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Abstract

The connection between integrality gaps and computational hardness of discrete optimization problems is
an intriguing question. In recent years, this connection has prominently figured in several tight UGC-based
hardness results. We show in this paper a direct way of turning integrality gaps into hardness results for
several fundamental classification problems. Specifically, we convert linear programming integrality gaps for
the Multiway Cut, 0-Extension and Metric Labeling problems into UGC-based hardness results. Qualitatively,
our result suggests that if the unique games conjecture is true then a linear relaxation of the latter problems
studied in several papers (so-called earthmover linear program) yields the best possible approximation. Taking
this a step further, we also obtain integrality gaps for a semi-definite programming relaxation matching the
integrality gaps of the earthmover linear program. Prior to this work, there was an intriguing possibility of
obtaining better approximation factors for labeling problems via semi-definite programming.

1 Introduction

The connection between integrality gaps and computational hardness of discrete optimization problems is an
intriguing question. For a given problem, an integrality gap provides a bound on the approximation factor that
can be obtained from rounding a specific linear programming or semi-definite programming formulation of the
problem. In contrast, a computational hardness result applies to all polynomial time algorithms.

Yet, it has often transpired for many problems that hardness results turn out to match the best integrality
gaps known (e.g., MAX-3SAT, maximum cut, vertex cover, etc.). For example, in the case of the maximum cut
problem, the search for the optimal hardness result was directly inspired and aided by the known integrality gaps
for the standard semi-definite relaxation of the problem. Thus, researchers are left to wonder if indeed there is
a direct relationship between integrality gaps and hardness results.

In this paper we show for a set of labeling problems a direct way of turning integrality gaps into hardness
results, assuming the unique games conjecture (UGC). In particular, we show how to convert integrality gaps
for a linear programming relaxation of the metric labeling problem (and special cases of it) into a (conditional)
hardness result.

The metric labeling problem falls under the class of edge deletion problems along with many other classic
optimization problems. In an edge deletion problem, given an undirected graph G = (V,E) and a non-negative
weight function w on E, the goal is to find a minimum weight set of edges E′ such that G′ = (V,E−E′) satisfies
certain properties. A special case is when the set of deleted edges forms a cut. The simplest and probably most
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familiar problem in this class is the minimum (s, t) cut problem. Given two terminals s and t, the goal is to find
a minimum weight cut that separates s and t. This problem can be solved precisely in polynomial time following
the classic work of Ford and Fulkerson.

The Multiway Cut problem is a natural generalization of the minimum (s, t) cut problem when more than
two terminals are involved. The input is a set of k terminals T ⊆ V and the goal is to find a minimum weight
set of edges that separates every pair of terminals. The problem is NP-hard and the best known approximation
algorithm uses a geometric relaxation by Calinescu et.al [8].

The 0-Extension problem [17, 18] is a generalization of the Multiway Cut problem in which a metric d is defined
on the terminal set T . The goal is to assign to each vertex v ∈ V a terminal t(v) in T , while minimizing the
total cost given by

∑
u,v∈E w(u, v)d(t(u), t(v)). Notice that in case the metric on the terminals T is the uniform

metric (all distances equal to 1), the problem reduces to the Multiway Cut problem.
Generalizing the 0-Extension problem further, one defines the Metric Labeling problem as follows: The input

consists of a metric space (T, d) of labels and a non-negative cost function c on vertex-label pairs. The objective
is to find an assignment of labels to the vertices minimizing

∑
v∈V c(v, t(v)) +

∑
(u,v)∈E w(u, v) d(t(u), t(v)).

The 0-Extension problem is the special case where the assignment costs are all zero.
Inspired by the geometric relaxation for the Multiway Cut problem, Chekuri et al. [6] proposed an earthmover

metric linear relaxation for the Metric Labeling and 0-Extension problems. The best known approximation ratios
[8, 5, 10, 24, 13, 6, 1] for all the above labelling problems, are achieved using linear programs that are either
equivalent or strictly weaker than the earth-mover linear program. Nevertheless, the hardness results [7, 16, 9]
known for the above described problems do not match the best known approximation algorithms. For instance,
while Multiway Cut is known to be approximable within a factor roughly 1.3438, nothing better than APX-
hardness [9] is known for the problem.

In the above discussion, an intriguing possibility that remains open is the use of semidefinite programming
(SDP) to obtain better approximation factors for Metric Labeling. In fact, the earthmover relaxation has a
natural semidefinite counterpart. Even for the case of Multiway Cut, obtaining a better approximation using
semidefinite programming has not been ruled out.

1.1 Results

Roughly speaking, we show that the earthmover linear program yields the best approximation computable in
polynomial time for each of the problems Multiway Cut,0-Extension and Metric Labeling, assuming the Unique
Games Conjecture. Using the connection between the Unique Games Conjecture (UGC) [19] and semidefinite
programming (SDP), we also show that a simple semidefinite programming relaxation does not yield better
approximation factors than the earthmover linear program.

Our approach is as follows: Starting with an integrality gap instance Π for the earthmover linear program,
we show a matching unique games based hardness. By using this hardness reduction, along with a well known
SDP gap for Unique Games [23], we obtain corresponding SDP gaps. The SDP gap obtained is exactly equal
to the gap of the earthmover linear program instance Π, with which we began the reduction. Thus, we obtain
both SDP integrality gaps and unique games based hardness results, matching the earthmover linear program
integrality gap.

We implement this approach for all of the above problems: Multiway Cut, 0-Extension and Metric Labeling.
More precisely, we prove:

Theorem 1.1 Assuming the Unique Games Conjecture, for the Multiway Cut, the 0-Extension, and the Metric
Labeling problems, the following holds: Given an instance H with integrality gap α for the earthmover linear
program, there is a NP -hardness reduction showing that the problem cannot be approximated to a factor better
than α. Further, the instances produced by the reduction have the same set of labels as H.

The reductions in this paper produce instances whose size is at least doubly exponential in the size of the
earthmover linear program integrality gap instance. Therefore, the above theorem is to be applied with an
integrality gap instance H of fixed constant size, with a constant integrality gap α.

The following theorem refers to the earthmover semidefinite relaxation appearing in Section 3.1.

Theorem 1.2 For the Multiway Cut, the 0-Extension, and the Metric Labeling problems, the integrality gap of the
earthmover semidefinite relaxation(EM-SDP) is equal to the integrality gap of the earthmover linear program.
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As the reduction always produces an instance with the same set of labels, the following stronger result holds:

Theorem 1.3 Assuming the Unique Games Conjecture, it is NP -hard to approximate the Metric Labeling and
0-Extension problems with any finite metric (T, d) to a factor better than the integrality gap of the earthmover
linear program on (T, d).

Note that determining the exact value of the earthmover linear program integrality gap for these problems
is not always easy. The following table shows the earthmover linear program gaps and the best known approxi-
mation factors.

Problem Integrality Gap App. Factor
3-way cut 12/11 [15] 12/11 [15]
0-Extension Ω

(
(log |T |) 1

2
)

[16] O
( log |T |

log log |T |
)

[10]
Metric Labeling Ω(log |T |) [16] O(log |T |) [24]

Uniform Metric Labelling 2− 2
|T | [24] 2 [24]

Interestingly, the reductions in this paper would apply even if the distance function between the labels does
not satisfy triangle inequality. In particular, it is enough that d(x, x) = 0 and d(x, y) 6= 0 for x 6= y.

1.2 Labelling Problems : Prior Work

While the minimum (s, t)-cut problem is solvable in polynomial time, the Multiway Cut - a close generalization
turns out to be NP -hard. Using the (s, t)-cut algorithm as a subroutine, a (2− 2

k )-approximation algorithm was
proposed in [9]. Based on a novel geometric relaxation, Calinescu et al. [8] obtained a 3

2 −
1
k approximation for

the problem. Roughly speaking, the algorithm of Calinescu et al. [8] finds an embedding of the graph on the
simplex with the terminals on its corners. A Multiway Cut solution can be extracted out of the embedding by
randomly partitioning the simplex. Continuing this line of work, Karger et al. [15] obtained tight integrality
gaps for the case k = 3, and improved approximation factors for general k (about 1.3438).

For the 0-Extension problem, Calinescu et al. [5] obtained an O(log |T |)-approximation algorithm, where T
is the set of terminals. The approximation factor was improved to O(log |T |/ log log |T |) in [10] using a better
analysis. The ideas from the 0-Extension problem [5, 10] have found further applications in metric embeddings
[25] and in analysis [26].

Motivated by applications in computer vision Kleinberg et al. [24] introduced the Metric Labeling problem.
Using an approximate representation of metrics as a combination of dominating tree metrics [4], Kleinberg
et al. [24] also gave an approximation algorithm for Metric Labeling. Its approximation factor can be shown
to be O(log |T |) using the later improvement of [11] in embedding metrics into dominating tree metrics. A
special case of Metric Labeling that is of particular interest is the Uniform Metric Labeling (UML) problem. Here
the distance metric d on the labels T is just the uniform metric, i.e., d(`1, `2) = 1 for all labels `1 6= `2.
For Uniform Metric Labeling a factor 2 approximation algorithm is known [24]. Constant factor approximation
algorithms [24, 13, 6, 1] are known for several other special cases of metrics.

Inspired by the geometric relaxation for the Multiway Cut problem, Chekuri et al. [6] proposed an earthmover
metric linear relaxation for the Metric Labeling and 0-Extension problems. They also showed that the integrality
gap of the earthmover relaxation is at least as good as the approximation factor of the Kleinberg-Tardos algorithm
[24] for general metrics. Archer et al. [1] gave an earthmover relaxation based Metric Labeling algorithm whose
performance depends on the decomposability of the metric d. However, even the earthmover linear relaxation
proved unsuccessful in obtaining approximation factors better than O(log |T |) for Metric Labeling. In fact, for
the problems of Metric Labeling and 0-Extension, integrality gaps of Ω(log |T |) and Ω((log |T |) 1

2 ), respectively,
were shown for the earthmover relaxation [16].

On the hardness side, the Multiway Cut problem was shown to be APX-hard in [9]. A strong inapproximability
result for the Metric Labeling problem was first proven by Chuzhoy and Naor [7]. Specifically, they showed that
for any ε > 0, there is no polynomial time algorithm that approximates the Metric Labeling problem within a
factor of O((log |T |) 1

2−ε), unless NP ⊆ DTIME(npoly(log n)). Building on this work, Karloff et al.[16] showed
that there is no polynomial time algorithm that approximates 0-Extension within a factor of O((log |T |) 1

4−ε),
unless NP ⊆ DTIME(npoly(log n)).
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1.3 Integrality Gaps and UG Hardness Results

Hardness results based on the unique games conjecture have matched the approximation ratios obtained by
semidefinite programs for several combinatorial optimization problems like MaxCut [12, 20] and Max2SAT [27, 2].
Moreover, the UG hardness reductions in [20, 2, 21] are inspired by the corresponding SDP integrality gaps.
Hence it was widely believed that UG hardness results are very intimately connected to SDP integrality gaps.

This connection was highlighted in the work of Khot and O’donnell [21] on MaxCutGain, where the UG
hardness reductions relied more directly on SDP gap instances than earlier works. Taking a step further, Austrin
[3] showed a conversion from instances of boolean 2-CSPs that are hard to round, in to corresponding UG
hardness results. Yet, there were no black box reductions directly from integrality gaps to UG hardness results.
More formally, the soundness arguments in all the existing reductions relied on the actual structure of the gap
instance, and not just the integral optimum.

This work along with [30], are among the first results exhibiting a black-box reduction from integrality gaps to
UG hardness results. Not only have such reductions formalized the widely believed connection, they have led to
new insights in terms of optimal rounding schemes, and algorithms for computing integrality gaps [30]. The full
extent of the connections between SDP gaps and UG hardness results, Rounding schemes and Dictatorship tests
have become apparent in the works of Raghavendra [30] and O’Donnell and Wu [29]. Subsequent to this work,
black-box reductions from integrality gaps to UG hardness have found applications for the Maximum Acyclic
Subgraph [14] and the Grothendieck [31] problems.

We wish to point out that the general conversion from SDP gaps to UG-hardness in [30] applies to the
problems Metric Labeling, 0-Extension and Multiway Cut. However, the reduction in [30] makes crucial use of the
SDP vectors, and thus would not apply to linear programming integrality gaps. Although both [30] and our
work proceed by converting integrality gaps to hardness results, the soundness proofs are very different. For all
the problems in this work, the objective is to minimize the number of edges cut. Hence, along the lines of many
other UG hardness results for cut problems [23, 22], the proof uses noise stability of functions.

2 Proof Overview

To illustrate the main ideas, we outline the reduction for the 3-way cut problem. Let G = (V,E) be a 3-way
cut instance with terminals {t1, t2, t3}. The following is the earthmover linear programming relaxation for the
problem:

Minimize
1
2

∑
e=(u,v)∈E

‖Xu −Xv‖1

subject to: X(1)
u + X(2)

u + X(3)
u = 1 ∀u ∈ V

Xi
u > 0

Xt1 = (1, 0, 0), Xt2 = (0, 1, 0), Xt3 = (0, 0, 1)

A crucial ingredient in all UG hardness reductions is a Dictatorship Test. A function F : {1, 2, 3}R → {1, 2, 3}
is said to be a dictator if the function is given by F (x) = xi for some fixed i. The input to a dictatorship test
consists of a function F : {1, 2, 3}R → {1, 2, 3}. The objective is to query the function F at a few locations, and
distinguish whether the function is a dictator or far from every dictator.

Given a dictatorship test, the UG hardness reduction usually follows by standard techniques. Roughly
speaking, one introduces a vertex for every point in {1, 2, 3}R and translates the queries made by the dictatorship
test in to constraints between these vertices. The resulting gadget is usually referred to as the “Long Code
Gadget”.

Making things concrete, we shall now describe the long code gadget used as part of our reduction. Actually,
we convert an integrality gap instance for the Earthmover LP in to a long code gadget.
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Let us suppose G = (V,E) is an integrality gap instance for the above linear program. Let LP(G) and
OPT(G) denote the optimal LP and integral values, respectively. The LP solution associates each vertex v in
V with a point Xv on the 3-dimensional simplex. The coordinates of Xv can be thought of as probabilities of
assigning the corresponding labels.

From G, we shall construct a 3-way cut instance G′ such that :

• There exist special 3-way cuts in G′ whose cost equals the linear programming optimum LP(G). These
cuts will be referred to as dictator cuts.

• A 3-way cut solution in G′ which is far from every dictator cut pays at least the integral optimum OPT(G).

The vertices of G′ are as follows : For each vertex v of G introduce a group ΩR
v of 3R vertices. The vertices in

ΩR
v are indexed by vectors {1, 2, 3}R. It is useful to think of ΩR

v as having a product probability distribution XR
v

on it.
For example, consider the terminal t1 of the 3-way cut instance G. The corresponding LP assignment Xt1

is a corner of the simplex e1 = (1, 0, 0). Hence the probability distribution XR
t1 is non-zero on a single vertex

(1, 1, 1, . . . , 1). Similarly for each ti, the probability distribution XR
ti

on ΩR
ti

is nonzero only at (i, i, . . . , i). These
special vertices are the terminals of G′. More precisely, the terminals of G′ are the vertices (i, i, . . . , i) ∈ ΩR

ti
.

A 3-way cut solution assigns to each vertex a label from the set {1, 2, 3}. Thus a 3-way cut solution to G′

consists of a set of functions Fv : ΩR
v → {1, 2, 3}, one for each vertex v ∈ G. There are two special 3-way cut

solutions that will be of interest:

• The set of functions Fv(x) = xi for some i. These functions form a feasible 3-cut solution, since they assign
different labels to all the terminals. We shall refer to these solutions as dictator cuts.

• Each function Fv is a constant function. These solutions will be referred to as integral cuts, since they
assign a single label to all the 3R vertices corresponding to a vertex v.

For an edge e = (v, w) in the graph G, we will introduce edges between groups ΩR
v and ΩR

w. The edges introduced
are such that the dictator cuts have a cost close to LP(G). We illustrate the basic idea with an example. Let
e = (v, w) be an edge in G, with Xv = (1

3 , 1
2 , 1

6 ) Xw = (1
6 , 1

2 , 1
3 ). The edges between groups ΩR

v and ΩR
w are given

by a joint distribution over pairs x ∈ ΩR
v , y ∈ ΩR

w. Generate each coordinate of x according to the probability
distribution Xv. To generate y, we shall mimic the flow of probability mass required to convert distribution Xv

into Xw. Specifically, the ith coordinate yi is generated from xi using the following distribution:

If xi = 1, then yi = 1 with probability 1
2 and yi = 3 with the remaining probability. If xi = 2 or 3,

then yi = xi.

It is easy to check that if xi is generated according to distribution Xv = (1
3 , 1

2 , 1
6 ), then the distribution of yi

is same as Xw = (1
6 , 1

2 , 1
3 ).

Consider a dictator cut given by functions Fv(x) = x1 and Fw(y) = y1. The cost of the cut is equal to the
probability that x1 6= y1 when x, y are generated as above. But this is exactly equal to the total probability mass
that flows so as to change distribution Xv to Xw. In this case, the probability of x1 6= y1, is 1

6 = 1
2‖Xv −Xw‖1.

Consequently, the dictator cuts pay exactly the LP value LP(G).
In an integral cut, the group of [3]R vertices corresponding to a vertex v all have the same label. Intuitively,

an integral 3-way cut is assigning a label to the vertex v in the original graph G. In fact, an integral 3-way cut
of G′ corresponds to a 3-way cut of G. Thus, if all the functions Fv were constant functions, then the cost of the
cut is at least the minimum cost OPT(G) of a 3-way cut of G.

We need to ensure that the functions which are far from a dictator function have a cost at least the integral
optimum OPT(G). Towards this end, we shall introduce noise sensitivity edges. Inside each group ΩR

v we will
introduce edges between pairs (x, y) where x is from the distribution XR

v , and y is generated by perturbing the
coordinates of x. By an appropriate choice of parameters, the total cost of noise sensitivity edges overwhelms
the remaining edges. Using results on noise stability, if a function Fv : ΩR

v → {1, 2, 3} cuts a small fraction of
the noise sensitivity edges, then either:

• The function Fv is close to a dictator function (more precisely, it has an influential variable).
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• Function Fv is close to a constant function.

Hence, either we obtain a function Fv with an influential variable, or the cost of the cut is OPT(G). Using
standard techniques, such a gadget can be used to obtain a unique games based hardness result.

3 Preliminaries

For a positive integer k, ∆k denotes the the k dimensional simplex. The notation [k] refers to the set {1, . . . , k}.
From [6], without loss of generality, it can be assumed that the assignment costs in Metric Labeling are either zero
or infinity. Thus, Metric Labeling with assignment costs in {0,∞} is called restricted Metric Labeling. Towards
setting up notation, we define the problems Multiway Cut, 0-Extension and Metric Labeling below.

Definition 3.1 An instance of the (restricted) ML problem is a weighted graph, H = (V (H), E(H), we), along
with a set of labels L, a family of subsets {L(v)}v∈V (H), and a metric d on L. A valid labeling is a mapping
Λ : V (H) → L such that for each vertex, v ∈ V (H), Λ(v) belongs to L(v). The cost of a labeling Λ, ValΛ(H), is∑

(u,v)=e∈E(H)

we d(Λ(u),Λ(v)).

The value of the instance, OPT(H), is the minimum cost labeling for the instance.

Definition 3.2 An instance of Multiway Cut problem consists of a weighted graph, H = (V (H), E(H), we), along
with a set of terminals L ⊂ V (H). The objective is to remove a set of edges of minimum weight so as to separate
every pair of terminals.

The Multiway Cut problem can be formulated as a labeling problem (with a uniform metric) as follows: A
valid multiway cut corresponds to a labeling Λ : V (H) → L such that for each terminal t ∈ L, Λ(t) = t. The
cost of such a labeling Λ, ValΛ(H) is given by

∑
(u,v)∈E(H),Λ(u) 6=Λ(v) we. The value of the instance Val(H) is the

minimum cost labeling for the instance.

Definition 3.3 An instance of 0-Extension problem consists of a weighted graph, H = (V (H), E(H), we), along
with a set of terminals L ⊂ V (H) with a metric d on them. The objective is to assign each vertex v to a terminal
Λ(v) ∈ L such that the following cost is minimized:∑

(u,v)=e∈E(H)

we d(Λ(u),Λ(v)).

The value of the instance, Val(H) is the minimum cost labeling for the instance.

3.1 Earthmover Linear Program for Metric Labeling

The following linear programming relaxation for ML was introduced in [6]. Let H = (V (H), E(H), we) be an
instance of metric labeling. Intuitively, the LP asks for an embedding of the vertices V (H) on the k dimensional
simplex ∆k. For every vertex v, the corresponding point Xv ∈ ∆k represents the probability distribution of each
label being assigned to v. For example, each corner of the simplex represents a particular label. The labeling
constraint Λ(v) ∈ L(v) is enforced by a linear constraint on the probability distribution Xv. These labeling
constraints force the point Xv to lie in the face containing the allowed labels L(v), denoted by ∆L(v). The
objective is to minimize the weighted sum of the earthmover distance between adjacent vertices.

Definition 3.4 (Earthmover Distance) Given two
points X, Y ∈ ∆k, and a metric d(i, j) on [k], the earthmover distance, d./(X, Y ) is given by the optimal value
of the following LP:

Minimize
∑
i,j

d(i, j)fij

s.t.
∑

i

fij = Yj

∑
j

fij = Xi ∀i, j ∈ [k]

fij > 0
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In other words, the earthmover distance is the minimum cost of moving the probability mass from distribution
X to Y , given the distance metric d on the labels. It is easy to see that this defines a metric on the simplex
∆k. Thus, the earthmover distance generalizes a metric on k points to a metric on ∆k such that the distance
between corner points is the same as the original metric. In this notation, the linear program of [6] is simply:

Minimize
∑

(u,v)∈E(H)

wed./(Xu, Xv)

(EM-LP)

s.t. Xu ∈ ∆L(u) ∀u ∈ V (H)

Our reduction starts with an instance of metric labeling along with an optimal solution to the linear pro-
gram (EM-LP).

Definition 3.5 (Structured Integrality Gap) A structured integrality gap instance to the metric labeling
problem is a 4-tuple (H,L, d, {Xv}) where Xv ∈ ∆k is an optimal solution to the LP (EM-LP). In addition, the
metric labeling instance satisfies the following properties:∑

e∈E(H)

we = 1 and d(i, j) 6 1, for all 1 6 i, j 6 k.

The following parameters will be important for the reduction: m = |V (H)|, α = mina∈V (H),Xi
a 6=0 Xi

a, β =
mini 6=j d(i, j), LP(H) is the value of the LP optimum and OPT(H) is the value of the integer optimum.

The following semidefinite program is a simple generalization of the earthmover metric linear program. Our
goal is to show integrality gaps for this semidefinite program.

Minimize
∑

(u,v)∈E(H)

we

∑
i,j∈L

d(i, j)(vi · vj)

(EM-SDP)

subject to:∑
i∈L

||vi||22 = 1 ∀v ∈ V (H) (1)

||vi||22 = 0 ∀v ∈ V (H), i /∈ L(v) (2)
vi · vj = 0 ∀v ∈ V (H), i, j ∈ L (3)
ui · vj > 0 ∀u, v ∈ V (H), i, j ∈ L (4)

ui ·
∑
j∈L

vj = ||ui||22 ∀u, v ∈ V (H), i ∈ L (5)

3.2 Unique Games Conjecture, Long Codes, and Analytic Notions

To simplify the presentation, we will use the following version of the Unique Games Conjecture [22], which was
shown to be equivalent to Khot’s original conjecture [19].

Conjecture 3.6 (Unique Games Conjecture) For any constant η > 0, there exists large enough constant
R such that given a bipartite unique games instance Υ = (X ∪ Y, E, Π = {πe : [R] → [R] | e ∈ E}, [R]) with
number of labels R, it is NP-hard to distinguish between the following two cases:
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• There exists an assignment A of labels such that for 1−η fraction of the vertices v ∈ X, all the edges (v, w)
are satisfied.

• No assignment satisfies more than a η-fraction of the constraints Π.

Our reduction, like many previous reductions, will use long code gadgets. We recall a few standard defi-
nitions to facilitate our analysis. Let Ω denote a finite probability space with k different atoms. Let {χ0 =
1, χ1, χ2, . . . , χk−1} be an orthonormal basis for the space L2(Ω). For σ ∈ [k]R, define χσ(x) =

∏
i∈[R] χσi

(xi).
Every function F : ΩR → R can be expressed as a multilinear polynomial as follows:

F (x) =
∑

σ

F̂ (σ)χσ(x).

Definition 3.7 For 0 6 ρ 6 1, define the operator Tρ on L2(ΩR) as TρF (x) = E[F (y) | x] where yi = xi with
probability ρ and a random element from Ω with probability 1− ρ. Formally,

TρF (x) =
∑

σ∈[k]R

ρ|σ|F̂ (σ)χσ(x),

where |σ| is the number of non-zero coordinates in σ.

For a function F : ΩR → R define the influence and low degree influence of the ith coordinate as follows:

Infi(F ) = Ex[Varxi
[F ]] =

∑
σi 6=0

F̂ 2(σ)

Inf<t
i (F ) =

∑
σi 6=0,|σ|6t

F̂ 2(σ).

Fact 3.8 For a function F with Var[F ] 6 1, ∑
i

Inf<t
i (F ) 6 t.

The Gaussian noise stability Γρ is defined as follows:

Definition 3.9 Given µ ∈ [0, 1], let t = Φ−1(µ) where Φ denotes the distribution function of the standard
Gaussian. Then,

Γρ(µ) = Pr[X 6 t, Y 6 t],

where (X, Y ) is a two-dimensional Gaussian vector with covariance matrix
(

1 ρ
ρ 1

)
.

The following theorem on noise stability of functions over a product probability space is essentially a restatement
of Theorem 4.4 in Mossel et al. [28]

Theorem 3.10 Let Ω be a finite probability space with the least non-zero probability of an atom at least α. For
every ε, ζ > 0 there exists t, τ such that the following holds: For every function F : ΩR → [0, 1] with µ = E[F ]
and Inf6t

j (F ) < τ for all j ∈ [R],
Ex [FT1−εF ] 6 Γ1−ε(µ) + ζ.

3.3 Edge Test Distribution

Every point X ∈ ∆k corresponds to a probability distribution over [k]. For X, Y ∈ ∆k, let ΩX , ΩY denote
the corresponding probability spaces. The earthmover distance d./(X, Y ) suggests a natural way to generate
correlated random variables (x, y) ∈ ΩR

X × ΩR
Y . Let fij be the optimal value of the earthmover LP as in

Definition 3.4. Then, we have the following joint probability distribution:

Pr[yi = b ∧ xi = a] = fij .

The constraints of the LP ensure that the fij ’s form a valid joint probability distribution. We will denote
such a correlated distribution by x ∼XY y. For an edge e = (u, v) ∈ E(H) and an LP solution {Xu}, we will
denote by x ∼e y the corresponding correlated distribution.
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The vertices of G are V (G) = Y × V (H)× [k]R.
The set of allowed labels for a vertex (y, a, x) ∈ V (G) is L(a).
The weight of an edge is the probability it is output by the following test:

• Pick u ∈ X at random, and two of its neighbors w1, w2 independently at random. Let π1, π2 denote
the permutations on edges (u, w1) and (u, w2).

• With probability δ perform the edge test, otherwise (with probability 1− δ) perform the vertex test.

Edge test: (with probability δ)

• Pick an edge e = (a, b) ∈ E(H) with the probability distribution we.

• Sample x ∼e y, x ∈ ΩR
a , y ∈ ΩR

b .

• Output the edge (w1, a, π1(x)) ↔ (w2, b, π2(y)).

Vertex test: (with probability 1− δ)

• Pick a uniformly random vertex a ∈ V (H).

• Sample x ∈ ΩR
a . Sample y ∈ [k]R such that yi = xi with probability 1− ε and yi = a new sample from

Ωa otherwise.

• Output the edge (w1, a, π1(x)) ↔ (w2, a, π2(y)).

Figure 1: The reduction.

4 The Reduction

In this section, we shall describe the reduction from Unique Games to Metric Labeling. The same reduction
applies with minor changes for the Multiway Cut and 0-Extension problems.

Let Ψ = (H,L, d, {Xv}) be a structured integrality gap instance for Metric Labeling. Without loss of generality,
we may assume that the set of labels L = [k]. Let Υ = (X ∪ Y, E, Π, [R]) be a UG instance. Let ε > 0 and let
δ = ε7/8. We construct a metric labeling instance (G,L, d) as in Figure 1.
Proof of (of Theorem 1.1): For Metric Labeling the proof directly follows from Theorems 4.1 and 4.7. As stated,
the instance produced by the reduction also has the same set of labels L.

For 0-Extension and Multiway Cut, the instances produced by the reduction have too many terminals. Specif-
ically, for every vertex w ∈ Y, terminal t ∈ L and x ∈ [k]R there are kR vertices of the form (w, t, x) ∈ V (G).
For every vertex (w, t, x), the set of allowed labels in G is just {t}. Using standard techniques the graph G can
be modified into G′ with the correct set of terminals.

Introduce a new vertex in V (G′) for each label in t ∈ L. These new vertices are the terminals for G′. For
every vertex (w, t, x) with t ∈ L, introduce an edge of infinite(sufficiently high) cost between t and (w, t, x).
A solution to the instance G′ will not cut any of the edges of infinite cost. This simulates the constraint that
(w, t, x) is assigned label t. 2

4.1 Completeness

Theorem 4.1 For every ε, η > 0, given a UG instance Υ that is 1 − η strongly satisfiable and a structured
integrality gap instance Ψ, the value of the metric labeling instance (G,L, d) obtained from the reduction is at
most (1− η)(ε7/8 LP(H) + ε) + η.

Proof of L:et λ denote a labeling to the UG instance Υ. Consider the labeling Λ to G that sets Λ(u, a, x) = xλ(u).

9



It is easy to check that Λ is a valid labeling for the instance G. Fix δ = ε7/8. Then, the cost of the labeling Λ is:

Ev,w1,w2

[
δ ·E(a,b)∈E(H)

Ex,y

[
d(Λ(w1, a, π1(x)),Λ(w2, b, π2(y)))

]
+ (1− δ) ·Ea∈V (H)

Ex∼1−εy

[
d(Λ(w1, a, π1(x)),Λ(w2, a, π2(y)))

]]

= Ev,w1,w2

[
δ ·E(a,b)∈E(H)Ex,y

[
d(xπ1(λ(w1)), yπ2(λ(w2)))

]
+ (1− δ) ·Ea∈V (H)

Ex∼1−εy

[
d(xπ1(λ(w1)), yπ2(λ(w2)))

]]
.

With probability 1− η over the choice of vertex u, the unique games assignment λ satisfies all the edges incident
at u. Let us refer to these vertices u as good vertices. For a good u, for all choices of w1, w2, π1(λ(w1)) =
π2(λ(w2)) = λ(u). Thus the expected cost for a good vertex is given by

δ ·E(a,b)∈E(H)Ex,y

[
d(xλ(u), yλ(u))

]
+ (1− δ) ·Ea∈V (H)Ex∼1−εy

[
d(xλ(u), yλ(u))

]
6 δ · LP(H) + (1− δ) · ε.

For an arbitrary vertex u, the expected cost is always bounded by 1 since all the distances are bounded by 1.
Thus, the total cost of the labeling Λ is at most (1− η) ·

(
δ LP(H) + ε

)
+ η. 2

Corollary 4.2 For every γ > 0, there exists ε, η > 0 such that, the value of the metric labeling instance (G,L, d)
obtained as in Theorem 4.1 is at most ε7/8 LP(H)(1 + γ).

Proof of S:etting ε < (γ LP(H)/2)8 and η < ε7/8 LP(H)γ/4 in Theorem 4.1 gives the required result. 2

4.2 Soundness

Let Λ be a labeling of (G,L, d) obtained from the reduction. Let ε be as defined in the reduction and let δ = ε7/8.
For w ∈ Y, a ∈ V (H), define k functions F i

w,a : [k]R → [0, 1]:

F i
w,a(x) =

{
1 if Λ(w, a, x) = i

0 otherwise

For u ∈ X , a ∈ V (H), define k functions Gi
u,a : [k]R → [0, 1]:

Gi
u,a(x) = Ew∈N(u)

[
F i

w,a(πuw(x))
]
.

Observe that for any x,

k∑
i=1

Gi
u,a(x) =

k∑
i=1

Ew∈N(u)

[
F i

w,a(πuw(x))
]

= Ew∈N(u)

[
k∑

i=1

F i
w,a(πuw(x))

]
= 1.

10



Define µi
u,a = Ex[Gi

u,a(x)] where x is distributed according to the probability distribution of ΩR
a . Further, define

µu,a = (µ1
u,a, . . . , µk

u,a). Hence, for all u, a we have

k∑
i=1

µi
u,a =

k∑
i=1

Ex[Gi
u,a(x)] = Ex

[
k∑

i=1

Gi
u,a(x)

]
= 1.

Thus, µu,a ∈ ∆k, i.e., it defines an embedding in the simplex. We will drop u and a when they are clear from
the context.

For a vertex u ∈ X , let ValEdge
Λ (u) and ValVertex

Λ (u) denote the expected cost incurred by the edge and vertex
tests respectively when the verifier chooses vertex u. We can write the cost of the labeling as follows.

ValΛ(G) = Eu

[
δ ValEdge

Λ (u) + (1− δ) ValVertex
Λ (u)

]
.

We will show that for most choices u ∈ X , a ∈ V (H), either the functions Gi
u,a have an influential variable or

they are close to constant functions. More precisely, we show that if the functions are neither constant nor have
influential variables, then the cost of the vertex test on u, a is overwhelmingly large.

Lemma 4.3 Fix u ∈ X , a ∈ V (H) and let Gi denote the family of functions associated with (u, a). For every ε
we have

Ex∼(1−ε)y

[ ∑
i,j∈L

d(i, j)Gi(x)Gj(y)
]

> β
∑

i

(
Ex[Gi]−Ex[GiT1−ε(Gi)]

)
,

where β = mini 6=j d(i, j). Further, for all ε, ζ > 0, there exists t, τ such that if Inf<t
j (Gi) < τ for all i ∈ [k], j ∈

[R], then

Ex∼1−εy

[ ∑
i,j∈L

d(i, j)Gi(x)Gj(y)
]

> β
∑

i

(
µi − Γ1−ε(µi)

)
− ζ.

Proof of S:ince
∑

j 6=i Gj(x) = 1−Gi(x), we get

Ex∼1−εy

[ ∑
i,j∈L

d(i, j)Gi(x)Gj(y)
]

> β Ex∼1−εy

[∑
i

Gi(x)
(
1−Gi(y)

)]
= β

∑
i

(
Ex[Gi]−Ex[GiT1−ε(Gi)]

)
.

To derive the second part of the lemma, apply Theorem 3.10 on each of the functions Gi with the error term
ζ/k instead of ζ:

Ex[Gi]−Ex[GiT1−ε(Gi)] >
(
µi − Γ1−ε(µi)

)
− ζ/k.

Summing up over all i, we obtain the desired result. 2

The following lemma lower bounds the cost of the vertex test, when none of the functions Gi are neither constant
nor have an influential variable.

11



Lemma 4.4 There exists an ε0 such that for all ε < ε0, for all µ = (µ1, µ2, . . . , µk) ∈ ∆k such that maxi µi <
1− ε1/4, ∑

i

[µi − Γ1−ε(µi)] = Ω(ε3/4).

Proof of L:et θ = maxi µi, then we have 1 − ε1/4 > θ. By choosing ε < 1
k4 , one can ensure that θ > ε1/6.

Observe that Γ satisfies, Γ1−ε(x) 6 x for all x ∈ [0, 1]. Thus we can write,∑
i

[µi − Γ1−ε(µi)] > θ − Γ1−ε(θ).

Using known estimates, (see Corollary 10.4 in [20]), we have:

Γ1−ε(θ) 6 θ
[
1−

√
Ω(ε log(1/θ))

]
+ o(θ).

Thus, setting θ > ε1/4, we have the required result:∑
i

[µi − Γρ(µi)] > Ω(θ
√

ε log(1/θ) ) > Ω(ε3/4).

2

Lemma 4.5 For any vertex u,
ValEdge

Λ (u) >
∑

e=(a,b)

we d./(µu,a, µu,b).

Proof of F:ix an edge e = (a, b) ∈ E(H). Define

fa,b
ij = Ex∼ey[Gi

u,a(x)Gj
u,b(y)].

Then,
∑

i fa,b
ij = µj

u,b;
∑

j fa,b
ij = µi

u,b. From Definition 3.4 we have∑
i,j

d(i, j)fa,b
ij > d./(µu,a, µu,b).

Recall that ValEdge
Λ (u) is given by

ValEdge
Λ (u) =

∑
e=a,b

we

∑
ij

d(i, j)Ex∼ey[Gi
u,a(x)Gj

u,b(y)]

=
∑

e=(a,b)

we

∑
ij

d(i, j)fa,b
ij >

∑
e

we d./(µu,a, µu,b).

2

Lemma 4.6 There exists ε1 > 0, such that for every ε < ε1, there exist τ, t, such that for all u ∈ X, if
Inf<t

j (Gi
u,a) < τ for all i, j, a, then one of the following inequalities holds:

ValEdge
Λ (u) > OPT(H)(1− 4ε1/8)

or

ValVertex
Λ (u) > (βε3/4 − ε)/m.

12



Proof of L:et t, τ be as obtained from Lemma 4.3 by setting ζ = ε. Since u is fixed we shall denote Gi
u,a by Gi

a.
Then, there are two possibilities:

Case 1: For all a, the functions Gi
a are near constant, i.e there is a labeling function Λ : V (H) → [k] such that

µ
Λ(a)
u,a > 1− ε1/4 for all a.

Set θ = ε1/8. A simple averaging argument shows that for every a, G
Λ(a)
a (x) > 1 − θ for a 1 − θ fraction of

x. By a union bound, if x, y are generated from x ∼e y, both G
Λ(a)
a (x), GΛ(b)

b (y) are greater than 1 − θ with
probability 1− 2θ. Thus the cost of the edge test is:

ValEdge
Λ = E(a,b)∈E(H)Ex,y

[ ∑
i,j∈L

d(i, j)Gi
u,a(x)Gj

u,b(y)
]

> (1− 2θ)(1− θ)2E(a,b)∈E(H) [d(Λ(a),Λ(b))] .

It is easy to check that the labeling Λ is a valid metric labeling solution for H. Hence we have,

E(a,b)∈E(H) [d(Λ(a),Λ(b))] > OPT(H).

Substituting we get ValEdge
Λ > OPT(H)(1− 4θ).

Case 2: There exists b ∈ V (H) such that for all i, µi
u,b 6 1− ε1/4. Then, the vertex cost is:

ValVertex
Λ = Ea∈V (H)Ex,y

∑
i,j∈L

[
d(i, j)Gi

u,a(x)Gj
u,a(y)

]
>

1
m

Ex,y

∑
i,j∈L

[
d(i, j)Gi

u,b(x)Gj
u,b(y)

]

>
1
m

(
β
∑

i

(µi
u,b − Γ1−ε(µi

u,b))− ε

)

>
1
m

(
βε3/4 − ε

)
.

2

Theorem 4.7 For every γ > 0, for sufficiently small ε, η > 0, if the UG instance Υ is at most η satisfiable, then
the value of the metric labeling instance (G,L, d) obtained from the reduction is at least ε7/8 OPT(H)(1− γ).

Proof of S:et ε 6 min{(γ/12)8, (β/4m OPT(H))8, ε1} and δ = ε7/8. Let t, τ be as obtained from Lemma 4.6.
For every vertex u ∈ X , one of the following is true:

• There exists a ∈ V (H), i ∈ [k], j ∈ [R] such that Inf<t
j (Gi) > τ .

• ValEdge
Λ (u) > OPT(H)(1− 4ε1/8) > OPT(H)(1− γ/3).

• ValVertex
Λ (u) > (βε3/4 − ε)/m > δ OPT(H).

Thus, if all the functions associated with a particular u ∈ X have low influence,

δ ValEdge
Λ (u) + (1− δ) ValVertex

Λ (u) > δ OPT(H)(1− γ/3).

Call a vertex u ∈ X good if at least one of the functions associated with it has an influential variable. More
precisely, if there exists a, i, j such that Inf<t

j (Gi
u,a) > τ . If ValΛ(G) 6 δ OPT(H)(1−γ), then at least γ/2 fraction
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of the vertices are good. Fix a good vertex u ∈ X with the corresponding a, i, j satisfying Inf<t
j (Gi

u,a) > τ . Then,

τ 6
∑

σj 6=0,|σ|6t

|Ĝi
u,a(σ)|2

6
∑

σj 6=0,|σ|6t

Ew|F̂ i
w,a(π−1

u,w(σ))|2

=Ew

[
Inf<t

π−1
u,w(j)

(F i
w,a)

]
.

We will define the “decoding” for vertices of the UG instance as follows:

Λ(u) = {j ∈ [R] | ∃ i, a; Inf<t
j (Gi

u,a) > τ}
(for every u ∈ X ),

Λ(w) = {j ∈ [R] | ∃ i, a; Inf<t
j (F i

w,a) > τ/2}
(for every w ∈ Y).

Using Fact 3.8, the sizes of the sets above are at most 2tkm/τ . We will analyze the fraction of edges in the
UG instance satisfied when we assign a label uniformly at random from Λ(u) independently for every u ∈ X ∪Y.
For a good vertex u, for every r ∈ Λ(u), the fraction of neighbors that have a satisfying label in its decoding is
at least τ/2. Moreover such an edge is satisfied with probability at least τ2/4t2k2m2. Thus, the weight of edges
satisfied is at least (γ/2)(τ/2)(τ2/4t2k2m2) > γτ3

16t2m2k2 . Choosing η < γτ3

16t2m2k2 gives the required result. 2

5 Integrality Gap for SDPs

In this section, we construct integrality gaps for the semidefinite relaxation (EM-SDP) using the unique games
hardness reduction. In particular, this will yield SDP integrality gaps that match the integrality gap of the
earthmover LP relaxation (EM-LP). Our starting point is the Unique Games integrality gap instance constructed
by Khot and Vishnoi [23].

First, the integrality gap instance I = (V,E) presented in [23] is not bipartite. To obtain a bipartite unique
games instance I ′, duplicate the vertices by setting X = {(v, 0)|v ∈ V } and Y = {(v, 1)|v ∈ V }. Further for each
edge (u, v) ∈ E, introduce two edges ((u, 0), (v, 1)) and ((u, 1), (v, 0)) in I ′. The SDP solution for the bipartite
instance I ′ is obtained by assigning the vector corresponding to v ∈ V to both vertices (v, 0) and (v, 1). Except
for these minor modifications, the following theorem is a direct consequence of [23]

Theorem 5.1 For every η > 0, there exists a UG instance, Υ = (X ∪ Y, E, Π = {πe : [R] → [R] | e ∈ E}, [R])
and vectors {ui

w} for every w ∈ Y, i ∈ [R] such that the following conditions hold :

• No assignment satisfies more than η fraction of constraints in Υ.

• For all w,w1, w2 ∈ Y, i, j ∈ [R] ,

ui
w1
· uj

w2
> 0 and ui

w · uj
w = 0.

• For all w,w1, w2 ∈ Y, i, j ∈ [R] ,

ui
w1
·
∑

j∈[R]

uj
w2

= |ui
w1
|2 and

∑
i∈[R]

|ui
w|2 = 1.

• The SDP value is at least 1− η:

Ev∈X ,w1,w2∈Y

[∑
r∈R

uπ1(i)
w1

· uπ2(i)
w2

]
> 1− η. (∗)
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Given a (structured) integrality gap instance for the linear programming relaxation (EM-LP), we apply the
reduction in Section 4 to a unique games instance provided by the above theorem. Applying Theorem 4.7 directly
gives the lower bound on the integral optimum of the instance.

We obtain the SDP vectors for a vertex z = (w, a, x) ∈ V (G) as follows: Intuitively, if the vertex had label
j, we would assign z the label xj . For every vertex z = (w, a, x) ∈ V (G), we construct SDP vectors as follows:
Partition [R] into k parts, Pz(i), i ∈ L:

Pz(i) = {j | xj = i}.

The vector for label i is then the sum of the vectors in the partition Pz(i):

vi
z =

∑
j∈Pv(i)

uj
w ∀z = (w, a, x).

The SDP optimum can be bounded in terms of (∗) in Theorem 5.1. We state it formally in the following theorem.

Theorem 5.2 For every structured integrality gap instance, Ψ = (H,L, d, {Xv}) and sufficiently small γ, ε, η if
Υ denotes the UG instance obtained from Theorem 5.1, then the metric labeling instance (G,L, d) obtained using
the reduction has the following properties:

OPT(G) > ε7/8 OPT(H)(1− γ)

SDP(G) 6 ε7/8 LP(H)(1 + γ).

Proof of T:he UG instance Υ obtained from Theorem 5.1 is at most η satisfiable. Hence, Theorem 4.7 implies
that the value G, OPT(G) is at least ε7/8 OPT(H)(1− γ) for η, ε sufficiently small.

For every vertex z = (w, a, x) ∈ V (G), we construct SDP vectors as follows: Partition [R] into k parts, Pz(i),
i ∈ L:

Pz(i) = {j | xj = i}.

The vector for label i is then the sum of the vectors in the partition Pz(i):

vi
z =

∑
j∈Pv(i)

uj
w ∀z = (w, a, x).

It is easy to see that constraints (1), (2), (3), (4) and (5) of the SDP (EM-SDP) are satisfied by the vectors
vi

z. Set δ = ε7/8. Now, the SDP cost of the vectors can be bounded as follows:

SDP(G) = Ev,w1,w2

[
δ ·E(a,b)∈E(H)

Ex∼ey

∑
i,j

d(i, j)vi
w1,a,(π1(x)) · v

j
w2,b,(π2(y))

+ (1− δ) ·Ea∈V (H)

Ex,y

∑
i,j

d(i, j)vi
w1,a,(π1(x)) · v

j
w2,a,(π2(y))

]

= Ev,w1,w2

[
δ ·E(a,b)∈E(H)

{∑
i,j

d(i, j)
∑
r1,r2

uπ1(r1)
w1

· uπ2(r2)
w2

Pr[xr1 = i ∧ yr2 = j
}

+ (1− δ) ·Ea∈V (H){∑
i,j

d(i, j)
∑
r1,r2

uπ1(r1)
w1

· uπ2(r2)
w2

Pr[xr1 = i ∧ yr2 = j]
}]

.
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Additionally, the last expression is bounded from above by:

6 Ev,w1,w2

[
δ ·
{

LP(H)
∑

r

uπ1(r1)
w1

· uπ2(r2)
w2

+
∑

r1 6=r2

uπ1(r1)
w1

· uπ2(r2)
w2

}
+ (1− δ)

·
{

ε
∑

r

uπ1(r1)
w1

· uπ2(r2)
w2

+
∑

r1 6=r2

ui
w1,r1

· uj
w2,r2

}]

6 (δ LP(H) + ε) ·Ev,w1,w2

[∑
r

uπ1(r1)
w1

· uπ2(r2)
w2

]

+ 1−Ev,w1,w2

[∑
r

uπ1(r1)
w1

· uπ2(r2)
w2

]
6 (1− η) · (δ LP(H) + ε) + η.

From Corollary 4.2, we have that for sufficiently small η, ε:

SDP(G) 6 ε7/8 LP(H)(1 + γ).
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