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� Optimal control problem

� MPC:

� In practice, one often ends up having to solve:

Model predictive control (MPC)

Given a system with (stochastic) dynamics: xt+1 = f(xt, ut, wt) Find the
optimal policy π which minimizes the expected cost:

min
π

E[

H∑

t=0

g(xt, ut)|π]

For t = 0, 1, 2, . . .

1. Solve

minut,ut+1,...,uH

H∑

k=t

g(xk, uk)

s.t. xk+1 = f(xk, uk, 0) ∀k = t, t+ 1, . . . , H − 1

2. Execute ut from the solution found in (1).

minut,ut+1,...,ut+h−1

t+h∑

k=t

g(xk, uk) + ḡ(xt+h, ut+h)

s.t. xk+1 = f(xk, uk, 0) ∀k = t, t+ 1, . . . , t+ h− 1
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� At core of MPC, need to quickly solve problems of the form:

� Single shooting methods directly solve for 

i.e., they solve:

� Underneath, this typically boils down to iterating:

� For the current                 simulate and find the state sequence

� Take the 1st (and 2nd) derivatives w.r.t.

� Note: When taking derivatives, one ends up repeatedly applying the chain rule and the 
same Jacobians keep re-occurring

� � Beneficial to not waste time re-computing same Jacobians;  pretty straightforward, 
various specifics with their own names.  (E.g., back-propagation.)

Single shooting

minut,ut+1,...,uH

H∑

k=t

g(xk, uk)

s.t. xk+1 = f(xk, uk, 0) ∀k = t, t+ 1, . . . ,H − 1

� Numerical conditioning of the problem:

� Influence on objective function of earlier actions vs. 

later actions

� What happens in case of a non-linear, unstable system?

Single shooting drawback
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� Keep the state at each time in the optimization problem:

� Larger optimization problem, yet sparse structure.

� Special case: Linear MPC:  f linear, h, g convex �

convex opt. problem, “easily” solved

Multiple shooting/Direct collocation

minut,ut+1,...,uH ,xt,xt+1,...,xH

H∑

k=t

g(xk, uk)

s.t. xk+1 = f(xk, uk, 0) ∀k = t, t+ 1, . . . , H − 1

hk(xk, uk) ≤ 0 ∀k = t, t+ 1, . . . , H − 1

� Goal: solve

� SQP:   Iterates over

� Linearize f around current point  (uuuu, xxxx), quadraticize g, h around 

current point

� Solve the resulting Quadratic Programming problem to find the 
updated “current point” (u, x)

� Corresponds to:

� Write out the first-order necessary conditions for optimality (the 

Karuhn-Kuhn-Tucker (KKT) conditions)

� Apply Newton’s method to solve the (typically non-linear) KKT 

equations

Sequential Quadratic Programming (SQP)

minut,ut+1,...,uH ,xt,xt+1,...,xH

H∑

k=t

g(xk, uk)

s.t. xk+1 = f(xk, uk, 0) ∀k = t, t+ 1, . . . , H − 1

hk(xk, uk) ≤ 0 ∀k = t, t+ 1, . . . , H − 1



Page 4

� Not only method, but happens to be quite popular

� Packages available, such as SNOPT, SOCS.

� Many choices underneath:

� Quasi-Newton methods

� Compared to single shooting:

� Easier initialization  (single shooting relies on control sequence)

� Easy to incorporate constraints on state / controls

� More variables, yet good algorithms leverage sparsity to offset this

Sequential Quadratic Programming (SQP)

� Tedrake Chapter 9.

� Diehl, Ferreau and Haverbeke, 2008, Nonlinear MPC overview 

paper

� Francesco Borelli (M.E., UC Berkeley): taught course in Spring 

2009 on (linear) MPC

� Packages:

� SNOPT, ACADO, SOCS, …

� We have ignored:

� Continuous time aspects

� Details of optimization methods underneath --- matters in 

practice b/c the faster the longer horizon

� Theoretical guarantees

Further readings
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� Many companies pursuing this: Makani, KiteGen, SkySails, AmpyxPower, …

� Number from Diehl et al.: For a 500m2 kite and 10m/s wind speed (in sim) 

can produce an average power of more than 5MW

� Technically interesting aspect in particular work of Diehl et al.: incorporate 

open-loop stability into the optimization problem.

� Only possible for non-linear systems

� The criterion quantifies how much deviation from the nominal trajectory would 
amplify/decrease in one cycle

Related intermezzo: Nonlinear control 
applied to kite-based power generation

[Diehl + al.]

Non-minimum phase example
[Slotine and Li, p. 195, Example II.2]
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Feedback linearization

Feedback linearization
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Feedback linearization

Feedback linearization
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� Further readings:

� Slotine and Li, Chapter 6

� Isidori, Nonlinear control systems, 1989.

Feedback linearization

� Reminder: No office hours today.

� [Feel free to schedule over email instead]

Announcements
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� A system xt+1 = f(xt, ut) if for all x0 and all x, there exists a time k and 

a control sequence u0, …, uk-1 such that xt = x.

Controllability [defn., linear systems]

Fact. The linear system xt+1 = Axt + But with xt ∈ ℜ
n is controllable iff

[B AB A2B . . . AnB] is full rank.

Lagrangian dynamics

[From: Tedrake Appendix A]
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Lagrangian dynamics: example


