||U|/δ

N0
+ (1 +Bv)Bw

√
Bu log(|P||U||W||V|/δ)

N

≲ ϵmodel-based
stat .

Proof of bound (61a) on |T1|. Since |v(s)|≤ Bv, |u(s, a)|≤ Bu for all v ∈ V and u ∈ U and si
are independent, we can apply Hoeffding’s inequality and union bound to conclude the advertised
bound (61a) on |T1|.

Proof of the bound (61b) on |T2|. By boundedness of w, v, we have

|w(s, a)(r(s, a) + γv(s′)− v(s))| ≤ Bw(1 + (γ + 1)Bv) ≤ Bw(1 + γ)(1 +Bv).

As before, due to boundedness and independence of variables w(si, ai)[ri + γv(s′i) − v(si)], Ho-
effding’s inequality can be applied, giving the bound (61b) on |T2|.

Proof of the bound (61c) on |T3|. We decompose T3 = T3,1 + T3,2, where T3,1 and T3,2 are
defined as

T3,1 := Eµ

[
w(s, a)

(
f−1
∗ (u(s, a)− γ(Pπwu)(s, a))

)]
− Eµ

[
w(s, a)

(
f−1
∗

(
u(s, a)− γ(P̂πwu)(s, a)

))]
T3,2 := Eµ

[
w(s, a)

(
f−1
∗

(
u(s, a)− γ(P̂πwu)(s, a)

))]
− 1

N

N∑
i=1

w(si, ai)
[
f−1
∗

(
u(si, ai)− γ(P̂πwu)(si, ai)

)]
Recall that f−1

∗ (x) = 2
√
x+ 1− 2 from Appendix E.2. The absolute value of T3,2 can be immedi-

ately bounded using Hoeffding’s inequality:

|T3,2|≲ Bw

√
Bu log|W||U|δ

N
. (62)

To bound |T3,1|, we first use the inequality given in Lemma 13, setting bi, xi, yi for each (s, a)
according to

bi =

{
1 + u(s, a) i = 0

γ
∑

a′ πw(a
′|s′)u(s′|a′) 1 ≤ i ≤ |S|

xi =

{
1 i = 0

P (s′|s, a) 1 ≤ i ≤ |S| , yi =

{
1 i = 0

P (s′|s, a) 1 ≤ i ≤ |S|

34



Published as a conference paper at ICLR 2023

Thus by Lemma 13, we obtain the following bound on T 2
3,1

T 2
3,1 =

(
Eµ

[
w(s, a)

(
f−1
∗ (u(s, a)− γPπwu(s, a))

)]
− Eµ

[
w(s, a)

(
f−1
∗

(
u(s, a)− γP̂πwu(s, a)

))])2

≲ Bw

(
Eµ

√1 + u(s, a)− γ
∑
s′

P (s′|s, a)
∑
a′

πw(a′|s′)u(s′, a′)


− Eµ

√1 + u(s, a)− γ
∑
s′

P̂ (s′|s, a)
∑
a′

πw(a′|s′)u(s′, a′)

)2

≤ B2
wBuEµ

[∑
s′

(√
P (s′|s, a)−

√
P̂ (s′|s, a)

)2
]
. (63)

Note that the terms under square root are always nonnegative because for any transition P

1 + u(s, a)− γ
∑
s′

P (s′|s, a)
∑
a′

πw(a
′|s′)u(s′, a′) ≥ 1−Bu − γBu ≥ 1− 2Bu ≥ 0.

Then, we use the concentration result on maximum likelihood model estimation stated in Theorem
6 and a union bound on w ∈ W and v ∈ V to conclude that

|T3,1|≲ Bw

√
Bu log|P||U||W|/δ

N
. (64)

E.5.2 PROOF OF PART (II)

To prove the second part, let v̂w and ûw denote the solutions to the model-based empirical objective

v̂w, ûw = argmin
v∈V

argmin
u∈U

L̂model-based
AL (w, v, u)

Decompose the objective difference according to

Lmodel-based
AL (w⋆, v⋆, u⋆)− Lmodel-based

AL (ŵ, v⋆, u⋆
ŵ)

= Lmodel-based
AL (w⋆, v⋆, u⋆)− Lmodel-based

AL (w⋆, v̂w⋆ , ûw⋆) := T1

+ Lmodel-based
AL (w⋆, v̂w⋆ , ûw⋆)− L̂model-based

AL (w⋆, v̂w⋆ , ûw⋆) := T2

+ L̂model-based
AL (w⋆, v̂w⋆ , ûw⋆)− L̂model-based

AL (ŵ, v̂ŵ, ûŵ) := T3

+ L̂model-based
AL (ŵ, v̂ŵ, ûŵ)− L̂model-based

AL (ŵ, v⋆, u⋆
ŵ) := T4

+ L̂model-based
AL (ŵ, v⋆, u⋆

ŵ)− Lmodel-based
AL (ŵ, v⋆, u⋆

ŵ) := T5

We bound each term:

• T1 ≤ 0 because v⋆, u⋆ = argminv argminu L
model-based
AL (w⋆, v, u);

• T2 ≤ ϵmodel-based
stat by Lemma 9;

• T3 ≤ 0 because ŵ = argmaxw∈W L̂model-based
AL (w, v̂w, ûw);

• T4 ≤ 0 because v̂w, ûw = argminv∈V argminu∈U L̂model-based
AL (w, v, u);

• T5 ≤ ϵmodel-based
stat by Lemma 9.

35



Published as a conference paper at ICLR 2023

E.6 PROOF OF LEMMA 10

E.6.1 PROOF OF PART (I)

We decompose the difference Lmodel-free
AL − L̂model-free

AL = T1 + T2 + T3 into three error terms

T1 := (1− γ)Eρ

[
v(s) +

∑
a

u(s, a)πw(a|s)

]
− (1− γ)

1

N0

N0∑
i=1

(
v(si) +

∑
a

u(si, a)πw(a|si)

)

T2 := Eµ

[
w(s, a)(r(s, a) + γ

∑
s′

P (s′|s, a)v(s′)− v(s))

]
− 1

N

N∑
i=1

w(si, ai) [ri + γv(s′i)− v(si)]

T3 := E(s,a,s′)∼µ,a′∼πw(·|s′)[w(s, a) ((u(s, a)− γu(s′, a′))ζ(s, a)− g⋆(ζ(s, a)))]

− 1

N

N∑
i=1

w(si, ai)

[(
u(si, ai)− γ

∑
a′∈A

u(s′i, a
′)πw(a

′|s′i)

)
ζ(si, ai)− g⋆(ζ(si, ai))

]
.

The absolute values of the error terms above satisfy the following upper bounds with high probability

|T1| ≲ (Bv +Bu)

√
log(|V||U|/δ)

N0
, (65a)

|T2| ≲ (1 +Bv)Bw

√
log(|V||W|/δ)

N
, (65b)

|T3| ≲ (1 +Bζ(Bu + 1))Bw

√
log|U||W||Z|/δ

N
. (65c)

The bounds on the first two error terms |T1| and |T2| are already shown in Appendix E.5.1. To bound
|T3|, recall that g⋆(x) = −x − 2 − 1

x , ∀x < 0. Also, |ζ(s, a)|∈ (Bζ,L, Bζ,U ) for any ζ ∈ Z and
any (s, a), and Bζ ≜ max{Bζ,U , B

−1
ζ,L}. Therefore, the individual error terms in |T3| satisfy the

following bound

|w(s, a) ((u(s, a)− γu(s′, a′))ζ(s, a)− g⋆(ζ(s, a)))| ≤Bw((1 + γ)BuBζ,U +Bζ,U +B−1
ζ,L + 2).

Thus, by Hoeffding’s inequality and a union bound on W,U , and Z , we obtain the upper bound
(65c) on |T3|. Summing up the bounds given in (65a), (65b), and (65c) and noting that Bw ≥ 1 due
to realizability of w⋆, we obtain

Lmodel-free
AL (w, v, u, ζ)− L̂model-free

AL (w, v, u, ζ)

≲ (Bv +Bu)

√
log|V||U|/δ

N0
+ (1 +Bv +Bζ(Bu + 1))Bw

√
log|U||W||V||Z|/δ

N

≲ ϵmodel-free
stat .

E.6.2 PROOF OF PART (II)

Define the following solutions to the empirical model-free objective

v̂w, ûw, ζ̂w = argmin
v∈V

argmin
u∈U

argmax
ζ∈Z

L̂model-free
AL (w, v, u, ζ), ∀w ∈ W

ζ̂(w, u) = argmax
ζ∈Z

L̂model-free
AL (w, v, u, ζ) ∀w ∈ W, u ∈ U
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Decompose the objective difference according to

Lmodel-free
AL (w⋆, v⋆, u⋆, ζ⋆)− Lmodel-free

AL (ŵ, v⋆, u⋆
ŵ, ζ

⋆
ŵ)

= Lmodel-free
AL (w⋆, v⋆, u⋆, ζ⋆)− Lmodel-free

AL (w⋆, v̂w⋆ , ûw⋆ , ζ⋆(w⋆, ûw⋆)) := T1

+ Lmodel-free
AL (w⋆, v̂w⋆ , ûw⋆ , ζ⋆w⋆,ûw⋆ )− L̂model-free

AL (w⋆, v̂w⋆ , ûw⋆ , ζ⋆w⋆,ûw⋆ ) := T2

+ L̂model-free
AL (w⋆, v̂w⋆ , ûw⋆ , ζ⋆w⋆,ûw⋆ )− L̂model-free

AL (w⋆, v̂w⋆ , ûw⋆ , ζ̂w⋆) := T3

+ L̂model-free
AL (w⋆, v̂w⋆ , ûw⋆ , ζ̂w⋆)− L̂model-free

AL (ŵ, v̂ŵ, ûŵ, ζ̂ŵ) := T4

+ L̂model-free
AL (ŵ, v̂ŵ, ûŵ, ζ̂ŵ)− L̂model-free

AL (ŵ, v⋆, u⋆
ŵ, ζ̂ŵ,u⋆

ŵ
) := T5

+ L̂model-free
AL (ŵ, v⋆, u⋆

ŵ, ζ̂ŵ,u⋆
ŵ
)− Lmodel-free

AL (ŵ, v⋆, u⋆
ŵ, ζ̂ŵ,u⋆

ŵ
) := T6

+ Lmodel-free
AL (ŵ, v⋆, u⋆

ŵ, ζ̂ŵ,u⋆
ŵ
)− Lmodel-free

AL (ŵ, v⋆, u⋆
ŵ, ζ

⋆
ŵ) := T7

We bound each term:

• T1 ≤ 0 because v⋆, u⋆ = argminv,u L
model-free
AL (w⋆, v, u, ζ⋆(w⋆, u));

• T2 ≤ ϵmodel-free by part (I);

• T3 ≤ 0 because ζ̂w⋆ = ζ̂w⋆,ûw⋆ = argmaxζ∈Z L̂model-free
AL (w⋆, v̂w⋆ , ûw⋆ , ζ);

• T4 ≤ 0 because ŵ = argmaxw∈W L̂model-free
AL (w, v̂w, ûw, ζ̂w);

• T5 ≤ 0 because v̂ŵ, ûŵ = argminv∈V,u∈U L̂model-free
AL (ŵ, v, u, ζ̂ŵ,u);

• T6 ≤ ϵmodel-free by part (I);

• T7 ≤ 0 because ζ⋆ŵ = ζ⋆ŵ,u⋆
ŵ
= argmaxζ<0 L

model-free
AL (ŵ, v⋆, u⋆

ŵ, ζ).

E.7 PROOF OF LEMMA 11

We provide proof only for the model-based algorithm and let ŵ = ŵmodel-based for notation
convenience. The proof for a model-free algorithm follows analogously, noting the fact that
Lmodel-free
AL (w, v⋆, u⋆

w, ζ
⋆
w) = Lmodel-based

AL (w, v⋆, u⋆
w) and we can replace Lemma 9 with Lemma 10

to prove the model-free version.

E.7.1 PROOF OF PART (I)

Consider the expression of the model-based objective Lmodel-based
AL (w⋆, v⋆, u⋆) at the optimal solution

where u⋆ := u⋆
w⋆ :

Lmodel-based
AL (w⋆, v⋆, u⋆)

=(1− γ)Es∼ρ[v
⋆(s)] + Es,a∼µ [w

⋆(s, a)ev⋆(s, a)]− Es∼dπw⋆

(
dw⋆(s)

dπw⋆ (s)
− 1

)2

=(1− γ)Es∼ρ[V
⋆(s)] + Es,a∼µ [w

⋆(s, a)A⋆(s, a)] (66)

The first equation comes from the fact that u⋆ is the optimal solution to the variational lower
bound, making it equal to the f -divergence. To see this, recall from Lemma 8 that x⋆

w(s, a) =
2dw(s)/d

πw(s) − 2 and x̃w(s, a) = clip(x⋆
w(s, a),−Bx, Bx). Since x⋆

w⋆(s, a) = 0, we have
x̃w⋆(s, a) = x⋆

w⋆(s, a) and thus u⋆ recovers the f -divergence.

In Equation (66), we wrote v⋆(s) = V ⋆(s) since v⋆(s) is the optimal solution to the primal-dual
program without the ALM term and is equal to the optimal value function (Zhan et al., 2022). We
also used the fact that ev⋆(s, a) = r(s, a)+γ

∑
s′ P (s′|s, a)v⋆(s′)−v⋆(s) = A⋆(s, a) is the optimal

advantage function, and that dw⋆(s) = dπw⋆ (s) by definition and realizability of w⋆. Moreover, the
second term in (66) is zero since it captures the optimal advantage of optimal policy. Therefore, we
conclude that

Lmodel-based
AL (w⋆, v⋆, u⋆) = (1− γ)Es∼ρ[V

⋆(s)]. (67)
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Given the above expression of the objective at (w⋆, v⋆, u⋆), we write the following objective differ-
ence

Lmodel-based
AL (w⋆, v⋆, u⋆)− Lmodel-based

AL (ŵ, v⋆, u⋆
ŵ)

=(1− γ)Es∼ρ[V
⋆(s)]− (1− γ)Es∼ρ[v

⋆(s)]− Es,a∼µ [ŵ(s, a)ev⋆(s, a)]

+ (1− γ)Es∼ρ,a∼πŵ
[u⋆

ŵ(s, a)] + Eµ

[
ŵ(s, a)f−1

∗ (u⋆
ŵ(s, a)− γ(Pπŵu⋆

ŵ)(s, a))
]

(68)

=− Es,a∼µ [ŵ(s, a)A
⋆(s, a)]− Edπŵ [f∗(x̃ŵ(s, a))] + Edŵ

[x̃ŵ(s, a)]

The last line uses ev⋆(s, a) = A⋆(s, a) as well as the definition of u⋆
ŵ as the fixed point solution to

u⋆
ŵ(s, a) := f∗(x̃ŵ(s, a)) + γ(Pπŵu⋆

ŵ)(s, a),

which allows us to write (68) in the original f -divergence variational form (11) with x̃ŵ as variable.
Lemma 9 asserts that Lmodel-based

AL (w⋆, v⋆, u⋆)− Lmodel-based
AL (ŵ, v⋆, u⋆

ŵ) ≲ ϵmodel-based
stat . Therefore,

−Es,a∼µ [ŵ(s, a)A
⋆(s, a)]− Edπŵ [f∗(x̃ŵ(s, a))] + Edŵ

[x̃ŵ(s, a)] ≲ ϵmodel-based
stat . (69)

We next argue that both terms in inequality above are nonnegative and conclude that

−Es,a∼µ [ŵ(s, a)A
⋆(s, a)] ≲ ϵmodel-based

stat (70a)

−Edπŵ [f∗(x̃ŵ(s, a))] + Edŵ
[x̃ŵ(s, a)] ≲ ϵmodel-based

stat (70b)

The first term is nonnegative because for the optimal advantage function we have A⋆(s, a) ≤ 0 for
all s ∈ S and a ∈ A. We write the second term as

−Edπŵ [f∗(x̃ŵ(s, a))] + Edŵ
[x̃ŵ(s, a)] = Edπŵ

[
dŵ(s)

dπŵ(s)
x̃ŵ(s, a)− f∗(x̃ŵ(s, a))

]
.

We then show that each term inside the expectation is nonnegative:

dw(s)

dπw(s)
x̃w(s, a)− f∗(x̃w(s, a)) ≥ 0 ∀s ∈ S, w ∈ W. (71)

Proof of bound (71). we separate the argument into three cases and use the expression of x̃w given
in Lemma 8.

1. When 1−Bx/2 ≤ dw(s)
dπw (s) ≤ Bx/2+ 1, we have x̃w(s, a) =

(
2 dw(s)
dπw (s) − 2

)
and therefore

dw(s)

dπw(s)
x̃w(s, a)− f∗(x̃w(s, a)) =

(
dw(s)

dπw(s)
− 1

)2

≥ 0.

2. When dw(s)
dπw (s) > Bx/2 + 1, substitute x̃w(s, a) = Bx to arrive at

dw(s)

dπw(s)
Bx −

((
Bx

2
+ 1

)2

− 1

)
≥
(
Bx

2
+ 1

)
Bx − B2

x

4
−Bx =

B2
x

4
≥ 0.

3. Similarly, when dw(s)
dπw (s) < 1−Bx/2, substitute x̃w(s, a) = −Bx to arrive at

− dw(s)

dπw(s)
Bx −

((
1− Bx

2

)2

− 1

)
≥
(
Bx

2
− 1

)
Bx − B2

x

4
+Bx =

B2
x

4
≥ 0. (72)

E.7.2 PROOF OF PART (II)

We derive the second part by using the bound (70b) restricted on the set Ss. When s ∈ Ss, we have
dŵ(s)
dπŵ (s) ≤

1
2 and thus the variational form falls into the case 3 in the proof of bound (71). Therefore,

for s ∈ Ss, we have x̃ŵ(s, a) = −Bx and

dŵ(s)

dπŵ(s)
x̃ŵ(s, a)− f∗(x̃ŵ(s, a)) ≳ (1− γ)2 ∀s ∈ Ss. (73)
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We use the bound in (70b) as well as (73) to conclude that

ϵmodel-based
stat ≳Edŵ

[x̃ŵ(s, a)]− Edπŵ [f∗(x̃ŵ(s, a))]

=
∑
s

dπŵ(s)

(
dŵ(s)

dπŵ(s)
x̃ŵ(s, a)− f∗(x̃ŵ(s, a))

)
≳
∑
s∈Ss

(1− γ)2dπŵ(s),

which leads to the second advertised claim
∑

s∈Ss
dπŵ(s) ≲ (1− γ)−2ϵstat.

E.8 ALM BASED ON BELLMAN FLOW ERROR CONSTRAINT IS INSUFFICIENT

We demonstrated that Lagrange multipliers are not sufficient to enforce occupancy validity and we
need to use additional penalty terms. Furthermore, we discussed why ensuring ratio-based occu-
pancy validity is compatible with the single-policy concentrability definition, resulting in learning a
policy whose actual occupancy is within the data distribution.

However, one might wonder whether a more standard application of the ALM term, which involves
adding a squared penalty on Bellman flow error, leads to a similar policy validity guarantee. This
idea is appealing because it avoids variational lower bound and additional variables. However, here
we provide an intuitive argument that a penalty term on Bellman flow error does not appear to be
sufficient to ensure a ratio-based occupancy validity guarantee.

We use ϵ(s) to denote Bellman flow error defined as

ϵ(s) = (1− γ)ρ(s) + γ
∑
s′,a′

P (a|s′, a′)µ(s′, a′)w(s′, a′)−
∑
a

w(s, a)µ(s, a).

We show that even such a strong state-wise guarantee on Bellman error cannot generally lead to
dπŵ (s)
dŵ(s) being bounded by a constant. We argue this by contradiction. Assume that for 0 ≤ c < 1

dπŵ(s)

dŵ(s)
≤ 1

1− c
⇐⇒ dπŵ(s)− dŵ(s) ≤ cdπŵ(s). (74)

Since dπŵ satisfies the Bellman flow equations, we can show dπŵ−dŵ = (I−γPπŵ
)−1ϵ. Moreover,

we have dπŵ = (I−γPπŵ
)−1ρ. Substituting these equations to (74), we conclude that for 0 ≤ c < 1

(I − γPπŵ
)−1ϵ ≤ c(I − γPπŵ

)−1ρ ⇐⇒ ϵ ≤ cρ.

Therefore, to ensure a constant bound on dπŵ (s)
dŵ(s) , we require Bellman flow error to be pointwise

smaller than the initial distribution. For state s with ρ(s) = 0, this means that the Bellman flow
error is required to be nonpositive: ϵ(s) ≤ 0. However, even state-wise minimization of squared
penalty terms such as ϵ2(s) can only ensure |ϵ(s)| to be small.

F ROBUSTNESS TO MODEL MISSPECIFICATION AND OPTIMIZATION ERROR

In this section, we study the sample complexity of our algorithm in the presence of model misspec-
ification and optimization error similar to Zhan et al. (2022).

Since in practice, it might be the case that our function classes W , V do not contain w⋆, v⋆, similar
to Zhan et al. (2022), we measure the approximation errors of W and V by

ϵr,v = min
v∈V

∥v − v⋆∥1,ρ+∥v − v⋆∥1,µ+∥v − v⋆∥1,µ′ ,

ϵr,w,w⋆ = min
w∈W

∥w − w⋆∥1,µ,
(75)

where w⋆ = d⋆/µ and d⋆ is the (discounted) occupancy frequency of any optimal policy π⋆, ∥·∥1,ρ
is weighted l1 norm w.r.t. ρ, and µ′(s) =

∑
s′,a′ P (s|s′, a′)µ(s′, a′). The model misspecification

error is measured in l1 norm, which is weaker than l∞ norm.
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Furthermore, we also consider the optimization error of practical optimization algorithms since in
real-world scenarios it is unlikely that an algorithm can recover the exact optimal solution. Instead, a
typical optimization algorithm is able to find an approximate solution that is close enough to the true
optimal solution. Formally, we assume that the solution (ŵ, v̂) that the optimizer obtained satisfies

L̂(ŵ, v̂)−min
v∈V

L̂(ŵ, v) ≤ ϵo,v,

max
w∈W

min
v∈V

L̂(w, v)−min
v∈V

L̂(ŵ, v) ≤ ϵo,w,
(76)

where the objective L̂ can be substituted by any objective with ALM term in different settings (e.g.,
L̂ = L̂CB

AL in contextual bandits).

The assumption above is also similar to Zhan et al. (2022), and it assumes that L̂(ŵ, v̂) ≈
maxw∈W minv∈V L̂(w, v), which shows that (ŵ, v̂) is an approximate max-min solution of L̂.

With definition (75) and (76), the main result of this section is stated as follows:

Theorem 5 (Robust version of Theorem 3) Assume concentrability of an optimal policy π⋆ (Defi-
nition 1) and let w⋆(s, a) = dπ

⋆

(s, a)/µ(s, a), v⋆ = J(π⋆). Assume that |v(s)|≤ Bv for v ∈ V and
0 ≤ w(s, a) ≤ Bw for w ∈ W . Moreover, assume (75) and (76) hold. Then for any fixed δ > 0,
policy π̂ returned by Algorithm 2 (where (ŵ, v̂) satisfies (76) with L̂ = L̂CB

AL instead of the exact
max-min solution as in (8)) achieves

J(π⋆)− J(π̂) ≲ (Bw + 1)2(Bv + 1)

√
log(|W||V|/δ)

N
+ ϵopt + ϵmis.

with probability at least 1− δ, where ϵopt = ϵo,w + ϵo,v and ϵmis = (Bw +Bv +3)ϵr,w,w⋆ + (Bw +
1)ϵr,v .

Note that we only present the robustness result for contextual bandit settings for conciseness. Similar
results also hold for MAB, model-based MDP, and model-free MDP settings.

Proof. Note that the proof is almost the same as Appendix D.3, except for part (II) of Lemma 6.
Part (I) of Lemma 6 directly holds in model misspecification and optimization error by the same
proof. Now we show part (II) of Lemma 6. For convenience, we use L, L̂ to represent LCB

AL, L̂CB
AL

respectively, and let ϵstat = 3(Bw + 1)2(Bv + 1)
√

log(|W||V|/δ)
N . Also, let

v⋆V = argmin
v∈V

∥v − v⋆∥1,ρ+∥v − v⋆∥1,µ+∥v − v⋆∥1,µ′ ,

w⋆
W = arg min

w∈W
∥w − w⋆∥1,µ.

By the same argument as in Appendix D.3, (w⋆, v⋆) ∈ argmaxw≥0 argminv L(w, v). Also, we can
decompose L(w⋆, v⋆)− L(ŵ, v⋆) according to

L(w⋆, v⋆)− L(ŵ, v⋆)

= L(w⋆, v⋆)− L(w⋆, v̂(w⋆
W))︸ ︷︷ ︸

:=T1

+L(w⋆, v̂(w⋆
W))− L(w⋆

W , v̂(w⋆
W))︸ ︷︷ ︸

:=T2

+ L(w⋆
W , v̂(w⋆

W))− L̂(w⋆
W , v̂(w⋆

W))︸ ︷︷ ︸
:=T3

+ L̂(w⋆
W , v̂(w⋆

W))− L̂(ŵ, v̂)︸ ︷︷ ︸
:=T4

+ L̂(ŵ, v̂)− L̂(ŵ, v⋆V)︸ ︷︷ ︸
:=T5

+ L̂(ŵ, v⋆V)− L(ŵ, v⋆V)︸ ︷︷ ︸
:=T6

+L(ŵ, v⋆V)− L(ŵ, v⋆)︸ ︷︷ ︸
:=T7

,

where v̂(w) = argminv∈V L̂(w, v). Each term is bounded as follows:

• T1 = 0 because w⋆ satisfies the optimization constraints.

• T2 ≤ (Bw +Bv + 3)ϵr,w,w⋆ by Lemma 12.

• T3 ≤ ϵstat due to part (I) of Lemma 6.

40



Published as a conference paper at ICLR 2023

• T4 ≤ ϵo,w because maxw∈W minv∈V L̂(w, v)−minv∈V L̂(ŵ, v) ≤ ϵo,w and w⋆
W ∈ W .

• T5 ≤ ϵo,v because L̂(ŵ, v̂)−minv∈V L̂(ŵ, v) ≤ ϵo,v and v⋆V ∈ V .

• T6 ≤ ϵstat due to part (I) of Lemma 6.

• T7 ≤ (Bw + 1)ϵr,v by Lemma 12.

Summing up the bounds on each term, we have

L(w⋆, v⋆)− L(ŵ, v⋆) ≤ 2ϵstat + ϵopt + ϵmis.

The remaining steps are the same as Appendix D.3, and we can finally obtain that

J(π⋆)− J(π̂) ≲ (Bw + 1)2(Bv + 1)

√
log(|W||V|/δ)

N
+ ϵopt + ϵmis.

□

Remark 1 Note that the suboptimality caused by model misspecification and optimization error
in our algorithm is of order O(ϵopt + ϵmis). This is much better than the result of Zhan et al.
(2022) where the suboptimality caused by model misspecification and optimization error is of order
O(
√
(ϵopt + ϵmis)/α).

Finally, we show and prove the following lemma which is key to the proof of our main theorem
(Theorem 5) in this section. This is also similar to Zhan et al. (2022).

Lemma 12 Under the same setting as in Theorem 5, for any v ∈ V and any w1, w2 ∈ W , it holds
that

|L(w, v1)− L(w, v2)|≤ (Bw + 1)(∥v1 − v2∥1,ρ+∥v1 − v2∥1,µ+∥v1 − v2∥1,µ′).

Also, for any v1, v2 ∈ V and any w ∈ W , it holds that

|L(w1, v)− L(w2, v)|≤ (Bw +Bv + 3)∥w1 − w2∥1,µ.

Proof. Recall that

L(w, v) = Eµ [w(s, a)r(s, a)]− Eµ[v(s)(w(s, a)− 1)]− Es∼µ[(Ea∼µ(·|s)[w(s, a)]− 1)2],

and in contextual bandits we have ρ = µ. Therefore, by definition,

|L(w, v1)− L(w, v2)|
=|Eµ[(v1(s)− v2(s))(w(s, a)− 1)]|
≤|Eµ[(v1(s)− v2(s))w(s, a)]|+|Eρ[v1(s)− v2(s)]|
≤Bw∥v1 − v2∥1,µ+∥v1 − v2∥1,ρ
≤(Bw + 1)(∥v1 − v2∥1,ρ+∥v1 − v2∥1,µ+∥v1 − v2∥1,µ′).

Similarly, we have

|L(w1, v)− L(w2, v)|
≤|Eµ[(w1(s, a)− w2(s, a))(r(s, a)− v(s))]|

+ Es∼µ[|(Ea∼µ(·|s)[w1(s, a)]− 1)2 − (Ea∼µ(·|s)[w2(s, a)]− 1)2|]
≤(Bv + 1)∥w1 − w2∥1,µ
+ Es∼µ[|Ea∼µ(·|s)[w1(s, a)− w2(s, a)](Ea∼µ(·|s)[w1(s, a) + w2(s, a)]− 2)|]

≤(Bv + 1)∥w1 − w2∥1,µ+(Bw + 2)∥w1 − w2∥1,µ
=(Bw +Bv + 3)∥w1 − w2∥1,µ.

□
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G AUXILIARY RESULTS

Theorem 6 (Convergence of MLE for learning transitions (Van de Geer, 2000)) Given a real-
izable model class P = {P : (S,A) → ∆(S)} that contains the true model P ⋆ and a dataset

Dm = {(si, ai, s′i)} with (si, ai)
iid∼ µ, s′i ∼ P ⋆(·|si, ai), let P̂ be

P̂ = argmax
P∈P

N∑
i=1

lnP (s′i|si, ai).

Fix the failure probability δ > 0. Then, with probability at least 1 − δ, we have the following
concentration on the squared Hellinger distance between P̂ and P ⋆:

Es,a∼µ

[∑
s′

(√
P̂ (s′|s, a)−

√
P ⋆(s′|s, a)

)2
]
≲

log(|P|/δ)
N

.

Lemma 13 For any 0 ≤ bi ≤ B and xi, yi ≥ 0 for i ∈ {0, . . . , n}, the following holds√√√√ n∑
i=0

bixi −

√√√√ n∑
i=0

biyi

2

≤ B

n∑
i=0

(
√
xi −

√
yi)

2
. (77)

Proof. We expend the left-hand side of (77), use Cauchy-Schwarz inequality, and then complete the
square:√√√√ n∑

i=1

bixi −

√√√√ n∑
i=1

biyi

2

=
∑
i

bixi +
∑
i

biyi − 2

√√√√(∑
i

bixi

)(∑
i

biyi

)

≤
∑
i

bixi +
∑
i

biyi − 2
∑
i

bi
√
xiyi

=
∑
i

(
√
bixi −

√
biyi)

2 ≤ B
∑
i

(
√
xi −

√
yi)

2
.

□

Lemma 14 For any two arbitrary sets X ,Y , let f(·, ·) : X × Y → R be an arbitrary function.
Let X0 = {x ∈ X | infy∈Y f(x, y) > −∞} and assume X0 is non-empty. For any x ∈ X0,
assume there exists y∗(x) ∈ Y s.t. f(x, y∗(x)) = miny∈Y f(x, y). Also, let X ∗

p = {x ∈ X0 | x ∈
argmaxx∈X0

f(x, y⋆(x))} and assume X ∗
p is non-empty. For a nonnegative function A(·) on X , let

X ∗ = {x ∈ X ∗
p | A(x) = 0} and assume X ∗ is non-empty. Define fAL(x, y) = f(x, y) − A(x).

Then
x ∈ X0 ⇐⇒ inf

y∈Y
fAL(x, y) > −∞.

and for any x ∈ X0,
x ∈ X ∗ ⇐⇒ x ∈ arg max

x∈X0

min
y∈Y

fAL(x, y).

Proof. Note that for any fixed x, fAL(x, y) is a constant shift of f(x, y), which implies that
infy∈Y f(x, y) > −∞ ⇐⇒ infy∈Y fAL(x, y) > −∞. This also implies that for any x ∈ X0,
argminy∈Y f(x, y) = argminy∈Y fAL(x, y).

For any x ∈ X0, let y∗(x) denote any one of y ∈ Y s.t. f(x, y∗(x)) = miny∈Y f(x, y).

Now for any x∗ ∈ X ∗, we have
f(x∗, y∗(x∗)) ≥ f(x, y∗(x)), ∀x ∈ X0.

=⇒f(x∗, y∗(x∗))−A(x∗) ≥ f(x, y∗(x))−A(x), ∀x ∈ X0.

=⇒fAL(x∗, y∗(x∗)) ≥ fAL(x, y∗(x)), ∀x ∈ X0.

=⇒min
y∈Y

fAL(x∗, y) ≥ min
y∈Y

fAL(x, y), ∀x ∈ X0.

=⇒x∗ ∈ arg max
x∈X0

min
y∈Y

fAL(x, y).
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For the other direction, given any x0 ∈ argmaxx∈X0
miny∈Y fAL(x, y), we have

min
y∈Y

fAL(x0, y) ≥ min
y∈Y

fAL(x, y), ∀x ∈ X0.

=⇒fAL(x0, y
∗(x0)) ≥ fAL(x, y∗(x)), ∀x ∈ X0.

(78)

Fix any x∗ ∈ X ∗ ⊆ X0, we have f(x∗, y∗(x∗)) ≥ f(x0, y
∗(x0)) and −A(x∗) ≥ −A(x0) by

definition. Now assume x0 /∈ X ∗. Then either f(x∗, y∗(x∗)) > f(x0, y
∗(x0)) if x0 /∈ X ∗

p , or
−A(x∗) > −A(x0) if x0 ∈ X ∗

p \X ∗. Either one of the above two conditions implies that

f(x∗, y∗(x∗))−A(x∗) > f(x0, y
∗(x0))−A(x0) =⇒ fAL(x∗, y∗(x∗)) > fAL(x0, y

∗(x0)),

which contradicts with (78). Therefore, x0 ∈ X ∗. □
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