
A Compact, Hierarchically Optimal Q-function Decomposition

Bhaskara Marthi, Stuart Russell
Department of Computer Science
University of California, Berkeley

Berkeley, CA 94720

David Andre
BodyMedia Inc.

Pittsburgh, PA 15222

Abstract
Previous work in hierarchical reinforcement learning

has faced a dilemma: either ignore the values of differ-
ent possible exit states from a subroutine, thereby risking
suboptimal behavior, or represent those values explicitly
thereby incurring a possibly large representation cost be-
cause exit values refer to nonlocal aspects of the world
(i.e., all subsequent rewards). This paper shows that, in
many cases, one can avoid both of these problems. The so-
lution is based on recursively decomposing the exit value
function in terms of Q-functions at higher levels of the hi-
erarchy. This leads to an intuitively appealing runtime ar-
chitecture in which a parent subroutine passes to its child
a value function on the exit states and the child reasons
about how its choices affect the exit value. We also identify
structural conditions on the value function and transition
distributions that allow much more concise representations
of exit state distributions, leading to further state abstrac-
tion. In essence, the only variables whose exit values need
be considered are those that the parent cares about and the
child affects. We demonstrate the utility of our algorithms
on a series of increasingly complex environments.

1 Introduction

Hierarchical reinforcement learning (HRL) aims to speed
up RL by providing prior knowledge in the form of hi-
erarchical constraints on policies [Parr and Russell, 1997;
Dietterich, 2000]. In this paper, we consider policies con-
strained to follow a partial program [Andre and Russell,
2002] whose choice points designate places where the pol-
icy is unspecified. A learning agent equipped with such a
partial program aims to find the best possible completion,
given a set of experiences running the program in an MDP.

The fundamental result of HRL is that the combina-
tion of a partial program and an MDP yields a new semi-
Markov decision process (SMDP) whose states ω are joint
states—pairs of environment states and program states.
HRL algorithms solve this SMDP; here, we consider al-
gorithms that learn the function Q(ω, u), i.e., the expected
sum of rewards when taking action u in joint state ω and
acting optimally thereafter. (Note that u may be a tempo-

rally extended subroutine invocation as well as a primitive
action.)

A principal advantage of HRL over “flat” methods is
that imposing a hierarchical structure on behavior exposes
structure in the value function of the underlying MDP.
Roughly speaking, the complete reward sequence for any
run of a policy in the MDP can be divided into subse-
quences, each associated with execution of a particular sub-
routine; this allows the global value function for the hierar-
chical policy to be represented as a sum of value function
components, each (in the ideal case) defined over only a
small set of state variables.

Two standard forms of Q-decomposition are known.
MAXQ [Dietterich, 2000] approximates Q(ω, u) as a sum
of Qr(ω, u), the expected sum of rewards obtained while
u is executing, and Qc(ω, u), the expected sum of rewards
after u until the current subroutine completes. 1 The AL-
isp decomposition [Andre and Russell, 2002] includes a
third term, Qe(ω, u), to cover rewards obtained after the
subroutine exits. These two decompositions lead to two
different notions of optimal completion. MAXQ yields re-
cursive optimality—i.e., the policy within each subroutine
is optimized ignoring the calling context. ALisp yields hi-
erarchical optimality—i.e., optimality among all policies
consistent with the partial program.

Recursively optimal policies may be worse than hier-
archically optimal ones if context is relevant, because they
ignore the exit values Qe. On the other hand, ALisp may
need more samples to learn Qe accurately. It can also be
argued that, whereas Qr and Qc represent sums of rewards
that are local to a given subroutine, and hence likely to be
well approximated by a low-dimensional function, Qe rep-
resents a non-local sum of rewards and may, therefore, be
very difficult to learn. Thus, we seem to have a dilemma:
ignore Qe and risk seriously suboptimal behavior, or in-
clude Qe and incur a potentially high learning cost.

This paper shows that, in many cases, one can avoid
both of these problems. The solution, described in Sec-
tion 4, is based on recursively decomposing the exit value

1MAXQ also allows a “pseudoreward” function for exit val-
ues, but this must be specified in advance by the programmer.

function in terms of Q-functions at higher levels of the hi-
erarchy. New algorithms for learning and execution based
on this decomposition are presented. In Section 5, we show
how the idea of additive irrelevance can be used to dramat-
ically further simplify the representation based on condi-
tional independencies that may hold in the domain. Finally,
in Section 6, we describe a more general simplification that
depends on the size of the “interface” between a subroutine
and its context. The utility of each successive decomposi-
tion is demonstrated experimentally.

2 Main example

In this section, we describe our main illustrative example.
We begin with a very simple version of the environment,
which will be made more complex over the course of the
paper, as we introduce the various components of our ap-
proach. We use Markov decision processes as our mod-
elling framework, and further assume that the state is rep-
resented as an instantiation to a set V of state variables.
The example is based on one from [Dietterich, 2000].

Example 1. The taxi MDP models a taxi moving around
and serving passengers on a grid. States in the MDP con-
sist of the taxi’s position and a set of passengers, each
having a source, destination, generosity level, and status
(at-source or in-taxi). The actions available to the
taxi are: moves in the four cardinal directions, which may
fail with some probability; pickup, which picks up the
passenger at the taxi’s current position, assuming the taxi
doesn’t already have a passenger; and dropoff, which
drops off the passenger who is currently in the taxi, as-
suming the taxi is at her destination. Upon a successful
dropoff action, with some probability the episode ter-
minates, and otherwise, the set of passengers is reset 2 us-
ing some distribution over each passenger’s source, desti-
nation, and generosity (but the taxi stays at its current po-
sition). A fixed cost is charged per time step, and a reward,
which depends only on the passenger’s generosity, is given
after a successful dropoff.

Even for this simple domain, the optimal policy is not
completely clear. For example, deciding on a passenger
requires trading off the time and the expected reward for
serving this passenger against how centrally placed the taxi
will be after serving the passenger.

3 Alisp and hierarchical RL

ALisp is a language for specifying constraints on policies
using “partial programs”. We provide a brief overview of
ALisp here. A more complete description can be found in
the literature [Andre and Russell, 2002; Andre, 2003].

Figure 1 shows an example ALisp (partial) program
for the environment in Example 1. The top-level func-

2Assuming the passenger set is only reset after a dropoff is like
assuming the taxi only communicates with the central dispatcher
after serving the current passenger.

(defun taxi-main ()
(loop until (at-terminal-state) do

(call SP serve)))

(defun serve ()
(call GP get-pass

(choose-arg (waiting-passengers)))
(call PP put-pass (pass-being-served))

(defun get-pass (p)
(call NS nav (pass-src p))
(action PA ’pickup))

(defun put-pass (p)
(call ND nav (pass-dest p))
(action DA ’dropoff))

(defun nav (loc)
(loop until (equal loc (taxi-pos))

do (with-choice NC (d ’(N S E W))
(action NM d))))

Figure 1: ALisp program for basic taxi domain. ALisp-
specific statements are in bold. The second argument
to call, with-choice, and action statements is
just a label. The functions waiting-passengers,
pass-being-served, pass-src, pass-dest,
and taxi-pos are not shown here; they simply extract the
required components from the environment state (which is
obtained using the ALisp command get-state).

tion taxi-main says that the taxi must repeatedly serve
a passenger until the episode terminates. Serving a pas-
senger consists of choosing the passenger, then doing a
get-pass followed by a put-pass. The get-pass
subroutine consists of navigating to the passenger’s source,
and doing a pickup action in the environment. Simi-
larly, put-pass consists of navigating to the passenger’s
destination and doing a dropoff. The nav subroutine
involves repeatedly choosing a direction to move in until
the goal is reached. The choices of which passenger to
serve and which directions to move in while navigating are
not specified by the program, but are left open using the
with-choice command. This means that the learning
algorithm has to learn a completion that specifies how to
make these choices optimally as a function of state.

Consider a partial program being executed in an en-
vironment. At any point, let s denote the state of the en-
vironment, and θ denote the machine state, i.e., the pro-
gram counter, memory, and runtime stack. Define the
joint state ω = (s, θ). Let Ω be the set of joint states in
which the program counter is at a choice (with-choice
or choose-arg) statement. Formally, a completion is a
function π on Ω such that π(ω) ranges over the choices
available at ω. A basic theorem of hierarchical RL [Parr
and Russell, 1997; Precup and Sutton, 1998; Dietterich,
2000] states that given an MDP and partial program, there

is an equivalent SMDP such that completions of the partial
program correspond to policies for the SMDP. In the rest
of this paper, we speak of policies and completions inter-
changeably.

As in the MDP case, we can define the value function
V π(ω) as the expected total reward gained in the environ-
ment if we start at ω and continue the partial program, mak-
ing choices using π. We are interested in finding the hier-
archically optimal π, which must satisfy ∀ω, π′ V π(ω) ≥
V π′

(ω). Define Qπ(ω, u) to be the expected total reward
gained if we begin by making choice u in ω, then continue
the partial program, making choices using π.3 In this paper,
we always work with undiscounted value and Q-functions,
and further restrict attention to completions that eventually
terminate with probability 1.

One of the virtues of hierarchical RL is that the struc-
ture in the partial program yields an additive decomposi-
tion of the Q-function. Consider the navigation choice at
ωNC in the trajectory shown in Figure 2. Q(ωNC , u) is
the expected reward over all future trajectories. This can
be written as Qr(ω

NC , u) + Qc(ω
NC , u) + Qe(ω

NC , u),
where Qr is the expected reward while doing u, Qc is the
expected reward after u, but before exiting the current sub-
routine, and Qe is the expected reward gained after exiting
the subroutine. The motivation is that each of these compo-
nents might be amenable to state abstraction. At ωNC , Qr

is the reward for moving one step, which is constant, while
Qc is the reward until reaching the current goal, which only
depends on the taxi’s position and destination. Neither of
these components depends, say, on the passenger’s destina-
tion [Dietterich, 2000].

There exist algorithms for learning Q and for learn-
ing the three components separately [Andre and Russell,
2002]. Note that the behaviour of the runtime agent given
a learnt Q-function is conceptually simple—at a state ω,
pick u to maximize Q(ω, u) (in the decomposed case, just
add the components together).

A problem with the 3-part decomposition is that the
Qe component will often depend on many variables. The
Qr and Qc components are local, i.e., they refer to the total
rewards gained within some subroutine, whereas Qe mea-
sures all future rewards received after the current subrou-
tine. At the navigation choice in the previous example, Qe

includes the rewards gained while dropping off the current
passenger and serving all future passengers. As we scale up
to domains with huge numbers of variables, Qe will typi-
cally depend on most of them. Thus the number of param-
eters to learn will scale exponentially with the number of
state variables. Our goal is to avoid having to represent
and learn Qe, yet preserve the possibility of hierarchically
optimal behaviour.

3In future, we will often leave out the π superscript when it is
obvious from context.

4 Recursive Q-function decomposition

We begin by expressing Qe in terms of Qr and Qc func-
tions at higher levels of the hierarchy. Given a subroutine
σ, and a state ω and choice u occurring in the call stack at
or below σ, write P π,σ

e (ω′|ω, u) for the probability of ex-
iting σ at state ω′ given that we choose u at ω, then follow
π. We also write P π,σ

e (ω′|ω) to mean P π,σ
e (ω′|ω, π(ω)). In

the special case where ω occurs in σ itself, we will leave out
the σ superscript, and refer to this conditional distribution
as the exit distribution of σ. Write V π

r (ω) = Qπ
r (ω, π(ω))

and similarly for Vc and Ve (as with Q, we will often omit
the π superscript of V and Pe). Then,

Qe(ω
NC , u) = EPe(ωP A|ωNC ,u)[V (ωPA)]

= EPe(ωP A|ωNC ,u)[Vr(ω
PA) + Vc(ω

PA) +

Ve(ω
PA)]

= EPe(ωP A|ωNC ,u)[Vr(ω
PA) + Vc(ω

PA) +

EPe(ωP P |ωP A)[V (ωPP)]]

= EPe(ωP A|ωNC ,u)[Vr(ω
PA) + Vc(ω

PA) +

EPe(ωP P |ωP A)[Vr(ω
PP) + Vc(ω

PP) +

EPe(ωSP |ωP P)[Vr(ω
SP) + Vc(ω

SP)]]]

This derivation mirrors the structure of the program
in Figure 2. Note that the figure depicts one possible tra-
jectory of the program; other trajectories may have differ-
ent call structures. Nevertheless, all trajectories passing
through ωNC will contain (random) exit states ωPA, ωPP ,
and ωSP , and those are the only states referred to.4 The
following theorem generalizes the derivation.

Theorem 1. Let ω be a joint state of an ALisp program
with stack (σn, . . . , σ0). Given a choice u at ω and a com-
pletion π, define random variables ω1, . . . , ωn, where ωi is
the exit state of σi that is reached after choosing u at ω and
following π thereafter. Then,

Qe(ω, u) = EPe(ωn|ω,u) [Vr(ω
n) + Vc(ω

n) + Ve(ω
n)]

= EPe(ωn|ω,u)[Vr(ω
n) + Vc(ω

n) +

EPe(ωn−1|ωn)[Vr(ω
n−1) + Vc(ω

n−1) +

. . . + EPe(ω1|ω2)[Vr(ω
1) + Vc(ω

1)]

Since Vr and Vc can be computed from Qr and Qc,
this theorem shows that knowledge of Qr, Qc, and the exit
distributions is enough to act optimally.

It might seem like we have exchanged one problem
for another, since instead of Qe, we now have to learn exit
probability distributions Pe. But in fact, the individual exit
distributions often have a lot of structure, such as determin-
ism and conditional or context-sensitive independencies,
which might be known beforehand. For example, at the

4We are making use of the guaranteed termination of legal AL-
isp programs.

SERVE

GET-PASS

NAV

…

PUT-PASS…

SERVE
…ω0

ωGP

ωNS

ωSP

ωNC

ωPA

ωPP

PICKUP

Figure 2: An execution trajectory of the partial program in Example 1. The circles represent successive joint states. The
vertical position of a circle depends on the depth of the stack of choices/calls at that state. With the exception of the leftmost
state ω0, which is at the call statement in taxi-main, the circles are labelled with label at the corresponding choice or
action statement. For example, ωGP is a joint state where the program counter points to the choice statement with label
GP.

navigation choice ωNC in Figure 2, Pe(ω
PA|ωNC) deter-

ministically leads to the state where the taxi is at the pas-
senger location, and Pe(ω

PP |ωPA) deterministically leads
to the state where the passenger is now in the taxi. Also,
Pe(ω

SP |ωPP) either results in termination, or keeps the
taxi at its current location and reinitializes each passenger
independently, and so the only quantities that need to be
estimated are the termination probability and the distribu-
tion over an individual passenger’s source, destination, and
generosity.

4.1 Computing Qe at runtime

Algorithm 1 Functions for computing Qe at runtime. Ini-
tialize is called by the overall ALisp interpreter when start-
ing to run the program. CallSub is called when a subroutine
is called. QStack is a global stack maintained by the in-
terpreter. The stack is popped when leaving a subroutine.
Decisions are made by maximizing the Q-function at the
top of the stack. The operations Expectation, Add,
and GetValueFn are assumed provided as blackboxes.

function INITIALIZE
Q← Qr + Qc of top level
PUSH(Q, QStack)

end function

function CALLSUB(σ)
Qpar ← TOP(QStack)
Ve ← GETVALUEFN(Qpar)
Qe ← EXPECTATION(Ve, Pe, σ)
Q← ADD(Qr, Qc, Qe)
PUSH(Q, QStack)

end function

Given Qr, Qc and Pe, we need to compute Q from
them to act optimally at runtime. The recursive nature of
Theorem 1 suggests that the entire computation need not

be repeated for each state, but can happen whenever a call
is made, as shown in Algorithm 1.

The algorithm maintains a stack of Q-functions par-
allel to the call stack. Of course, there is really only one
Q-function, but the point is that the Q-function on the stack
for a particular subroutine can be a compact representa-
tion that is valid only for states encountered in that subrou-
tine. Moreover, the operations within the algorithm, such
as Expectation, can operate directly on these represen-
tations. For example, we might use decision trees for Q-
functions, DBNs for the exit distributions, and the methods
of [Boutilier et al., 1999] to operate on them efficiently.

When calling a subroutine, the exit value function for
that subroutine is computed using the parent’s Q-function.
This is then combined with the child’s exit distribution to
get a representation of the Q-function for the child, which
is added to the stack. Decisions within the subroutine are
made by maximizing this Q-function. An intuitive descrip-
tion of the overall procedure is that each subroutine “passes
in” its exit value function to children, who compute their
Q-function from it.

4.2 A learning algorithm for Pe

Prior work [Andre and Russell, 2002] has described the
HORDQ algorithm, which learns Qr, Qc, and Qe based on
samples from a GLIE policy. Now Pe satisfies the Bellman
equation

P π
e (ω̃|ω, u) = P (ω̃|ω, u) +

∑

ω′∈SS

P (ω′|ω, u)P π
e (ω̃|ω′, π)

where P (·|ω, u) is the distribution over the next choice
state at the same level as ω encountered after choosing u in
ω, and SS(ω) is the set of choice states in the same subrou-
tine as ω. We can therefore modify the original HORDQ al-
gorithm to a Hierarchically Optimal Cascaded Q-Learning

0 50 100 150 200 250
−8

−6

−4

−2

0

2

Num samples (x 1000)

A
v

R
ew

ar
d

of
 le

ar
nt

 p
ol

ic
y

RORDQ
HORDQ
HOCQ

Figure 3: Learning curves for RORDQ, HORDQ, and
HOCQ in Example 1, in a 6 by 6 world with two passen-
gers (15552 states). No state abstraction was used for Qe

or Pe. All curves averaged over 10 runs.

algorithm (HOCQ) that learns Pe instead of Qe. Every time
we encounter successive states at the same level ω and ω′

(with possibly some intervening states at lower levels), we
set the new value of the conditional distribution Pe(ω̃|ω, u)
to

(1− η)Pe(ω̃|ω, u) + ηP (ω′|ω, u)Pe(ω̃|ω
′, π(ω′))

where η is a learning rate parameter. When we encounter a
state ω that is followed by a state ω′ at the parent level, we
set Pe(ω̃|ω, u) to

(1− η)Pe(ω̃|ω, u) + ηδω′(ω̃)

Figure 3 compares the performance of HOCQ with
HORDQ and its recursively optimal counterpart RORDQ
on Example 1. Somewhat surprisingly, even without state
abstraction of Qe or Pe, HOCQ has a slight edge over
HORDQ. Note also that RORDQ converges to a slightly
suboptimal policy (essentially, it is too willing to serve gen-
erous passengers travelling to remote locations).

5 Additive irrelevance

The previous section showed how to replace Qe with the
more “local” quantity Pe, but we are still not making full
use of this locality. Pe describes the exit distribution of
all the state variables, even those that have no connection
with what is going on in the subroutine. This seems unnec-
essary. For example, a stock-owning taxi driver shouldn’t
have to condition her low-level navigation decisions on un-
related variables such as the current state of the NASDAQ
exchange, even if this variable does affect the exit value. In
this section, we formalize such intuitions. We begin with
an obvious but useful fact.

Lemma 1. (Additive Irrelevance) If Q(ω, u) = Q1(ω, u)+
Q2(ω), then ∀ω argmaxu Q(ω, u) = arg maxu Q1(ω, u).

A consequence of this fact [Andre, 2003] is that if the
exit distribution of the current subroutine at a state ω is

unique, i.e., it does not depend on the choice made at ω,
then argmaxu Q(ω, u) = argmaxu Qr(ω, u)+ Qc(ω, u).
This condition applies at the navigation choice, since given
any joint state ω arising in the nav subroutine, there is only
one possible exit state, namely the one in which the taxi is
at its navigation goal, and all other variables are unchanged.
Thus, there is no need to even compute Qe at this state. On
the other hand, the condition does not hold at the passenger
choice ωGP , since the choice of passenger affects the taxi
position after the dropoff.

In practice, the unique exit condition will rarely hold.
Even at the navigation choice, adding a fuel variable would
destroy it, since the navigation choices would affect the
amount of fuel when exiting. We thus look for a more gen-
eral way to apply Lemma 1. Here is a motivating example.

Example 2. Consider modifying Example 1 by adding a
high-dimensional variable ωg that represents the state of
all traffic on the roads. ωg evolves according to a transi-
tion distribution P (ω′

g|ωg), independently of the rest of the
state, each time a passenger is served. Further, whenever
some statistic of ωg exceeds a threshold, a constant toll is
charged per passenger (after a successful dropoff).

Since the unique exit condition does not hold at ωGP ,
it would seem that we must learn Pe(ω

SP |ωGP , u), which
includes the exit distribution of g. Note, however, that u

does not actually affect the exit distribution of g. Also, a
bit of thought shows that the exit value function can be de-
composed as V (ωSP) = V1(ω

SP
x,y,pass) + V2(ω

SP
g), where

pass is the source, destination and generosity of all the
passengers, V2 consists of the expected future tolls, and V1

includes all the other rewards. Since V2 only depends on
g, its contribution to Qe will be constant with respect to u,
and may therefore be ignored. So we just need to compute
the expected exit value of V1, which only requires knowing
Pe(ω

SP
x,y,pass|ω

GP). This argument can be generalized.

Definition 1. Given a transition distribution P (ω′|ω, u),
we say that a set of variables D is decoupled from the
choice at ω with respect to P if ω′

D is conditionally in-
dependent of u given ω under the distribution P .5 We call
a variable (or set) of variables coupled if it is not a member
(or subset) of any decoupled set.

We will typically take P to be the exit distribution. In
Example 2, {g} is decoupled from the choice at ωGP with
respect to Pe. To incorporate additive irrelevance into the
recursive decomposition, we need a definition that applies
to entire subroutines.

Definition 2. A set of variables D is decoupled from sub-
routine σ if, for any ω occurring in σ or its descendants,
and any completion π within σ, D is decoupled from the
choice at ω with respect to P π

e .

Definition 3. A triple (D, R, V1) satisfies the factored exit
condition with respect to a subroutine σ and function V if

5Strictly speaking, u is not a random variable, so this just
means that P (ω′

D|ω, u) is the same for each u.

ω

u

ω’D\R

V1

ω’D �
R

ω’R\D

ω’V ���

V-V1

Figure 4: The factored exit condition. This condition must
hold all states occurring in a subroutine σ and its descen-
dants, with respect to the exit distribution P σ

e of σ. V is the
set of all variables.

D is decoupled from σ and, for every exit state ω′ of σ,
V (ω′)− V1(ω

′
R) only depends on ω′

D.

Figure 4 illustrates this condition. We call V1 the re-
duced value function and R the set of its relevant vari-
ables. For the passenger choice in Example 2, we can sat-
isfy this condition using decoupled variables {g}, relevant
variables {x,y, pass}, and the reduced value function
that doesn’t include tolls.

Theorem 2. Suppose (D, R, V1) satisfies the factored exit
condition with respect to σ. Let ω be a joint state with
stack (σ0, . . . , σm−1, σ, σm+1, . . . , σn). Let the random
variables ω1, . . . , ωn denote the exit states of these sub-
routines. Then,

Qe(ω, u) = EPe(·|ω,u)[Vr(ω
n) + Vc(ω

n) +

EPe(·|ωn)[Vr(ω
n−1) + Vc(ω

n−1) +

. . . + EPe(·|ωm+1)[V1(ω
m
R)]]] + f(ω)

where f does not depend on u. In particular, optimal deci-
sions can be made by maximizing Qe − f .

This theorem justifies a modification to Algorithm 1
in which each subroutine passes a reduced value function
to its child. Algorithm 2 makes this precise. In addition to
Qr, Qc, and Pe, the algorithm takes as input, for each sub-
routine, sets D and R, and a blackbox function Reduce
that takes in a representation of an exit value function V

and produces V1 such that (D, R, V1) is a factored exit
triple for V . Such a blackbox function is often easy to write
if we have a structured representation of V . If we do not
have this information for a subroutine, we can set R to V ,
D to the empty set, and Reduce to the identity function.

Thus, using the factored exit condition will speed
things up at runtime, since we only compute expectations
of the reduced exit value function. There will also be
an improvement during learning; we now only need to
learn the exit distributions of the relevant variables for
each subroutine, and can also make use of the factorization

Algorithm 2 Modification to Algorithm 1 that takes fac-
tored exit conditions into account.

function CALLSUB(σ)
Qpar ← TOP(QStack)
Ve ← GETVALUEFN(Q)
V̄e ← REDUCE(Ve)
Qe ← EXPECTATION(V̄e, Pe, σ)
Q← ADD(Qr, Qc, Qe)
PUSH(Q, QStack)

end function

0 100 200 300 400 500
−18

−16

−14

−12

−10

−8

−6

−4

−2

Num samples (x 1000)

A
vg

 r
ew

ar
d

of
 le

ar
nt

 p
ol

ic
y

HOCQ
HOCQ + Factored Exit Dist

Figure 5: Learning curves for HOCQ with and without fac-
tored exit condition in Example 2, averaged over 10 runs.

P (ω′
R|ω, u) = P (ω′

R∩D|ω)P (ω′
R\D|ω, u). It is straight-

forward to extend the basic HOCQ algorithm of Section 4.2
to take these facts into account. The extent of the gains will
depend on the number of relevant variables and their do-
main size, and on how many variables in the current state
affect the exit values of the relevant variables.

In Figure 5, we measure the effect of using the fac-
tored exit condition in Example 2. The traffic variable takes
10 different values. The per-dropoff transition matrix for
traffic and the toll vector were chosen randomly at the start
of the experiment. Without the factored exit condition, the
algorithm learns to navigate as before, but has difficulty re-
liably learning to choose passengers optimally. When fac-
tored exit distributions are taken into account, the algorithm
learns as quickly as in Figure 3.

6 Separating a subroutine from its context

In some cases, the factored exit condition does not sim-
plify the problem much. One family of such cases occurs
when choices made in a subroutine affect the number of
time steps that elapse before exiting the subroutine, which
in turn affects the exit value of most of the state variables.

Example 3. Consider the environment of Example 2, mod-
ified so that the traffic variable evolves once per timestep,
rather than only when a passenger is dropped off. For con-
venience, we also add the state variable t, which equals the
current timestep.

ω

u ω’S

ω’W

V

Figure 6: In this picture, S is a separator for W . The dashed
box surrounds that part of the distribution that is used at
runtime by the subroutine containing ω to compute the ex-
pected value of Ṽ . The part outside the box is used by the
parent to compute Ṽ .

Suppose we are at the passenger choice in Example 3
and choosing between two passengers, such that one of
them will take longer to serve, but is more generous. Since
the traffic evolves once per timestep, its exit value is cou-
pled with the choice of passenger, and there is no useful
application of Theorem 2.

The second type of example that causes problems is
when events occurring within a subroutine can change the
state in a way that affects all future rewards.

Example 4. Consider the environment of Example 2, mod-
ified so that some map squares are designated as “cliffs”.
Moving onto one of these squares results in a large nega-
tive reward and immediate termination of the episode. For
correctness, the partial program is also modified to termi-
nate when at a cliff.

Suppose we are at the passenger choice of Example 4.
Let c be a Boolean variable that is true if the taxi has moved
on to a cliff square. Then, assuming moves are noisy, c is
coupled with our choice of passenger; for example, pick-
ing up a passenger in a region of the map with many cliff
squares would carry a high risk of accidentally entering one
of them. But it is no longer possible to find a nontrivial ad-
ditive decomposition of the exit value function in which
one of the components does not depend on c. Intuitively,
when deciding between a stingy passenger in the plains,
and a generous one in the mountains, the optimal decision
depends on how much future expected reward is being lost
in the second case due to the possibility of falling off a cliff.
So we cannot ignore any portion of the exit value function.

A commonality between the last two examples is the
existence of a small set of variables that makes the exit val-
ues of all the variables relevant to Qe, either by making
them all coupled with the current choice, as with t (the
current timestep) in the first example, or by jointly partici-
pating with them in some value function component as with
c in the second case. We can formalize this idea.

Definition 4. Given P (ω′|ω, u), and sets of variables S

and W , we say that S is a separator for W if ω′
W is condi-

tionally independent of u given ω and ω′
S .

Figure 6 illustrates this condition. At the passen-

ger choice in Example 3, {t, x,y} is a separator for
{g,pass}. At the passenger choice in Example 4,
{c, x,y} is a separator for {c, pass, x,y}. As
shown in this example, it is possible for S and W to over-
lap.

Let’s look a bit more closely at Example 3. Imag-
ine that the subroutines are separate entities, and each sub-
routine “knows” only about the direct effects of its actions
on local rewards and on exit values of some subset of the
variables. Thus the serve subroutine only knows how its
choice of passenger affects rewards within the subroutine
and the exit distribution of {t, x,y}. Given this knowl-
edge, what additional information is needed to make opti-
mal decisions at ωGP ? The answer is that we need to know
the “projection” of the exit value function onto the variables
in the separator set {t, x,y}:

ṼωGP (ωSP
t,x,y)

def
= EPe

[V (ωSP)|ωGP , ωSP
t,x,y]

where the right hand side makes sense independently of u

because V (ωSP) depends only on the variables in W , and
t, x,y is a separator for W . Knowing Ṽ is sufficient, for
then we can compute

Qe(ω
GP , u) = EPe

[ṼωGP (ωSP
t,x,y)|ω

GP , u]

using the known distribution Pe(ω
SP
t |ω

GP , u). Intuitively,
the parent computes and “passes in” Ṽ to the child, who
uses it, together with Pe of the separator variables, to com-
pute Q, as shown in Figure 6. In general,

Definition 5. Suppose S is a separator for W at ω. Let
f(ω′) be any function on exit states ω′ that only depends
on ω′

S∪W . The projection of f onto S is defined as

f̃ω(ω′
S) = EP (ω′

W
|ω,ω′

S
)[f(ω′

W,S)]

Lemma 2. Suppose S is a separator for W at ω, and that
the (possibly reduced) exit value function V (ω′) depends
only on the variables W ∪ S . Then

Qe(ω, u) = EPe(ω′

S
|ω,u)[Ṽω(ω′

S)]

In light of Lemma 2, we can modify Algorithm 2
to take separators into account, as shown in Algorithm 3.
The algorithm takes, as an additional input, sets S and W

for each pair of subroutines σ1, σ2 where σ1 can call σ2,
such that S is a separator for W within σ2 and the exit
value function of σ2 only depends on S ∪W . The learn-
ing algorithm must also be modified to separately learn
P (ω′

W |ω, ω′
S) and P π

e (ω′
S |ω, u).

What have we gained by this decomposition? The first
component is a kind of “general knowledge”, which will
often be unaffected by aspects of ω that pertain to the de-
tails of the particular task being done, and can thus be learnt
using samples from many different tasks. At the passenger
choice in Example 3, this component equals P (ω′

g |ωg, ω
′
t),

the distribution of how traffic evolves over time, while in

Algorithm 3 Modification to Algorithm 2 that makes use
of separator sets.

function CALLSUB(σ)
Qpar ← TOP(QStack)
Ve ← GETVALUEFN(Q)
V̄e ← REDUCE(Ve)

Ṽe ← PROJECT(V̄e, S)

Qe ← EXPECTATION(Ṽe, Pe, σ)
Q← ADD(Qr, Qc, Qe)
PUSH(Q, QStack)

end function

0 100 200 300 400 500
−8

−6

−4

−2

0

2

4

Num samples (x 1000)

A
vg

 r
ew

ar
d

of
 le

ar
nt

 p
ol

ic
y

HOCQ with separators
HOCQ

Figure 7: Learning curves with and without making use of
separators

Example 4, it equals P (ω′
g |ωg), the distribution of how traf-

fic evolves each time a passenger is served (note that in this
case, the distribution does not actually depend on the exit
values of any of the separator variables).

The second component of our decomposition is the
exit distribution of just the separator variables, which are
directly related to the task being performed in the subrou-
tine. At the passenger choice in Example 3, this compo-
nent is P (ω′

t,x,y|ω, u), the exit distribution of time and po-
sition. Assuming deterministic moves, and a completion
that follows the shortest path towards its goal, this distri-
bution depends only on the current location and the pas-
senger’s source and destination. At the passenger choice in
Example 4, the second component is the exit distribution of
c, x,y, i.e., a distribution over taxi position and whether
the taxi falls of a cliff during the subroutine. Again, this
depends on the taxi’s location and the passenger’s source
and destination.

In Figure 7, we measure the effect of using the sepa-
rator decomposition in Example 3. We let the traffic vari-
able be an integer between 0 and 10, and made it follow
a random walk with a slight upward drift over time. The
toll is proportional to the square of the traffic. Without the
separator conditions, the algorithm must directly learn the
exit distribution of traffic as a function of passenger choice,
and learns quite slowly. When the separator conditions are
used, the algorithm can now take advantage of the abstrac-
tions described above, and learns much faster.

7 Local policies

The exit distribution of the separator variables is not always
as easy to abstract as in the last two examples.

Example 5. Consider a combination of Examples 3 and 4
where traffic evolves every timestep and there are cliffs.

Suppose we are at the navigation choice in this ex-
ample, and the traffic is below the threshold beyond tolls
will be charged. In a few steps, we will reach a fork in the
road, and must choose between two paths. The first path
is safe and slow, and the other is fast goes through moun-
tainous regions. Suppose the rewards are such that if the
traffic doesn’t change much before we reach the fork, then
it will make sense to choose the slow route, but if the traffic
level rises sufficiently during this period, it will make sense
to risk the fast route to increase the chance of avoiding the
toll. The traffic when making the future choice, in turn, de-
pends on the current traffic. So, somewhat surprisingly, the
exit distribution of t for the optimal completion depends on
the current traffic, even though traffic has no direct effect
on events within the subroutine (recall that it only affects
the toll, not how fast the taxi moves). The problem is that
separated variables may nevertheless affect future decisions
made in the subroutine, and so any quantity that is relevant
to predicting future values of these variables becomes rele-
vant to the exit distribution of the separator variables.

Unfortunately, it does not seem possible to handle
such cases exactly while keeping the exit distribution com-
pact. In this example, we could probably ignore the traffic
without much harm, but in general, such an approximation
would systematically underestimate the exit value, because
it would be based on the assumption that future decisions
are made using an unsafe abstraction. As an alternative, we
show a further level of structure in the exit distribution that
allows more principled approximations.

The dependence between the exit distribution of the
separator variables and the current value of the separated
variables is not arbitrary; it only happens via the separated
variables’ effect on the exit value function, and therefore
on the “local policy” at future choices in the subroutine.

Definition 6. Let π be a completion, ωW an instantiation
to a set W of variables, and L = V \W . The local policy
πωW

is defined by πωW
(ωL) = π(ωW,L).

Suppose we are at a state ω0 in some subroutine σ, and
that D is decoupled from the root subroutine of the pro-
gram. Let the trajectory of states after ω0 be ω1, ω2,
There is a corresponding random sequence of local poli-
cies πi = πωi

D
. Let ~π = (π1, π2, . . .) and note that ~π is

independent of u given ω. We now rewrite

Pe(ω
′
S |ω, u) =

∑

~π

P (~π|ω)P (ω′
S |ω, u, ~π) (1)

where P (~π|ω) is once again “general knowledge”, and con-
ditional on a given ~π, future decisions in the subroutine will
no longer depend on variables in D.

In our quest for simplicity, we have replaced a large
but finite, observable object (ωD) with an unbounded, un-
observable one (~π). This might not seem like progress. But
in fact, we never have to represent ~π explicitly, since it only
serves as a hidden mixture component. Also, we claim that
(1) exposes numerical structure for function approximators
and provides a useful “hook” for specifying prior knowl-
edge. The infinite mixture can often be well approximated
by a small finite one, where each of the components in the
reduced model corresponds to an event such as “I’m not in
a hurry now, but will be when I reach the upcoming fork”.

8 Related Work and Conclusions

In addition to the work mentioned in the introduction, many
other bodies of research have explored the ideas of the de-
composition of value functions and exit distributions in hi-
erarchical reinforcement learning. [Dean and Lin, 1995],
[Hauskrecht et al., 1998], and [Parr, 1998] are all based
on the idea of dividing the state space of an MDP into re-
gions which communicate via small sets of interface states
(which would be subroutine call and exit states, in our
case), solving the subproblems separately, and combining
the solutions somehow. These papers mainly utilize struc-
ture in the state-transition graph, and deal with planning
given a model. In contrast, we have focused on viewing
states as factored into a set of variables, and on how struc-
ture within this factored representation can lead to repre-
sentational and statistical benefits in learning. An inter-
esting question is whether this factored structure also has
algorithmic benefits, i.e., can it be used in conjunction with
the methods of the aforementioned papers to yield more
efficient planning algorithms? We note also that our no-
tion of local policies is reminiscent of the policy-cache idea
of [Parr, 1998], and it might be possible to use the meth-
ods for policy-cache construction therein to approximate
the mixture representation of the exit distribution in Sec-
tion 7.

A recent paper [Meuleau et al., 2006] studies the over-
subscription planning problem, in which we are given a
set of tasks which consume resources and must complete
as many of them as possible given global resource con-
straints. The framework can be viewed as an ALisp pro-
gram with a top-level loop that chooses the next task to do
and, for each task, a subroutine that chooses between ac-
tions for that task and aborting. The state is factored into
global variables (e.g. resource amounts), variables local to
each task and, for each task, an indicator for whether that
task is completed. In our terminology, while engaged in a
particular task, the exit values of the resource amounts and
the completion indicator for the current task are separators
for the remaining variables. The paper shows that under
a reset assumption, which states that if a task is aborted
before completion, its local variables revert to the initial
state, a dynamic programming algorithm that alternates be-
tween planning at the top-level and planning for subtasks

is guaranteed to converge. It would be interesting to see if
the algorithm can be extended to general hierarchies, and
without the reset assumption. A similar algorithm is also
suggested in [Dietterich, 2000].

In the options framework [Precup and Sutton, 1998],
models of the expected behavior of options are created that
are somewhat similar to the notion of Pe in our work. A
difference is that work in options thus far has usually as-
sumed that the low-level options are specified beforehand,
whereas we are interested in the problem of simultaneously
planning at the low and high levels.

The primary contributions of this paper are to present
a method and a set of conditions under which hierarchi-
cally optimal solutions can be obtained without large rep-
resentational and parameter learning costs. Unlike previ-
ous work that reasons explicitly about exit states of sub-
routines, our method generalizes easily to arbitrarily deep
hierarchies and captures the notion that the parent passes to
the child subroutine an exit value function that is as concise
as possible.

To keep the presentation focused, we have only dis-
cussed exact decomposition of the Q-function in this paper.
In practice, approximate versions of the factored exit and
separator conditions will be required, and the components
of the decompositions will themselves need to be approx-
imated. Applying our algorithms to larger domains will
requiring facing these issues.

This work is but a step toward a full understanding
of the structure of value functions. The link between this
structure, the behavioural hierarchy, and the complexity of
decision making needs to be investigated further.

References
[Andre and Russell, 2002] D. Andre and S. Russell. State ab-

straction for programmable reinforcement learning agents. In
AAAI, 2002.

[Andre, 2003] D. Andre. Programmable Reinforcement Learn-
ing Agents. PhD thesis, UC Berkeley, 2003.

[Boutilier et al., 1999] C. Boutilier, T. Dean, and S. Hanks. De-
cision theoretic planning : structural assumptions and compu-
tational leverage. Journal of Artificial Intelligence Research,
11:1–94, 1999.

[Dean and Lin, 1995] T. Dean and S.-H. Lin. Decomposition
techniques for planning in stochastic domains. In IJCAI, 1995.

[Dietterich, 2000] T. Dietterich. Hierarchical reinforcement
learning with the maxq value function decomposition. JAIR,
13:227–303, 2000.

[Hauskrecht et al., 1998] M. Hauskrecht, N. Meuleau,
C. Boutilier, L. Kaelbling, and T. Dean. Hierarchical
solution of Markov decision processes using macro-actions.
In UAI, 1998.

[Meuleau et al., 2006] N. Meuleau, R. Brafman, and E. Benaz-
era. Stochastic over-subscription planning using hierarchies of
MDPs. In ICAPS, 2006.

[Parr and Russell, 1997] R. Parr and S. Russell. Reinforcement
learning with hierarchies of machines. In NIPS, 1997.

[Parr, 1998] R. Parr. Flexible decomposition algorithms for
weakly coupled Markov decision processes. In UAI, 1998.

[Precup and Sutton, 1998] D. Precup and R. Sutton. Multi-time
models for temporally abstract planning. In NIPS, 1998.

