
234 Chapter 7 Logical Agents

function DPLL-SATISFIABLE?(s) returns true or false

inputs: s, a sentence in propositional logic

clauses← the set of clauses in the CNF representation of s

symbols←a list of the proposition symbols in s

return DPLL(clauses, symbols,{})

function DPLL(clauses, symbols, model) returns true or false

if every clause in clauses is true in model then return true

if some clause in clauses is false in model then return false

P, value←FIND-PURE-SYMBOL(symbols, clauses, model)
if P is non-null then return DPLL(clauses, symbols – P, model ∪ {P=value})
P, value←FIND-UNIT-CLAUSE(clauses, model)
if P is non-null then return DPLL(clauses, symbols – P, model ∪ {P=value})
P←FIRST(symbols); rest←REST(symbols)
return DPLL(clauses, rest, model ∪ {P=true}) or

DPLL(clauses, rest, model ∪ {P=false})

Figure 7.17 The DPLL algorithm for checking satisfiability of a sentence in propositional
logic. The ideas behind FIND-PURE-SYMBOL and FIND-UNIT-CLAUSE are described in
the text; each returns a symbol (or null) and the truth value to assign to that symbol. Like
TT-ENTAILS?, DPLL operates over partial models.

1. Component analysis (as seen with Tasmania in CSPs): As DPLL assigns truth values

to variables, the set of clauses may become separated into disjoint subsets, called com-

ponents, that share no unassigned variables. Given an efficient way to detect when this

occurs, a solver can gain considerable speed by working on each component separately.

2. Variable and value ordering (as seen in Section 6.3.1 for CSPs): Our simple imple-

mentation of DPLL uses an arbitrary variable ordering and always tries the value true

before false. The degree heuristic (see page 193) suggests choosing the variable that

appears most frequently over all remaining clauses.

3. Intelligent backtracking (as seen in Section 6.3.3 for CSPs): Many problems that

cannot be solved in hours of run time with chronological backtracking can be solved

in seconds with intelligent backtracking that backs up all the way to the relevant point

of conflict. All SAT solvers that do intelligent backtracking use some form of conflict

clause learning to record conflicts so that they won’t be repeated later in the search.

Usually a limited-size set of conflicts is kept, and rarely used ones are dropped.

4. Random restarts (as seen on page 113 for hill climbing): Sometimes a run appears not

to be making progress. In this case, we can start over from the top of the search tree,

rather than trying to continue. After restarting, different random choices (in variable

and value selection) are made. Clauses that are learned in the first run are retained after

the restart and can help prune the search space. Restarting does not guarantee that a

solution will be found faster, but it does reduce the variance on the time to solution.

5. Clever indexing (as seen in many algorithms): The speedup methods used in DPLL

itself, as well as the tricks used in modern solvers, require fast indexing of such things


