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Abstract—Web applications rely on web servers to protect the
integrity of sensitive information. However, an attacker gaining
access to web servers can tamper with the data and query
computation results, and thus serve corrupted web pages to the
user. Violating the integrity of the web page can have serious
consequences, affecting application functionality and decision-
making processes. Worse yet, data integrity violation may affect
physical safety, as in the case of medical web applications
which enable physicians to assign treatment to patients based
on diagnostic information stored at the web server.

This paper presents Verena, a web application platform that
provides end-to-end integrity guarantees against attackers that
have full access to the web and database servers. In Verena, a
client’s browser can verify the integrity of a web page by verifying
the results of queries on data stored at the server. Verena provides
strong integrity properties such as freshness, completeness, and
correctness for a common set of database queries, by relying on
a small trusted computing base. In a setting where there can
be many users with different write permissions, Verena allows a
developer to specify an integrity policy for query results based
on our notion of trust contexts, and then enforces this policy
efficiently. We implemented and evaluated Verena on top of the
Meteor framework. Our results show that Verena can support
real applications with modest overhead.

I. INTRODUCTION

Web applications store a wide range of data including
sensitive personal, medical and financial information, as well
as system control and operational data. Users and companies
rely on these servers to protect the integrity of their data and
to answer queries correctly. Unfortunately, web application
servers are compromised frequently [28], thus enabling an
attacker to tamper with data or computation results displayed
in a webpage, thus violating their integrity.

The integrity of webpage content is especially important in
applications in which displayed data affects decision making.
This is well exemplified by medical web platforms where
patient diagnostic data is stored on web servers and remotely
accessed by physicians. Modification of this data might result
in miss-diagnosis, lead to incorrect treatment and even death.
A recent study estimates that millions of people are miss-
diagnosed every year in the US with a half of these cases
potentially causing severe harm [44]. Another study estimates
that miss-diagnoses causes 40,000 deaths annually [47]. Some
of the main reasons for miss-diagnoses were related to failure
by the patients to provide accurate medical history, and errors
made by a physician in interpreting test results [43]. If web

applications with patient and test result data are corrupted,
treatment decisions will therefore be made based on incorrect
data, likely resulting in substantial harm. In §IV-A, we discuss a
concrete medical web application used to monitor patients with
implanted cardiac devices, where a web server compromise
can lead to serious patient harm.

In addition to physical safety, webpage integrity is important
for basic security properties such as confidentiality against
active attackers, for example, by providing integrity protection
to data structures defining access control.

An uncompromised web server protects end-to-end integrity
in a few ways. Many web applications involve multiple users
and therefore enforce access control policies (e.g., a particular
patient’s data may be manipulated only by his physician).
Furthermore, the web server ensures that clients’ data requests
and queries are executed correctly on data that is complete and
up-to-date (i.e., fresh). An attacker who compromises the web
server could therefore violate some or all of these properties.

In this work, we propose Verena, the first web framework that
provides end-to-end integrity for web applications, enforcing
the properties above. Using Verena, the application developer
specifies an integrity policy and a user’s browser checks that a
webpage received from a web server satisfies this policy, even
when the server is fully compromised by an attacker. Verena
checks the integrity of code, data, and query computation
results within a webpage by ensuring that these results are
complete, correct, and up-to-date.

Verifying query results efficiently in the web setting is
challenging. While much progress has been made in generic
tools for verifiable computation [14, 38, 46], using these
tools for database queries and web server execution remains
far too slow. Instead, work on authenticated data structures
(ADS) [20, 23, 30, 31, 33, 37, 49] provides better performance
by targeting a more specific, yet still wide class of functionality.
These tools enable efficient verification without downloading
data on the client and re-executing the computation. However,
such tools are far from providing a sufficient system for web
applications; work on ADS assumes that a single client owns
all the data and this client has persistent state to store some
hashes. Web applications are inherently multi-user and stateless.
Different users can change different portions of data and a
query computation can span data modified by multiple users.



The first challenge for Verena is determining an API for
developers that captures the desired query integrity properties,
such as correctness, completeness and freshness, at the same
time with multi-user access control. To address this issue, within
Verena’s API, we introduce the notion of query trust contexts
(TC) coupled with integrity query prototypes (IQPs). A trust
context refers to the group of users who are allowed to affect
some query result, e.g., by inserting, modifying or deleting data
used in a query. An IQP is a declared query pattern associated
with one or more trust contexts. Each query runs within a
specified trust context; Verena prevents a malicious server or
a user outside of the trust context from affecting the results of
this query. Queries may also span a set of trust contexts not
known a priori; a mechanism called the completeness chain
ensures that the returned result is complete, i.e., all the results
of all the relevant trust contexts were included. The integrity
policy is hence associated with queries and not with the data –
nevertheless, the policy implicitly carries over to data because
data is accessed through queries.

The second challenge is verifying query results in a multi-
user setting. To address this challenge, Verena builds on ADS
work [20, 23, 30, 31, 33, 37, 49], and maintains a forest of
ADS trees, by automatically mapping trust contexts to ADSes.
To ensure completeness on queries spanning multiple trust
contexts, as specified by completeness chains, Verena logically
nests trees within other trees. Currently, Verena implements
an ADS that can verify range and equality queries as well as
aggregations, such as sum, count, and average. By substituting
the underlying ADS, Verena can be extended to support a
wider range of queries.

The third challenge, also brought by the multi-user and
web setting, is a known impossibility result: when there are
no assumptions on the trustworthiness of the server and the
connectivity of clients, one cannot prevent fork attacks [32, 34]
and hence cannot guarantee freshness. To provide freshness,
one must use some trust server-side. Verena manages to use
a small trusted base - a hash server that runs less than 650
lines of code. The hash server may also be compromised, as
long as it does not collude with the main server. The hash
server stores a small amount of information (mostly hashes and
version numbers), based on which Verena constructs freshness
for the entire database in an efficient way. The hash server
also addresses the problem of web clients being stateless and
not always online.

We implemented Verena on top of the Meteor framework [36]
and evaluated it on a remote patient monitoring application,
as well as two other existing applications. Our evaluation
results show that Verena incurs a modest overhead in terms of
latency and throughput. Our measurements also demonstrate
the simplicity of the hash server, compared to the main server;
the hash server achieves significantly higher throughput than
the main server.

II. MODEL

A. System Model
We consider a typical web application scenario, where clients

access a web server through web browsers. The clients could
be browsers, operated by human users, or any device capable
of communicating with the web server over the network. The
main server, sometimes simply referred to as server, is a typical
web server consisting of a web application front-end and a
database server.

Our setup further consists of the following parties: a hash
server, an identity provider (IDP), and the developer who
creates and maintains the web application code. The hash
server and IDP can be colocated on the same machine. They
each have a public-key pair and their public key is hardcoded
in Verena applications. In §III we describe the role of the
different parties in the Verena architecture.

Moreover, for describing Verena’s API in §IV, we use a
No-SQL API, which is typical in modern web applications.
For consistency, we use a syntax and terminology similar
to MongoDB [5], which we simplify for brevity. This is
also compatible with the Meteor framework [36], which we
use to implement our Verena prototype (described in §X).
Nevertheless, Verena’s API could be easily cast in a variety of
other database syntaxes (both SQL and No-SQL).

The web application’s database consists of collections
(equivalent of tables in SQL), each having a set of documents
(equivalents of rows in SQL), and each document has a set
of fields (which are similar to columns in SQL). A developer
can issue queries to this database from the web application:
“insert” (to insert documents), “update” (to update documents),
“remove” (to delete documents), “find” (to read document data)
and “aggregate” (to compute sum, average and other aggregate
functions). The find and aggregate operations can read data
based on filters, also called selectors, on certain fields using
range or equality. Queries are defined using a JavaScript-like
syntax. For example, “patients.find({patientID:2})” fetches all
documents from the collection “patients” whose “patientID”
field equals 2.

B. Threat Model
Verena considers a strong attacker at the main server; the

server can be corrupted arbitrarily. This means that an attacker
can modify the data in the database and modify query or
computation results returned by the server. There are numerous
ways in which an attacker could modify query results. For
example, a malicious server can return partial results to a range
query, it can return old data items, it can compute aggregates
incorrectly or on partial or old data. Worse, the server can
create fake user accounts or collude with certain users.

This strong threat model addresses powerful attackers in
the following use cases: a web application server runs in a
cloud and a malicious cloud employee attempts to manipulate
unauthorized information. Alternatively, an attacker hacks into
the web application server through vulnerability exploitation
and even obtains root access to the web and database servers,
so she can change the server’s behavior.
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Fig. 1: System overview. Grey-shaded components are modules introduced by Verena on top of a basic client-side architecture setup.

An attacker can also corrupt the hash server, but importantly,
we assume that an attacker can corrupt at most one of the main
and hash server. In other words, we assume that at least one of
the hash server and main server behave correctly. For example,
these two servers could be hosted on different clouds such that
the employee of one cloud does not have access to the second
cloud. Alternatively, the hash server, which we show to be
very lightweight compared to the main server, could be hosted
in-house, while the resource-intensive main server could be
outsourced to a cloud provider. We also stress that, given that
the hash server runs a very small code base, and answers to a
very narrow interface, it will be significantly less likely to be
compromised by a remote attacker.

The same threat model applies to the IDP server. We use
the IDP for the task of certifying each pair of username and
public key. Verena requires that only one of the IDP and main
server to behave correctly. Hence, the IDP and the hash server
can be colocated, as depicted in Fig. 1, where the mutually
distrustful servers are separated by a dashed line.

Clients are also not fully trusted. They may attempt to
bypass their write permissions by modifying data they are not
allowed to change. They might even collude with either the
main server or the hash server (but not with both of them at
the same time). Nevertheless, clients are allowed to arbitrarily
manipulate the data they legitimately have access to. If the
main server colludes with a client, the server cannot affect the
integrity of data owned by other clients that was not shared
with the corrupted client.

Finally, we assume that the developer wrote the web
application faithfully and followed Verena’s API to specify an
integrity policy. In contrast, the service provider and server
operator are not trusted at all (and these fall in the main server
trust model above).

III. ARCHITECTURE

Fig. 1 illustrates Verena’s architecture, which we describe
throughout this section.

A. Basic Setup

To lay out the foundations for Verena’s security mechanisms,
Verena starts with the following base setup. First, Verena
is a client-side web platform, a popular trend in recent
years [15, 36]. These platforms provide advantages not only
for functionality and ease of development, but also for security.

The dynamic webpage (with personalized content) is assem-
bled on the client side from static code and data coming from
the server. Previous work [41] has shown how to check in a
client’s browser whether the webpage code (such as HTML,
JavaScript and CSS) has not been tampered with by an attacker
at the server. Since the code is static, such a check essentially
verifies the code against a signature from the developer. This
check runs in a browser extension. Verena incorporates this
mechanism and the browser extension as well. From now on,
we consider that the webpage code passed this integrity check
and we refer the reader to [41] for more details.

Second, a standard requirement in multi-user systems provid-
ing cryptographic guarantees is an identity provider (IDP), i.e.,
an entity that certifies the public key of each user. For example,
it can be similar to OpenID or Keybase [3], or could be hosted
at the same place as the hash server. Without such an IDP, an
attacker at the server may serve an incorrect public key to a
user. For example, if user A wants to grant access to user B,
user A requests the public key of user B from the server who
replies with the attacker’s public key such that the attacker
obtains access. The IDP is involved minimally, when a user
creates an account; at that point, it signs a pair of username
and public key for each user creating an account. Although we
do not discuss key revocation in this paper, enabling revocation
in Verena would require the involvement of the IDP as well.

B. Verena Components

Now that we laid out the basic setup, we describe the
mechanisms that Verena provides to prevent the server from
corrupting data and query results. At a high level, the appli-
cation developer, using the Verena API, specifies the integrity
protection requirements (integrity policy) of the application.
This allows Verena to derive the access rights of each user



for each data item or query. Based on this API, the server
accompanies any integrity-protected query operation with a
proof that it follows this policy and the client can verify this
result. Also, whenever the client sends a query to the server, the
client accompanies the query with helper data for constructing
the proofs, if needed.

More concretely, as shown in Fig. 1, on the client side, a
webpage consists of two parts: the application’s code written
by the developer on top of the Verena framework, and the
Verena client. When a user logs in, the Verena client performs
authentication to derive the user’s key from his password. If
passwords are deemed unsafe, one can use other available
secret derivation mechanisms [16].

In typical client-side web frameworks, the app client issues
database queries; these queries are sent to the web server,
which sends them to the database. In Verena, all such queries
pass through the Verena client. Verena then determines if it
is a query that must be integrity protected. If so, the Verena
client provides helper data (such as challenges) to the server
to be used in proofs. When the server returns the results, the
server also provides a proof of correctness for these results
that the Verena client checks before returning to the app client.

The main server consists of the Verena server and the regular
app server. The app server, also written by the developer,
performs operations that are not integrity-sensitive and do
not require verification. All server-side operations that require
verification pass through the Verena server.

The Verena server carries the difficult task of constructing
proofs of correctness for query results that are efficiently
verifiable by the Verena client. Verena builds upon work on
authenticated data structures (ADS) and in particular tree-based
ADSes [20, 23, 30, 31, 33, 37, 49]. ADSes enable efficient
verification without downloading data on the client and re-
executing the computation. We provide a brief background on
the ADS used in our implementation in appendix A. Verena
enables these ADSes to be used in a multi-user and stateless
setting. In this manner, Verena can verify a wide range of
common queries, but not any general query. Table I lists the
read queries that are currently supported by Verena. Moreover,
§IX discusses how Verena can be extended to support a broader
range of query types.

Since applications have different access policies, Verena
needs to translate these policies into ADSes. Our new API,
based on the notion of query trust contexts (TC), integrity
query prototypes (IQP) and completeness chains, presented in
§IV, captures an application’s policy.

Moreover, due to the multi-user setting in Verena, different
users are allowed to modify different portions of the data stored
at the server. Thus, the Verena server has to maintain different
ADSes for chunks of data that are modifiable by different sets
of users. Respectively, Verena clients must ensure that, for
each integrity-protected database operation, the server presents
proofs for all relevant ADSes that data was modified only by
legitimate users. To address this, Verena maintains a forest of
ADS trees, by automatically mapping the developer’s Verena
API calls into the appropriate ADSes.

Since multiple users may be able to change the same data
item, users do not know what was the hash of the last change.
Additionally, in web applications, not all users are online at
the same time and cannot notify each other of their changes.
To make the problem worse, since the web setting is stateless,
whenever a user logs off, any state he stored in his browser is
typically lost. Moreover, the user should be allowed to login
from a new browser where there is no state. This means that,
even though ADSes help ensure integrity of some snapshot of
the data, the server can still provide stale data. In fact, Mazières
and Sasha [34] prove that, without any trust at the server or
connectivity assumptions of users, one cannot guarantee data
freshness.

To address this problem, Verena uses a hash server; a simple
server whose main task is to serve the hash, version and last
modifier for a given entry. As long as the hash server does
not collude with the main server, Verena’s integrity guarantees
hold. To check the correctness and freshness of query results,
a tempting approach is to store the entire ADS trees at the
hash server. We show in §VI that we can avoid this approach,
and maintain the task of the hash server simple, namely the
hash server stores one entry per tree, corresponding to the root
of the tree. As a result, the hash server is easier to secure; it
runs a small code base, answers to a narrow interface, and is
lightly utilized. The hash server could be collocated with the
IDP server because Verena assumes the same trust model for
these two servers.

IV. INTEGRITY POLICY API

In this section, we describe the main concepts behind
Verena’s API for expressing an integrity policy. In Verena
we are concerned only with write access control. As discussed
in §IX, systems like Mylar [41] can be used for expressing
and enforcing cryptographically read access control.

In order to illustrate Verena’s concepts and API, we use
consistently the following running example of a medical web
application.

A. Running Example: Remote Monitoring Medical Application

Our running example is a remote patient monitoring system
used to connect cardiac device patients with their physicians.
Such systems are deployed by a number of medical implant
manufacturers such as [1, 2, 4, 17]. In order to evaluate Verena
on such an application, we contacted one of the implant
manufacturing companies and obtained access to the web
interface of their remote monitoring system. This provided
us with a better understanding of the type of web pages that
these systems expose, access control that they implement and
the type of data that they expose to the physicians. We then
discussed with a cardiologist to gain a better understanding of
the integrity policy of this application.

Modern implantable cardiac devices, such as cardioverter
defibrillators (ICDs), cardiac monitors and pacemakers, monitor
the patient’s cardiac activity and take certain actions. In particu-
lar, implants measure data such as therapy delivered, heart rate,
EKG (Electrocardiogram) data, and status of implant and leads.



To facilitate access to this data, implants communicate remotely
with their clinics; this is supported by wireless telemetry devices
which, when in the proximity of the patient, query the implant
and then communicate the data further to the clinic server.

The server then exposes a web interface to physicians,
through which they can access patient profiles, status of im-
plants and measurements. Besides viewing this data, physicians
ask the web server for certain aggregate computation such
as average heart rate, number of heart beats per day (e.g.,
observed over a three-day period) and number of sinus pauses
(i.e., skipped heart beats/asystoles). Physicians can change a
patient’s therapy by reprogramming the implant in the clinic,
using short-range inductive coil telemetry.

The information a physician receives from the web server
influences the decisions the physician makes for a patient and
is thus integrity critical. Although practices among physicians
can vary and there might be other inputs that influence the
therapy decisions, we were told that incorrect modifications
of these values or aggregates will likely lead to a change
in the delivered therapy and can cause serious patient harm.
Moreover, the status of the implant and leads connecting the
implant to the heart is integrity critical. If these are thought
of malfunctioning, this might trigger their replacement which
requires surgery.

The main subjects in the system that we had access to include
the administrators of the clinic, physicians and the medical
implants. Each implant can be seen as a user with write access
to the corresponding patient’s implant status and measurement
data. Main objects are patient related information which are
entered by physicians, as well as measurement and implant
status data which are entered directly into the system by the
implants.
Instantiation. To illustrate Verena’s API, we give (simplified)
examples of this application. The following collections are
relevant:

collection fields in a document
patients (groupID, patientID,

patient_name, profile)
patient_groups (groupID, group_name)
patient_measurements (recordID, patientID, heart_rate,

timestamp)

Patients are organized into four groups based on their cardiac
disease. Each patient is present in only one such group. These
groups also represent the unit of write access control. Physicians
are granted write access to one or few of these groups, and
they can modify only patient profiles in those groups.

The collection patient_measurements contains measurement
data originating from a patient’s medical device and can be
modified only by the patient’s device.

B. Trust Contexts

Trust contexts are the units of write-access control in Verena.
A trust context, identified by a unique name, consists of a set
of users, called members. We also refer to this set of users as
the trust context membership list or access control list (ACL).

Each query whose results are integrity critical runs in a
particular trust context; only the members of that trust context
could have affected the result of the query.

The user who creates a trust context is the owner. The owner
of a trust context can add other members to the trust context
ACL or remove them from it. Currently, only the owner of the
trust context can manage its members, but delegating this to
other users is straightforward. We discuss how Verena maintains
and verifies the membership of trust contexts in §V-D.

Returning to our running example and its protection re-
quirements, the developer should define one trust context per
disease group (whose name can be “groupID”) containing
the physicians allowed to modify the corresponding patient
profiles. The contents of patient_groups can be changed by
members of an “admins” group so the developer declares a trust
context for “admins”, too. Furthermore, the data in collection
patient_measurements as well as the query results on this data
can be modified only by the patient’s device. Hence, we also
have a trust context per patientID.

C. Integrity Query Prototypes

In Verena, the developer specifies the desired integrity policy
via a set of integrity query prototypes (IQPs) with associated
trust contexts. The IQPs are query patterns which specify that
a certain set of read queries run in a certain trust context;
only members of the trust context may affect the result of
those queries. The integrity specification is therefore associated
with read queries and not with data – nevertheless, the policy
implicitly carries over to data, because data is accessed through
queries. Moreover, the IQPs tell Verena what computation will
run on the data so that Verena prepares data structures for
verifying such computation. We now show the syntax of an
IQP and explain each element in it:

iqp = collection.IQP ({
trustContext: unique_name or tc_field,
eq-range: [r f1, r f2, . . . ],
ops: {o1: [ f1, . . . ], o2: [ f 0

1, . . . ], . . . }})

• “iqp” is an IQP handle.
• “collection” is the collection on which a query with this

pattern runs.
• “trustContext” specifies the trust context.
The trust context can be a name, such as “admins” or can be
the name of a field in this collection, such as groupID in the
patients collection. In the first case, there is one fixed trust
context for all documents in this collection.

In the latter case, there can be different trust contexts
for different documents. For example, if “patients” contains
documents (groupID: “A”, patientID: “10”, ...) and (groupID:
“B”, patientID: “11”, ...), and an IQP specifies the “trustContext:
groupID”, the trust context for the first document is “A” and
for the second document is “B”.

Each trust context must have a unique name. For example,
if both patientID and groupID are trust contexts for some IQPs



Operation Explanation

project: [ f1, . . . ] projects the fields f1, . . . from the document
count returns the number of documents
sum: f returns the sum of the values in the field f
min/max: f returns the minimum/maximum value over the data

in field f
avg: f returns the average of the values in the field f
sum_F: [ f1, . . . ] a more generic aggregate: returns the sum of a general

function F whose inputs are [ f1, . . . ]

TABLE I: Operations supported in read queries.

and can both have a value of 2, the developer should choose
trust context names of the form “patient 2” and “group 2”, in
order to differentiate them. If it is desirable for patientID to
remain an integer, the developer could include another field in
the document, which will serve as the trust context field, e.g.,
“group_tc”. In the rest of the paper, we assume that the trust
contexts are the IDs and they are unique.

• “eq-range” specifies that the queries corresponding to this
query pattern filter documents by range on the tuple (r f1, r f2,
. . . ). A set of filter possibilities fit in this pattern. For example,
if the IQP for “patient_measurements” contains “eq-range:
(patientID, timestamp)”, a query could have an equality match
by patientID and a range match on timestamp, or there can be
equality on both fields. Our current implementation supports
only one range filter, namely the last declared field in the
tuple (r f1, r f2, . . . ), with the rest of the fields being used as
equality filters. However, Verena can be extended to support
more complex filters (e.g., multidimensional range queries
and text search queries) by simply using ADSes that support
such operations [37].

• “ops” indicates the projections and aggregations performed
and on what fields. The operations supported are listed in
Table I.

Verena will protect the integrity of all fields specified in an
IQP, namely the fields projected, aggregated, in eq-range, or in
trustContext – these fields can be modified only by members
of the corresponding trust context. We call these fields the
protected fields of an IQP.

Let us walk through an example. In the medical application,
a physician can fetch the recorded heart rates of a patient over
a period of time to visualize how the heart rate fluctuates in
that time period. Additionally, a physician can view the average
heart rate over a time period.

The first read operation is a projection on the heart_rate
field, and the second is an average computation on the same
field. The trust context in both operations is designated by the
patientID field; only the patient’s implant is allowed to provide
these measurements. In the medical application, this entity is
represented as a user with patientID. Moreover, the operations
use the timestamp field as a range selector. Consequently, to
integrity protect these operations we can define the following
IQP:

iqp_measurements = patient_measurements.IQP ({
trustContext: patientID,
eq-range: timestamp,
ops: {project: [recordID, heart_rate], avg: [heart_rate]}})

D. Queries API

Once the developer specifies the necessary IQPs, which
reflect the application’s integrity specification, he can express
and issue queries in the same way as in a system without Verena,
by invoking “find” and “aggregate” on the corresponding IQP
handlers This minimizes the amount of effort needed by the
developer to enable Verena in existing web applications.

An example query for listing the average heart rate of
patientID 121 over a period of one month is:

iqp_measurements.find ({
patientID: 121,
timestamp: {“$gte": new Date(“2016-03-01"),

“$lte": new Date(“2016-04-01")}})

A read query must be a subset of the queries described by
the corresponding IQP. Moreover, if the trustContext of this
IQP is a field, the query must specify its concrete value (for
example, “patientID: 121”).

The developer does not have to specify IQPs for write queries,
and simply invokes “insert”, “remove”, or “update” operations
on the desired collection. The access control for write queries
is derived from read queries. For write queries, Verena checks
against all IQPs declared whether the current user is allowed
to perform them. We elaborate on these checks in §V-C.
Supported Functionality. The read queries supported by
Verena are those that can be expressed using an IQP. The
write queries supported are in Table II: insert, delete, update.
Verena currently supports update and delete queries only by
id, but extending to eq-range style filters is straightforward.

E. Querying Across Trust Contexts

So far, each read query specifies one trust context in which
it runs. We now discuss how Verena supports queries spanning
multiple trust contexts.

In the medical application example, recall that patient profiles
are categorized in groups according to their disease and
physicians may only modify profiles within certain groups. The
following IQP enables fetching the complete list of patients
within a group:

iqp = patients.IQP ({trustContext: groupID,
ops: {project:[all]}})

and the following IQP enables fetching all groupIDs from
“patient_groups” using the “admins” trust context:

iqp_groups = patient_groups.IQP ({ trustContext: “admins”,
ops: {project: [all]}})

In our running example, a physician may also view the list
of all patient profiles from all patient groups. Clearly, this
query spans multiple trust contexts. In a non-Verena system,



the developer can simply run a read query fetching all entries
in “patients”. However, if the server is compromised, the list of
patients returned can be incomplete. To ensure completeness
using Verena, the developer would need to do more work. He
should fetch all the groups using “iqp_groups”, loop over the
groups returned, fetch all patients in each group using “iqp”
and merge the results. This results in a complete set of patients,
but requires more work from the developer.

To make the work of the developer easier, we extend slightly
Verena’s API with a mechanism called completeness chain; this
mechanism essentially does the above work automatically for
the developer. The completeness chain retrieves the involved
trust contexts of a query by querying a different IQP and
trust context, called the root trust context, which endorses the
relevant trust contexts. In other words, the root trust context
protects the list of trust context names of the query we want
to execute, and thus we leverage it to establish completeness
for that query. The developer simply runs the query:

iqp.find ({ group: iqp_groups.find({},{groupID:1}) },
{ . . . })

The inner query projects the “groupID” fields from all doc-
uments in “patient_groups”. Fig. 3 and §V-B describe how
Verena implements the completeness chain mechanism.
Alternative. It is worth mentioning an interesting alternative
to completeness chains, which demonstrates the expressivity
of Verena’s trust contexts. The developer can specify a new
trust context “all_physicians”, which contains the set of all
physicians, and an IQP “iqp_all_patients” that fetches all patient
profiles (across all patient groups) in the trust context of
“all_physicians”. Then, the developer can directly fetch all
patient profiles by running “find” on “iqp_all_patients”. In
this way, any non-physician cannot affect the completeness
or integrity of the patient list. However, a physician who is
not authorized to modify a certain group can now affect the
completeness and integrity of patient profiles in that group. As
a result, the integrity guarantee provided by the above IQPs is
weaker than with completeness chains, and not sufficient for
this application.

However, for applications with different access control
requirements or different threat models, a developer might find
this alternative sufficient. In this case, verification of aggregates
is faster than with the completeness chain. Due to the layout
of Verena’s data structures described in §V, the Verena client
checks one aggregate value overall instead of one aggregate
value per trust context with the completeness chain.

F. Deriving Trust Contexts From User Input

In some applications, the trust context for running certain
queries is derived from user input. This requires special care
from the developer and the user. Such a situation arises in
applications where anyone can create units of data and give
write access to others. For example, in a chat application,
anyone can create a room and invite certain users to those
rooms. Only the invited users may modify the contents of a chat
room. This situation does not occur in the medical application

because access control is rooted in a fixed entity, namely the
“admins” trust context, which endorses and manages access to
the trust contexts of patient groups.

In the chat application, a natural trust context for the
messages in each room is the room name. A user, say Alice,
reads the list of room names and clicks on the room she wants
to visit. She expects the messages in the room to come from
authorized users, and makes decisions based on them. However,
an attacker can also create a room with the same name or a
syntactically similar name (“business” vs. “busines”) tricking
Alice into clicking on the attacker’s room. The contents of the
attacker’s room are certified by the attacker, so Verena does
not trigger an integrity violation.

Hence, in such cases, the developer must display unambigu-
ous names to users. In order to do this, the developer can
choose human-friendly names for trust contexts (e.g., the name
of a room, as defined by a user) and then, display directly the
trust context names in a prominent way to the user. Our hash
server prevents two trust contexts from having the same name,
and one can also expand this protection to prevent two trust
contexts from having syntactically similar names. Moreover, the
developer can display the owner of a trust context. Depending
on the use case, the developer can display both the trust context
name and its owner, or either of the two, in order to help the
user verify the authenticity of the displayed data. The user
needs to perform this check, for example in order to verify he
is entering the intended room. This requirement is similar to
phishing prevention where the user needs to check the URL
he is visiting.

G. Integrity Guarantees

The guarantee Verena gives to a developer, given the
assumptions in the threat model (§II), is, informally:

If Verena does not detect a corruption, the result
of a read query (find or aggregate) that corresponds
to an IQP with a trust context tc reflects a correct
computation on the complete and up-to-date data
(according to linearizability semantics), as long as all
clients running on behalf of the members of tc (or all
involved trust contexts in the case of a completeness
chain) follow Verena’s protocol.

In particular, the query result could not have been changed
by a malicious server or any user outside of the relevant
trust contexts. Moreover, a data item is “up-to-date”, or fresh,
if it reflects the contents of the latest committed write as
in linearizability semantics. In particular, the server cannot
perform fork attacks [32, 34] because every client can always
get the latest committed write of any protected data.

The resulting guarantee to the user is:

The webpage consists of: (1) the authentic developer’s
code; (2) correct and “up-to-date” information (data
or query computation results) generated only by
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Fig. 2: Verena maintains a forest of ADS trees, in order to protect the data associated with different trust contexts.

Write Queries Explanation

insert(d) inserts a document d
update(id, d) updates the document with identifier id with data

from the document d
remove(id) deletes the document with identifier id

TABLE II: Write operations in Verena.

authorized users.

Verena does not guarantee availability of the server.

V. INTEGRITY PROTECTION MECHANISM

We now describe how Verena enforces the integrity policy
the developer specified.

A. ADS Forest

Verena leverages authenticated data structures (ADS) [20,
23, 30, 31, 33, 37, 49] as its underlying integrity protection
building block. The ADS [31] we use consists of a search
tree sorted by the eq-range field(s) and combined with Merkle
hashing. We refer the reader to appendix A, where we provide
needed background on ADSes.

Based on the IQPs declared by the developer and the write
operations that are issued throughout the application’s lifetime,
Verena creates and maintains a forest of ADSes, as illustrated
in Fig. 2. For each IQP, Verena creates one ADS per trust
context that is used in queries of that IQP.

For example, consider the IQP we discussed before:

iqp_measurements = patient_measurements.IQP ({
trustContext: patientID,
eq-range: timestamp,
ops: {project: [recordID, heart_rate], avg: [heart_rate]}})

Based on this IQP, every patientID constitutes a trust context,
and Verena will maintain one different ADS for every value
of patientID, in order to protect the data and aggregation
operations specified by the IQP (in this case, the projection

of recordID and heart_rate, and the average calculation on
heart_rate). Appendix A explains how the ADS organizes and
stores the protected data.

As shown in Fig. 2, the forest of trees is stored at the main
server. The hash sever stores only the Merkle hash roots (one
entry per tree, containing the root hash and additional necessary
information, as described in §VI).

B. Completeness Chain Implementation

ADS trees can be logically nested within other trees as shown
in Fig. 3. The completeness chain mechanism logically nests
ADSes within another ADS. In this example, a trusted entity,
such as the administration of the medical application, uses a
static, i.e., predefined, trust context, named “admins”, owned
by the system administrator, to manage the patient groups. One
of the protected fields is used to store the trust context name of
each group. This field can be used as a reference to identify all
the correct trust contexts that correspond to the patient groups,
which in turn protect the patient profile data. Thus, we can use
the “admins” trust context as a root trust context to establish
completeness, for the query that reads patient profile data from
all (unspecified) groups.

C. IQP Analyzer

The IQP analyzer checks whether a user can run a certain
query based on the IQPs defined and the trust contexts to which
this user belongs.

For each read query, the Verena client ensures that the query
matches the IQP handle it was invoked on. A query matches
an IQP if all of the following conditions hold:

• the query filters on the same list of fields as in eq-range
of the IQP or on a prefix of these fields,

• the query performs a subset of operations and aggregates
from “ops” of the IQP, and,

• if the trust context of this IQP is a field instead of a fixed
trust context, the query specifies the value for this field
(e.g., “patientID: 121” in the query in §IV-D).

When inserting or deleting a document, the Verena client
and server check that the user who inserts this document is a



Function Explanation

declareIDP(url, pubkey) Specifies the url and pubkey of the IDP.
createAccount(uname, passw, [creator]) Creates an account for user uname. Must be called by the user when his account is

created or, if a creator user is specified, by the creator.
lookupUser(uname, [creator]) Looksup the user uname as created by creator. If the creator is not specified, Verena

considers the default which is the IDP.
login(uname, passw) Logs in user uname with the specified password.
logout() Logs out the currently logged-in user.

createTC(name) Creates a new trust context tc with name name owned by the current user.
isMember(tc, user) Returns whether user is member of the trust context named tc.
addMember(tc, user) Adds user to tc only if the current user is the owner of the trust context tc.
removeMember(tc, user) Removes user from tc only if the current user is the owner of the trust context tc.

TABLE III: User and trust context API in Verena. Each function runs in the user’s browser and current user denotes the currently logged in
user who performed this action.

TC “group B” TC “group D”

TC “admins”

TC “group C”TC “group A”

Patient profile data

References to
the trust contexts
of patient groups

Root
trust context

Fig. 3: Illustration of the completeness chain mechanism.

member of all the trust contexts defined by any IQP on this
document. When updating a field f , the Verena client and
server check that the user is a member of each trust context
defined by an IQP on this document that has f as a protected
field. When updating a field that is a trust context for an IQP,
the user performing the update must belong to both the old
and new trust contexts.

Of course, if both the Verena client and server performing
these checks are compromised and collude, they will not
perform these checks and will allow unauthorized actions.
However, as we discuss in §VII, the Verena clients running
on behalf of honest users will detect and flag this issue: the
unauthorized client was not able to sign ADS updates with an
authorized public key.

D. Trust Context Membership Operations

As described in §IV-B and §IV-C, write access control is
expressed by associating trust contexts with protected data,
through IQPs. Only the members of a trust context are allowed
to affect the results of a query associated with that trust
context. The owner (creator) of a trust context is responsible
for managing the membership, or in other words the access
control list (ACL), list of the trust context, by adding and
removing users. We note that one can create additional groups
for further levels of nesting and have a trust context consist

of a list of users and groups of users. For simplicity, we do
not describe groups beyond trust contexts in this paper. Also
recall that, each trust context is identified by a unique name.
Table III shows the API for adding or removing trust context
members.

The ACL of a trust context is a piece of information that
needs to be integrity protected, just like other sensitive data in
the web application. Verena internally maintains a collection
for storing the trust context ACLs and protects it by declaring
an appropriate IQP. Consequently, both ACL modification
operations, as well as read operations for verifying whether a
user belongs to a trust context ACL, are integrity protected.
The corresponding entries on the hash server, i.e, those that
store the latest root hashes of the ADSes protecting the ACLs
of trust contexts are created in a special way (see §VI), to
make sure that only the owner of a trust context can update
the root hash of its ACL, and thus manipulate the ACL.

We note that an extra step has to be performed when
removing a user from a trust context. As we describe in §VI,
each hash server entry stores the public key PK of the last user
that modified the entry. When the owner removes a user u from
a trust context tc, the owner must update the entries at the hash
server that correspond to ADS trees for tc (these are the ADSes
that protect data associated with tc) that were last modified by
u; the owner makes a no-op modification so these entries now
appear modified by the owner, which is valid, because he is a
member himself. This update is necessary because, without it,
clients verifying if the last modification to the ADS tree was
permitted will notice that this modification was performed by
a user who is not in the trust context anymore.
Membership Verification. As part of verifying the result of
a query (described in detail in §VII), the Verena client needs
to check that the user who last modified the relevant protected
data was authorized to do so. In other words, the Verena client
needs to verify that a user u with public key PK is a member
of a given trust context tc. To construct such a proof, the
server provides to the client the binding of a username u to PK
along with the signature from the IDP for this binding. Based
on this signature, the client can verify that user u is indeed
the owner of PK. Subsequently, the server has to prove that u
is a member of the trust context tc. For this goal, the server



fetches the entry for tc from the hash server and produces a
proof from the ADS that protects the ACL of tc, in a process
similar to any integrity protected read query.

VI. HASH SERVER

The hash server has a simple functionality, similar to a
key-value store. Its task is to store the most recent root hash
for each ADS that exists in a Verena application, together
with information about which user made the latest update. The
hash server provides this information signed for authenticity
to Verena clients. The clients use it to verify that the data they
read is fresh and complete.

The hash server stores a map, in which the key is an ID
and the value is an entry E = (hash h, version v, public key
PK, flag fixedPK). The version v helps serialize concurrent
operations to each entry. Depending on the value of fixedPK,
we distinguish two types of entries, which we describe below.
Trust Context ACL Entry. Entries of this type store the root
hash h of the ADS that protects the membership list (ACL) of
a trust context. The ID of such an entry is uniquely derived
from the trust context to which it corresponds. The version v
indicates the number of modifications made so far to this entry.
The public key PK belongs to the user who created the trust
context, i.e., the owner, and fixedPK is true to indicate that
only the creator of this entry is permitted to modify the entry.
This reflects the fact that only the owner of the trust context
is allowed to manipulate the trust context ACL.
ADS Entry. Entries of this type store the root hash h of an
ADS that protects application data associated with some trust
context. The ID of such an entry is uniquely derived from the
IQP and trust context to which they correspond. The version
v of an entry E indicates the number of modifications made
so far to this entry, and PK is the public key of the user
who last modified the hash of this entry. fixedPK is false
indicating that anyone is allowed to modify this entry. The
hash server does not check if the client modifying this entry
was allowed to modify it. Instead, since all hash server requests
go through the main server, the main server must check that
the client is authorized. If the server misbehaves and allows
unauthorized modifications, honest Verena clients will later
detect this misbehavior by checking if the PK of the latest
modification was allowed to perform this modification.

The hash server does not need to understand how each
entry is used for integrity enforcement. It only implements the
following simple interface consisting of two functions, HS_GET
and HS_PUT:

HS_GET(ID):
1: return map[ID]
HS_PUT(ID, Eold= (h, v, PK), Enew= (h’, v’, PK’,
fixedPK’), sig(ID, Eold, Enew)):

1: Verify sig on (ID, Eold, Enew) using PK’
2: if ID not in map and v’ = 1 then
3: map[ID] = (h’, 1, PK’, fixedPK’); return true

4: if ID not in map then return false
5: E = map[ID]
6: if E.fixedPK and PK’ 6= PK then return false
7: if E.v = Eold.v and v’ = v+1 and E.h = Eold.h and

E.PK = PK then
8: map[ID] = (h’, v’, PK’, E.fixedPK); return true
9: return false

As shown in Fig. 4, when a Verena client makes a request
to the hash server, the client attaches a random nonce. The
hash server assembles the response as above and then signs
it together with the request and the nonce. The signature and
nonce prevent an attacker from replacing the response of the
hash server with an invalid or an old response.

The hash server can receive batched requests of the same type
from the same client. The hash server signs all the responses
into one signature, for increased performance. When the client
sends multiple HS_PUT requests, the hash server executes them
atomically: it executes them only if all of them return true.

VII. COMMUNICATION PROTOCOL AND QUERY
PROCESSING

We now describe the protocol that governs the interaction
between the client, the main server, and the hash server, as
well as the operations that are executed during the processing
of read and write queries.

Fig. 4 shows the communication protocol in Verena. The
sequence of operations in this protocol is the same no matter
what the query from the client is: whether this query is reading
some data, performing an aggregate, writing some data, or
adding a member to a trust context. Only the details of the
operations differ.

When issuing a query, the Verena client adds a randomly
generated nonce to the query, to be included in the hash
server’s signed response. Based on the query, the main server
derives a set of hash server requests whose results will help in
assemblying a proof of correctness for the query’s results. The
server submits them together as part of one big request to the
hash server. The hash server executes the request atomically,
as explained in §VI. Then, it signs its response together with
the request and the client’s nonce, and provides the signed
response to the main server. The server computes the result of
the query based on the server’s state and uses the hash server’s
signed response to prove correctness of the query result to the
client. The main server often needs to add extra information to
show that some data hashes to the hashes provided by the hash
server. The nonce prevents the main server from doing replay
attacks on the hash server and serve old data to the client.

In Fig. 4, Step 1 is explained in §V-C. Step 3 is explained
in §VI. We next describe Steps 2 and 4 for both read and write
operations. For each query, if the server is honest, it still checks
the regular read and write access control of an application, as
coded by the developer, and rejects a query if the issuing client
is not authorized to execute it. If the server is malicious, the
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Fig. 4: Communication protocol in Verena. Step 2’ consists of an
additional roundtrip that happens only for write operations.

server might skip this step, but write access control specified
by IQPs will still be enforced by Verena; clients will detect
that the server violated the integrity access control specified in
IQPs.

A. Read Query

Read queries can be projection or aggregation queries.
During Step 2, the server executes:

1) Create an empty list of requests for the hash server, called
HS_requests, and an empty list for proofs to be given
to the client, called proof_list.

2) Execute the query on the database and produce a result
result.

3) Identify the relevant ADS instance for the trust context
of this query or ADS instances for a query using a
completeness chain. Assemble a proof of correctness of
the query result based on these ADSes and their roots
and add the proof to proof_list. Add requests for the
hashes of the roots to HS_requests.

4) Identify the last client who modified each ADS. Assemble
a proof that this client is in the trust context for the relevant
IQP (per §V-D), add the corresponding hash requests to
HS_requests and the proof to proof_list.

In Step 4 of Fig. 4, the client verifies the proof from
the server. For each ADS involved in the query, the client
verifies (1) the ADS proof, (2) that the root hash of this ADS
corresponds to the one from hash server’s signature, (3) the
hash server’s signature, (4) the server’s proof that the last client
who changed the root hash (as specified by the public key in
hash server response) was authorized, as explained in §V-D.

B. Write Query

A write query can be an insert, update, or remove. Verena
provides linearizability guarantees: there is a total order
between all read and write queries, and each read will see
the latest committed write. A client considers a write query
committed when the protocol in Fig. 4 completes successfully.

To prevent the server from cheating during serialization, a
natural solution is to have the hash server serialize requests.
However, this strategy will increase the complexity at the hash
server and our goal is to keep the hash server simple. Instead,

the main server will do the serialization work in a verifiable
way. The only job of the hash server is to ensure that each
HS_PUT to an entry increments the version of the entry. Based
on the version number, clients can verify that the server did
not serve an old hash or attempted a fork attack [32].

A write query (e.g. insert) can cause modification of multiple
ADSes. The server serializes the changes to these ADSes
by locking access to each ADS involved. Parallel write
queries affecting different ADS structures can still proceed
concurrently.

Clients can issue a delete or update query to a certain
document ID. If the developer wants to delete or update
documents selected by a filter, the developer should first fetch
those documents using a read operation and then update them
by ID. Verena’s design can be extended to enable such queries
directly by employing verification as for read queries, but in
interest of simplicity, we do not describe these changes here.

We now describe the steps involved in an insert; delete is
similar. Update proceeds as a delete and insert that happen at
the same time (so there is no need to run the communication
protocol twice).

During an insert operation, the client must help the server
update ADS trees. For each ADS tree, the client first checks
that the ADS tree at the server is correct. Namely, its root hash
matches the corresponding hash at the hash server and was
changed by an authorized client. The client does not have to
download the entire ADS tree to perform this check; only the
relevant path in the tree is required. Then, the client inserts
the new value and recomputes the new root hash. It signs this
hash and provides it to the main server, to be included in a
hash server HS_PUT request.

To avoid the need for an additional round trip between the
main and hash servers, the main server maintains a copy of the
hash server map. Thus, the client obtains the hash root hashold
from the main server instead of the hash server. Of course, the
main server could provide an incorrect value, but both the hash
server and the client detect this behavior as follows. When
the client performs the update, the client provides a new hash
along with hashold in a signature sent to the hash server as
part of HS_PUT. The hash server checks that hashold matches
the value at the hash server as discussed in §VI.

Due to updates, some data content may cycle back to an old
hash. The version numbers prevent a malicious server from
replaying previous updates on this repeated hash value.

During Step 2 and 2’, the server runs:
1) Check, using regular access control, if the client is allowed

to write. If not, return.
2) Identify the relevant ADSes A1 . . .An that need to be

updated. Acquire a lock for each one of these.
3) Send a message to the client containing a proof for each

ADS Ai as discussed above. Instead of contacting the
hash server for the tuple E = (hash h, v, PK), send this
information from the server’s storage. Also, send a proof
that PK belongs to a user who is allowed to make the
change as in the read operation.

In Step 2’, the client:



1) Verify all the proofs as in a read operation.
2) If verification passes, for each ADS involved, provide

nonce and siguser(ID, E, Enew), where ID is the id of the
corresponding entry at the hash server, Enew= (h’, v’ =
v+1, PK’), where h’ is the new hash after the change.

The server:
1) Check the client’s signature, h’, v’, and PK’. If everything

verifies, update the database, the ADS trees, and send
Enew and siguser(ID, E, Enew) to the hash server.

2) After receiving the response from the hash server, forward
it to the client.

3) Release the locks.
Finally, the client verifies the hash server’s response: the

signature from the hash server verifies with the nonce and the
hash server accepted the change. If so, the write completed.
Otherwise, the main server misbehaved. The main server also
has a timeout during which it keeps locks on behalf of the
client. To provide liveness, if the client takes too long to answer
in Step 2’, the server aborts this request and releases the lock.

VIII. INFORMAL SECURITY ARGUMENT

In §IV-G, we describe the guarantees provided by Verena.
Here, we present a high-level argument of why these guarantees
hold. To argue that Verena’s read queries return results
satisfying the guarantees in §IV-G, we show the following
two properties. Given a read query q, let ADS be the ADS
corresponding to q and tc be its trust context.

1) The hashes of the roots of ADS and tc at the hash server
correspond to the latest modification by a user in tc.

2) Given the root hash of ADS and tc that satisfy the property
above, a client can detect if the query’s result does not
satisfy the guarantees in §IV-G

The second property follows from the properties of ADS
trees (recall that tc is also implemented as an ADS tree). Let
us explain why the first property holds. Assuming a trusted
hash server, the hash server will return to a read query the
latest hash from a write query. Moreover, the Verena client
checks for each read query that the latest write was created
by an authorized user. At the same time, due to the nonce
used by clients when receiving responses from the hash server,
a client who committed a write knows that the hash server
persisted its update. For queries that span multiple trust contexts,
given a root trust context and the properties of ADS trees, the
completeness chain mechanism can guarantee the completeness
and correctness of the results.

IX. DISCUSSION

Limitations and Extensions. Verena does not support all
possible query types, although it supports a common class
of queries. §IV-D describes the queries our current system
supports. Nevertheless, the overall Verena architecture is mostly
agnostic to the underlying ADS. The literature provides ADSes
for other types of queries, such as multidimensional range
queries or text search queries [37]; adding them to Verena
should be straightforward.

Moreover, Verena does not support triggers: with a trigger,
a database server notices when a certain condition on the
data is satisfied and contacts the relevant users. If a server
is compromised, it can choose not to contact the users. A
mitigation to support triggers is to have the client check the
triggers after performing an update or periodically.
Hash Server Trust. The design so far assumed that the hash
server is trusted. Verena can survive compromise of the hash
server as long as an attacker does not compromise both the
hash server and the main server. This is simple to achieve: the
main server checks the answers provided by the hash server
with minimal change to the design so far because (1) the main
server stores a copy of the entries at the hash server anyways
and (2) all hash server responses pass through the server. The
main server can detect misbehavior of the hash server and
warn of a potential compromise.
User Signature Verification. The signature verification during
HS_PUT (§VI) of the user who performs the update can be
removed from the hash server and instead performed in the
clients. However, we decided to perform this verification on
the hash server because it improves client latency and it is a
simple operation; it avoids the need for clients to check this
signature every time they check a proof involving it.
Data Confidentiality. Verena can be combined with a web
framework such as Mylar [41], which protects data confiden-
tiality against server compromise. This results in a solution
offering both confidentiality and integrity protection against an
active server attacker.
Using Verena Correctly. Verena provides protection only if
the developer specifies the integrity policy correctly, which is
not always easy. For example, the developer should not make
write access control decisions based on data from the server
that is not integrity protected. As part of our future work, we
are interested in designing a tool that assists the developer and
helps him make less mistakes.

X. IMPLEMENTATION

We developed a prototype implementation of Verena in order
to evaluate our proposal and demonstrate its feasibility.
Web Platform. We implemented Verena on top of Meteor
version 1.1.0.2; Meteor [36] is a JavaScript web application
framework that uses Node.js [7] on the server side and
MongoDB [5] as the database backend.

We chose Meteor as it offers some desirable features that
make it attractive for our implementation. Meteor employs
client-side web page rendering based on HTML templates that
are populated by data retrieved from the server. This means that
there is a clear separation between application code and data.
The code, which consists of the JavaScript code, the HTML
templates and the CSS files, is signed by the developer and
its integrity is verified by a browser extension upon loading,
as in [41]. The integrity of data, which is the dynamic part of
the web application, is enforced by Verena, according to the
policy specified by the developer.

Moreover, Meteor features a uniform data model between
the client and the server. In other words, clients are aware of



how the data is organized in the MongoDB backend. This
uniformity is beneficial to Verena because it allows both the
client and server to understand the integrity policy and the
database queries that will be executed. Thus, the server can
identify which proofs to accompany the reply with, and the
client can identify which proofs to expect from the server.

Meteor uses a publish/subscribe mechanism in which the
web server automatically propagates data changes to clients
who have subscribed for the results of a certain query. This
mechanism is not compatible with the freshness guarantees
Verena aims for; a malicious server might not propagate
changes to the interested clients. Hence, Verena follows
the conventional approach of explicitly requesting the data
of interest through the use of RPC requests. One can transform
the publish/subscribe mechanism into a pull-based approach,
in which the client polls the server periodically, thus providing
time-bounded freshness guarantees.
Main Server and Client. We implemented the Verena server
and client as a set of Meteor packages. The main server’s
implementation is 5100 LOC. The main component consists
of approximately 3100 LOC. The storage and manipulation
of the authenticated data structures, as well as the production
of the necessary proofs is implemented as a separate service,
which runs as a Node.js process and consists of about 2000
LOC. We note that in this prototype implementation, the
ADSes are stored in-memory, and not persisted on disk. For a
production-quality implementation of Verena, the system should
implement the ADSes within the database itself for better
performance. The ADS manipulation logic is also replicated to
the client, so that the client can verify the proofs presented by
the server. We use 224-bit ECDSA for public-key operations,
and SHA-256 as a cryptographic hash function. We perform
most cryptographic operations in JavaScript using the SJCL
library [11]. Nevertheless, to improve client performance, we
implement ECDSA signature operations as a Google Chrome
Native Client module [6].
Hash Server. The hash server is implemented as a Go HTTP
server, backed by a RocksDB [10] persistent key-value store.
The cryptographic operations (ECDSA signing and verification)
are delegated to a separate process, written in C, which uses
OpenSSL [8] (version 1.0.2d). The reason is that the native
Go ECDSA implementation is currently significantly slower
than the OpenSSL one. The hash server consists of 630
LOC in total (497 for the Go component and 133 for the C
component), not counting standard libraries such as OpenSSL.
By contrast, an application server’s total LoC consists of our
Verena server’s implementation plus the server-side code of
the actual application. The actual application can easily have
thousands to tens of thousands of lines of code.

XI. EVALUATION

We used our prototype implementation to evaluate the per-
formance of the various components of Verena. The evaluation
setup is as follows. Verena’s main server ran on a Macbook Pro
“Mid 2012” (iCore7 2.3 GHz), while the hash server ran on an
Intel Xeon 2.1 GHz processor with fast SSD storage, with a

Fig. 5: End-to-end latency of various read and write operations
in Verena.

recent version of Ubuntu Linux installed. To perform our end-
to-end latency measurements (§XI-A, §XI-C) we used a client
using the Chrome browser, version 49, on a second Macbook
Pro “Mid 2012” laptop. To measure throughput (§XI-B), we
employed multiple machines running many concurrent client
instances using the headless browser PhantomJS [9], in order
to saturate the system under test. All the machines that we used
for the evaluation were connected to the university network.

A. End-to-End Latency

Fig 5 shows the end-to-end latency of the basic operations
that are performed by Verena, i.e, write and read operations
on a single ADS (or in other words a particular trust context).
More concretely we tested insertion, update and removal of
records as well as read operations, namely, fetching a single
record (“find single”), fetching a range of 20 records (“find
range”) and computing an aggregate value (sum) on a particular
field over a range of half of the currently inserted records. Each
inserted record had a size of 1 KB.

We measured and averaged the latency of these operations,
over 1000 iterations, for different numbers of inserted records
in the ADS. We notice that latency slightly increases (for all
operations) as the size of the ADS becomes larger. Even for
an ADS size of 106 records, all operations, take less 30ms on
average, except insert which takes slightly over 30ms for large
ADS sizes.

B. Throughput

Main Server. We measured the throughput of Verena for read
and write operations issued by multiple concurrent clients, on
ADSes containing 104 records. When clients perform only
read operations (in specific, fetch a range of 20 records) the
average throughput is 200 (±8) requests/sec. When performing
only write operations (specifically, inserting records to different
trust contexts so that they can be processed in parallel), the
average throughput is 156 (±10) requests/sec. Finally, when
clients perform a mix of the above read and write operations (4



Fig. 6: Throughput evaluation on the main server when running
with Verena enabled, as well as without Verena.

Operation type Requests/second Std.Dev.
GET 8420 673
PUT 2100 92
Mixed 5890 548

TABLE IV: Hash server throughput.

reads for 1 write) the average throughput becomes 187 (±10)
requests/second.

Fig. 6 displays the above throughput measurements and
contrasts them with the throughput of the same server, but
without Verena. As expected, the throughput is higher in all
cases when Verena is not activated. We note that performing
operations to different ADS trees can be run in parallel and
independent of each other, which can increase the overall
throughput when using additional server machines.
Hash Server. We also measured the throughput of the hash
server, and the results are displayed in table IV. When the
hash server receives only GET requests, the average throughput
is 8420 (±673) requests/seconds. When it receives only PUT
requests the average throughput is 2100 (±92) requests/second.
This result is as expected because PUT requests perform an
additional signature verification. When the hash server receives
a mix of requests (4 GET requests for 1 PUT) the average
throughput is 5890 (±548) requests/second.

It is important to note the significant difference in perfor-
mance between the main server and the hash server. The hash
server, which provides a very simple functionality, compared
to the main sever, achieves an order of magnitude higher
throughput than the main server.

C. Evaluation on the Example Medical Application

As introduced in §IV-A, our running example is a remote
patient monitoring system, that is used to connect cardiac im-
plant (e.g., pacemaker) patients with their clinics and physicians.
After receiving access to the provider (clinic/physician) web
interface of a remote monitoring system and after discussions
with a cardiologist, we implemented an example application

of this system in Meteor and used Verena to secure its most
relevant functions.

We specified three types of trust contexts as discussed in
§IV-B. In our measurements, we create 1000 patients per group,
totaling 4000 patients. We evaluated the average latency (over
1000 iterations) of some representative example views that are
displayed by the application to the physicians (summarized
in table V). For these particular views the integrity policy
can be captured with 4 IQPs, three of which were discussed
(simplified) in §IV-C and §IV-E. We describe these views
below.

Patient List. This view shows a list of patients across all
groups, limited to 20 patients per page. This is one of the
most complex views. The application has to first perform a
query on the “admins” trust context in order to retrieve all the
patient groups and corresponding trust contexts. Then, for each
group it needs to perform a range query over that particular
trust context to fetch the patients of each group, and then
merge the results together. In other words, 5 read operations
are required, assuming 4 patient groups. The overall latency
for loading this view is 66ms (±7ms), the individual read
operation latency being 13ms (±2ms). In other words the total
latency for loading the page is approximately the sum of the
individual read operations. We note that, through the use of a
completeness chain (as described in §IV-E), the developer can
express the view using a single read query, and then Verena
automatically takes care of performing all five needed queries.

Patients for Review. This view displays all the patients that
are flagged for review. This view performs similar operations
with the previous one. Assuming there are 50 patients from
each group that are flagged for review, the overall latency for
loading this view is 82ms (±7ms).

Patient Profile. This view displays the basic profile information
of a single patient. This view requires a single read operation
to fetch the particular profile. The overall latency for view is
14ms (±2ms).

EKG. This view displays a 30sec EKG recording of a particular
holter episode. The recording contains double precision values
of the measured heart electrical activity, sampled at 200 Hz,
thus having a size of approximately 50 KB. This view requires
a single read operation and the overall latency is 23ms (±4ms).

Average Heart Rate. This view displays the average heart
rate of a patient as measured by his monitoring device, over a
period of a few months. This view requires a read aggregation
operation on the average over a set of samples. The latency
for loading this view is 13ms (±3ms).

We summarize the end-to-end latency of the above views
in table V. We can see that Verena gives acceptable latencies
even for the most complex views that are implemented in this
web application. We argue that Verena can be used to protect
the integrity of an application such as this medical application,
without disrupting the experience of its users.



Application view Load time (ms) Std.Dev.
Patient list 66 7
Patient for review 82 7
Patient profile 14 2
Episode EKG 23 4
Avg. heart rate 13 3

TABLE V: Latency for loading views in our example medical
application whose data integrity is protected by Verena.

D. More Applications

To further evaluate the expressivity of Verena’s integrity
API, we considered two other applications: a chat and a class
application. Both of these applications are written in Meteor,
existed before Verena, were written by other developers, and
have a multi-user setting that benefits from Verena’s integrity
guarantees.

We investigated whether Verena’s API can express the write
access control policy of these applications and how many IQPs
need to be declared for this purpose. As we elaborate below,
we found that Verena can express these applications’ policy.
In a few cases, we found that Verena provides a time-bounded
freshness property as opposed to strict freshness. This happened
for queries ran via Meteor’s publish-subscribe mechanism. As
discussed in §X, these rely on the server to notify the client of
changes to a query result. Since the server cannot be trusted,
clients must instead poll and run this query periodically. Thus,
a freshness violation is confined to the period’s duration.
Chat Application. In kChat, users can create rooms, the creator
of a room can invite users to the chat room, and users within
the room exchange messages. Each user is allowed to write
only in a chat room to which he was invited. In terms of
queries, users fetch all messages in a room, perform range
queries to select the latest messages, count the messages in
the room, fetch the list of people who are online, and so forth.

We found that Verena’s IQPs can capture the write-access
policy of this application. This means that Verena brings
freshness, completeness and correctness for kChat.

Interestingly, there are multiple natural integrity policies
for this application providing different integrity guarantees. A
common query in this application is fetching all the messages in
a room. If the developer trusts the users in the room and wants
to protect against users outside of the room, the developer can
specify the trust context to be all users in this room. In this case,
Verena won’t prevent a user in this room who colludes with
the server from changing the messages of another user in the
same room. The resulting integrity policy is short and consists
of 3 IQPs. If the developer wants stricter integrity, namely,
to prevent a user in the room from changing the message of
another user in the same room, the developer declares two IQPs
for this query: the first IQP is for fetching the trust context
names of users in the room. The trust context for this IQP is
owned by the creator of each room. The second IQP is for
fetching the messages of a user in the room with a trust context
of that user. The second IQP has should be chained to the first,

so that the Verena’s completeness chain mechanism can be
employed, when performing a read query to fetch messages of
a particular room. In this case, the kChat integrity policy can
be captured with 4 IQPs.
Homework Submission Application. We also examined a
web application used at MIT for managing student assignments,
homework and grades for a computer science class. Students
are allowed to submit their homework, as well as review and
grade the homework of other students. The staff (i.e., the
professor who teaches the course and the course assistants) are
responsible for managing the student accounts, the homework
assignments, the allocation of peer reviews for submitted
homework of each student, as well as the final feedback and
grade for each submitted homework. Verena can capture the
integrity policy of this app with a total of 7 IQPs.

E. Storage and Memory Overhead

Main Server. We evaluated the overhead imposed by Verena
in terms of storage and memory and found it to be modest.
The memory footprint of adding Verena to the remote patient
monitoring application (§XI-C), is roughly 1.2⇥ that of running
the application without Verena. This overhead is mostly due
to the memory required by the ADS storage service, as well
as additional data structures that are maintained by the server
for implementing the functionality of Verena.

Regarding the storage overhead, the main contributing factor
is the storage of the ADSes. The space required to store an
ADS (red-black Merkle binary tree, in our implementation)
depends on the cardinality of its nodes, which depends linearly
on the number of records that are protected by the ADS. An
ADS that contains 104 records needs ~1.64 MB (~1.95 MB
if the ADS also computes one aggregate value on the record).
The relative overhead in this case depends on the size of the
records under protection. Assuming an average record size of
0.5 KB, like the user messages in a chat application (§XI-D),
the overhead of storing the ADS that protects their integrity
is approximately 1.4⇥ the storage required for simply storing
the messages themselves. For protecting larger records, as in
the medical application for example, the storage overhead of
protecting the 30sec EKG recordings (each recording amounts
to 50 KB of data, as described in §XI-C) is only ~1.003⇥
the storage needed for storing just the EKGs. Finally, Verena
requires approximately 1 KB per user for storing his wrapped
private key, public key, and IDP certificate.
Hash Server. The hash server storage requirements are minimal
compared to the rest of the system. The hash server stores only
one entry for each trust context and ADS that exists in the
system. Our hash server prototype stores the users’ ECDSA
public keys and the SHA-256 digests of the ADS roots as
hexadecimal strings, and each entry needs less than 200 bytes
of storage. This can be further reduced by using base64 or
binary encoding for storing keys and digests, and by reducing
the redundant storage of copies of public keys that may be
stored in multiple entries. As an example, for the medical
application (which we described and evaluated in terms of
performance in §XI-C), which contains thousands of users,



trust contexts and ADSes, the storage requirements are less
than 5 MB.

XII. RELATED WORK

Verena is the first web framework that provides integrity and
freshness of the data and query results contained in a webpage,
in the presence of a fully compromised web server.

A. Systems Providing Integrity

File Systems and File Storage. A few file systems, such
as SUNDR [32], Sirius [21], Plutus [25], SAFIUS [45],
Tresorium [27], CloudProof [39], Athos [22], and Caelus [26]
aim to provide integrity in the face of a corrupted server.
However, these are constructed for the simpler setting of a
file server, so they do not verify query computation results
(range queries or aggregations, as well as completeness and
freshness for these computations), and do not consider the web
setting which is stateless. Some of these systems (e.g., SUNDR)
make no trust assumption on the server, but as a result, they
either support only one client or do not provide freshness (e.g.,
SUNDR provides fork consistency which allows a server to
present different views to different users). Caelus [26] provides
time-bounded freshness by assuming a trusted always-online
attestor per client.
Trusted Hardware. Trusted hardware systems such as
Haven [12] promise confidentiality and integrity against a
compromised server. Unlike Verena, Haven relies on trusted
hardware, and places the entire application code in the trusted
code base. The only server assumption in Verena is that the
hash and main servers are do not collude. Moreover, in Verena,
the server application code is not in the trusted code base:
in fact, if the application is buggy or exploitable, and thus
corrupts integrity protected query results, clients will be able
detect it.

B. Work Related to Verena’s Building Blocks

In recent years, there has been much progress in tools for
generic verifiable computation [14, 38, 46]. Nevertheless, for
the web setting considered here, such tools remain impractical.
Instead, work on authenticated data structures (ADS) [20, 23,
30, 31, 33, 37, 49] provides better performance and Verena
uses these as building blocks. This line of work targets a more
specific class of computation, such as aggregations on range
queries, thus being more efficient. As discussed in §I, these
tools alone are not sufficient for addressing all the challenges
of providing integrity protection for web applications.

Verena’s hash server is related to the trinket component
of TrInc [29]. The trinket is a piece of trusted hardware that
stores and increments a counter; it can sign the counter along
with a supplied string (e.g., a hash), and ensures that each
counter is signed only once. TrInc can be used to provide
freshness in SUNDR. Our hash server additionally stores the
hash, public key and the fixedPK flag. These extra values
enable useful properties in Verena, while the hash server still
has high performance and small code base (§XI). Providing
freshness in SUNDR+TrInc requires clients to download and

verify a chunk of the history of changes to an item and to treat
each “get” operation as a “put”, which results in significantly
lower performance.

C. Complementary Systems

A few systems can be used in complement to Verena, to
provide a wider range of security guarantees.
Language Approaches/Information Flow Control. A few
systems aim to help a developer not make programing mistakes
that can lead to integrity or confidentiality violations. Using
information flow control and/or language-based techniques,
systems such as SIF [19], [42], Urflow [18], and Resin [48]
ensure that an application obeys a security policy. However,
if an attacker takes control of the server in these systems, the
attacker can run any code of his/her desire, bypassing these
tools completely, and violating integrity. In contrast, Verena
protects against this situation. Nevertheless, these tools can be
used in conjunction with Verena to ensure that a developer
does not inadvertently leak data, as well as prevent against
various client-side attacks.
Confidentiality. Mylar [41], CryptDB [40], and Shad-
owCrypt [24] aim to provide confidentiality against a corrupted
web server, but do not address most integrity properties, such
as freshness, completeness or query computation correctness.
Mylar, also implemented on top of Meteor, is easy to integrate
with Verena.

XIII. CONCLUSION

Verena is the first web application platform that provides
end-to-end integrity guarantees for data and query results in
a webpage against attackers that have compromised the web
server. In Verena, the user’s browser can verify the integrity
of a webpage, by verifying the results of the database queries
which are used to populate the page content. Our evaluation
results show that Verena can support real applications with
modest overhead. Verena attempts to close the gap between the
research efforts of protecting the integrity of database systems,
and the application of this research in one of the most popular
use cases of databases, web applications.
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APPENDIX

A. Background on Authenticated Data Structures

Verena leverages authenticated data structures (ADS) [20,
23, 30, 31, 33, 37, 49] as its underlying integrity protection
building block. In fact, Verena does not rely on a specific
ADS. In our implementation of Verena we make use of one-
dimension red-black binary Merkle hash trees with the ability
to support projection queries, as well as aggregation queries
based on the tree-based technique of [31].

Here we summarize how such trees work and refer the reader
to the literature for a detailed analysis. We assume that the
reader is familiar with Merkle hash trees [13, 35]. Consider a
database table consisting of two fields (i.e, columns); a range
field and an aggregation field, i.e, a field in which stored data
is used in aggregation queries. In SQL notation, a user runs
queries of the form “SELECT sum(aggr. field) FROM table
WHERE x  range field  y”.

Fig. 7 shows an example of such a tree, sorted (i.e., keyed)
by the range field. Note that the red-black property is only
used for keeping the tree balanced, and hence Fig. 7 omits the
color of the nodes. Also not shown in Fig. 7 are the hashes of
each node, which constitute the Merkle hash tree. The client,
who is the owner of the data stored in the tree, keeps the root
hash of the Merkle hash tree, and the untrusted server keeps
the entire tree.

Data is stored on leaf nodes. Each node stores a key and an
aggregate value; leaf nodes further store the data values. Given
our aforementioned example, the keys are the range field values
and data stored on leaf nodes is the data of the aggregation
field. For leaf nodes, the aggregate value is equal to the data
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value itself. For each internal node, the aggregate value is the
aggregation over the aggregate values of its children. The tree
in Fig. 7 features sum as the aggregation operation.

Assume that the client issues the query “SELECT sum(aggr.
field) FROM table WHERE 2  range field  5”. The server
responds with the sum of interest, 2 in this case, together with
a proof that the sum is correct. We explain briefly what the
proof consists of and refer the reader to [31] for more details.
The proof consists of two parts. The first part is, for each edge
of the interval, the server provides two nodes in the tree whose
range fields include the edge of the interval, together with their
Merkle hash paths to the root. The client checks these Merkle
paths against the Merkle hash root it stores and ensures that
the edge of the interval is inside this interval. Note that this
is always possible because the keys ±• (containing dummy
data values) are also in the tree. The second part of the proof
is a minimal covering set for the range [2,5] together with a
Merkle hash path up to the root. In our example, this minimal
covering set consists of the internal node with key �• and
aggregate value 2. In general, the covering set is a logarithmic
number of nodes.

The client then checks that these nodes cover the range of
interest entirely and verifies their hashes and Markle hash
paths against the root hash that the client stores. By the
properties of Merkle hash trees, if the verification is successful,
the server provided the correct aggregate value. Overall, the
client performs O(logn) work per value returned where n
is the number of nodes in the tree. A similar computation
happens when inserting, updating and deleting data, with some
additional details.

Note that the server does not have precomputed the aggregate
value for each range. The ADS tree has one data entry (leaf
node) per range field value and there is a quadratic number
of possible ranges. Clients can query arbitrary ranges, and
these ranges could contain a large number of nodes. The
server transforms these ranges into a set of subranges, and the
client then aggregates the aggregate values for each range. The
maximum number of subranges is logarithmic in the number of
nodes in the tree. Hence, the client does little aggregation work
because it aggregates only a logarithmic number of values.


