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Model predictive control (MPC)

= Optimal control problem

Given a system with (stochastic) dynamics: z;41 = f(z¢,us, wy) Find the
optimal policy m which minimizes the expected cost:

H
minE[Zg(zt,ut)\ﬂ']
[
= MPC:
Fort=0,1,2,...
1. Solve
H
Ml iy 9 9Tk )
k=t
s.t. Tpt1 = [z, ur,0) Ve=t,t+1,...,H—1

2. Execute u; from the solution found in (1).

= In practice, one often ends up having to solve:

t+h
minui7u1+l 44444 Ut4h—1 Zg(zlﬂuk) +g(xt+h1ut+h)
k=t
s.t. Trt1 = f(zg,ug,0) VE=t,t+1,...;t+h—1
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Single shooting

At core of MPC, need to quickly solve problems of the form:

s.t. i1 = f(zg,uk,0) VE=tt+1,...,H—-1
Single shooting methods directly solve for

i.e., they solve:

Underneath, this typically boils down to iterating:
= Forthe current simulate and find the state sequence
= Take the 15t (and 2nd) derivatives w.r.t.

Note: When taking derivatives, one ends up repeatedly applying the chain rule and the
same Jacobians keep re-occurring

- Beneficial to not waste time re-computing same Jacobians; pretty straightforward,
various specifics with their own names. (E.g., back-propagation.)

Single shooting drawback

= Numerical conditioning of the problem:

= Influence on objective function of earlier actions vs.
later actions

= What happens in case of a non-linear, unstable system?
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Multiple shooting/Direct collocation

= Keep the state at each time in the optimization problem:

s.t. ;Ek+1:f(;rk,uk,0) vk‘:t,tJrl,...,H*l
hk(atk,uk) SO Vk:t,t+1,...,H71
= Larger optimization problem, yet sparse structure.

= Special case: Linear MPC: f linear, h, g convex >
convex opt. problem, “easily” solved

Sequential Quadratic Programming (SQP)

= Goal: solve

s.t. l‘k+1:f(l‘)€,uk,0) Vk=tt+1,...,H-1
hk(wk,uk) <0 Vk=t,t+1,...,H-1

= SQP: lterates over

= Linearize faround current point (u, x), quadraticize g, h around
current point

= Solve the resulting Quadratic Programming problem to find the
updated “current point” (u, x)

= Corresponds to:

= Write out the first-order necessary conditions for optimality (the
Karuhn-Kuhn-Tucker (KKT) conditions)

= Apply Newton’s method to solve the (typically non-linear) KKT
equations
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Sequential Quadratic Programming (SQP)

= Not only method, but happens to be quite popular
= Packages available, such as SNOPT, SOCS.

= Many choices underneath:

= Quasi-Newton methods

= Compared to single shooting:
= Easier initialization (single shooting relies on control sequence)
= Easy to incorporate constraints on state / controls

= More variables, yet good algorithms leverage sparsity to offset this

Further readings

= Tedrake Chapter 9.

= Diehl, Ferreau and Haverbeke, 2008, Nonlinear MPC overview
paper

= Francesco Borelli (M.E., UC Berkeley): taught course in Spring
2009 on (linear) MPC

= Packages:
= SNOPT, ACADO, SOCS, ...

= We have ignored:
= Continuous time aspects

= Details of optimization methods underneath --- matters in
practice b/c the faster the longer horizon

= Theoretical guarantees
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Related intermezzo: Nonlinear control
| applied to kite-based power generation

[Diehl + al.]

= Many companies pursuing this: Makani, KiteGen, SkySails, AmpyxPower, ...

= Number from Diehl et al.: For a 500m2 kite and 10m/s wind speed (in sim)
can produce an average power of more than 5SMW

= Technically interesting aspect in particular work of Diehl et al.: incorporate
open-loop stability into the optimization problem.
= Only possible for non-linear systems

= The criterion quantifies how much deviation from the nominal trajectory would
amplify/decrease in one cycle

Non-minimum phase example

[Slotine and Li, p. 195, Example II.2]

Consider the linear system

Fe2i+2y = —it+u
The sysiem is non-minimum phase because it has a 2eto at p = 1. Asswme that perfec wracking is
achieved, i.e., that y(r} = ¥4, ¥ 1 2 0, Then, the inpu: « satisfies

fmu = = (gt 23+ 2y
Since this represenrs an unstable dynamics, « diverges exponentially. Note that the above
dynamics has a pole which exactly coincides with the unstable zero of the original systemn, f.e.,

perfect racking for non-minimum phase systems can be achieved only by infinite corntrol inputs,
By writing 1« as

2a2p+2
__ poip+
o —-——p -1 ¥
we seg that the perfect-tracking controdler is actually imverting the plant dynamics. a
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Feedback linearization

Feedback linearization
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Feedback linearization

Feedback linearization
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Feedback linearization

= Further readings:
= Slotine and Li, Chapter 6
= Isidori, Nonlinear control systems, 1989.

Announcements

= Reminder: No office hours today.
= [Feel free to schedule over email instead]
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Controllability [defn., linear systems]

|
= A system x,, = f(x,, u,) if for all x, and all x, there exists a time k and
a control sequence uy, ..., U,_4 such that x; = x.

Fact. The linear system z;11 = Ax; + Bu; with z; € R™ is controllable iff
[B AB A%B ... A"B] is full rank.

Lagrangian dynamics

[From: Tedrake Appendix A]
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Lagrangian dynamics: example

Page 10




