\[F_{\text{DC}} = \frac{1}{2} \varepsilon_0 (15\text{V})^2 N_{\text{g}} \frac{t+\phi}{\phi} \]
\[= 200 \text{mN} \]

At DC, force drives spring:
\[x_{\text{DC}} = \frac{F_{\text{DC}}}{k} = 0.2 \text{mm} \]

At resonance, amplitude is \(Q \) times DC deflection, and phase shift is 90°
\[x_{\text{Ac},1} = Q \left(\frac{40 \text{mN}}{\text{m/Hz}} \right) \sin (10^4 \omega t - 90°) \]
\[= (4 \text{mm}) \sin (10^4 \omega t - 270°) \]

For high \(Q \) systems, above resonance, the force drives the mass, and the phase shift is 180 degrees, causing the -1
\[x_{\text{Ac},2} = \frac{10 \text{mN}}{m (2\omega)} \cos (2 \times 10^4 \omega t) \]
\[= 0.25 \text{mm} \cos (2 \times 10^4 \omega t) \]

\[F_{\text{Ac},1} = \frac{1}{2} \varepsilon_0 (15\text{V})(15\text{V})(\frac{t+\phi}{\phi}) N_{\text{g}} \]
\[= 400 \text{mN} \sin (10^4 \omega t) \]
\[F_{\text{Ac},2} = \frac{1}{2} \varepsilon_0 (15\text{V})(15\text{V})(\frac{t+\phi}{\phi}) (-\cos (2 \times 10^4 \omega t)) \]
\[= -10 \text{mN} \cos (2 \times 10^4 \omega t) \]

This term is actually only 3K, as shown in another problem since the spring knocks out 1/4 of the inertia term.

1/6 full credit for 4K